柴达木盆地大浪滩地区钻孔岩芯的磁性地层与古环境研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
上世纪末,众多学者利用磁性地层建立了柴达木盆地第四系的年代框架,但由于采样密度与古地磁仪器精度的限制,上述年代框架已不能满足现今高精度环境变化的要求,需要新的测年数据对其进行修订与补充。
     本文选取柴达木盆地大浪滩地区梁ZK02孔与梁ZK06孔岩芯进行岩石磁学与磁性地层研究,探讨大浪滩地区与柴达木盆地第四纪的环境演化。
     岩石磁学与扫描电镜结果表明钻孔沉积物中的主要载磁矿物为胶黄铁矿、磁铁矿与赤铁矿。其中胶黄铁矿为湖泊的自生矿物,在沉积后不久形成,其携带的剩磁方向与磁铁矿、赤铁矿携带的碎屑剩磁可进行对比。
     磁性地层的研究结果表明梁ZK02孔岩芯的B/M界线位于315m,Jaramillo位于405-430m,Olduvai立于772-816m,布容期内记录了Norwegian-Greenland Sea事件,松山期内记录了Cobb Mountain事件,Bjorn事件,Gardar事件,Gilsa事件,Reunion Ⅱ与Reunion Ⅰ事件。梁ZK06孔岩芯的B/M界线位于326m,Jaramillo位于427-457m,Olduvai位于904-952m,并记录了松山期内的Cobb Mountain与Gardar事件。
     在建立年代框架的基础上,结合梁ZK02孔与梁ZK06孔的岩性与孢粉变化,认为大浪滩地区分别在2.5-2.2Ma,1.2-0.7Ma与0.4Ma发生了三次沉积环境变化。通过与前人工作的对比,认为这三次沉积环境变化在整个柴达木盆地均有记录,前两次记录了高原在第四纪的隆升,最后一次:0.4Ma的沉积环境变化是高原隆升或者其它事件所引起,还需更多的研究。上述变化中,1.2-0.7Ma的高原隆升导致柴达木盆地的气候由温凉湿润转换为寒冷干旱,并且根据岩芯中芒硝的出现,认为0.9Ma之后,柴达木盆地西部至少出现6次强冷颤动。
     梁ZK02孔与梁ZK06孔岩芯从底部到顶部蒸发岩含量以及种类逐渐增多,暗示了高原隆升引起的气候干旱化过程,然而高原隆升造成的气候干旱化趋势并非简单的逐渐加剧,而是在早更新世末期以来气候湿润期表现得更为湿润,这种现象的出现可能是高原隆升增加了夏季风的强度所导致,冰川和积雪面积的增大也起到了叠加作用。
The chronological framework of Quarternary strata based on magnetostratigraphy in the Qaidam Basin has been carried out by many researchers during the last century. This framework, however, cannot be suitable for the high resolution study of paleo-environmental change because of lower sampling density and precision of instruments, which need to be revised by the new careful study.
     In order to discuss the paleo-environmental change of Dalantan area and Qaidam basin, we carried out rock magnetic and magnetostratigraphic investigations on Liang-ZK02and Liang-ZK06borehole in the Dalangtan area of the northwestern part of the Qaidam Basin. Rock magnetic and scanning electron microscope results suggest that greigite, magnetite and hematite are the main magnetic carriers in the sediments of two boreholes. Greigite is very probably authigenic origin that was formed during the deposition, which carried both normal and reversal magnetic polarities, and showed mostly consistent with the polarities defined by magnetite/hematite. Magnetostratigraphic results show that the B/M boundary of Liang-ZK02borehole is located at315m, and the Jaramillo subchron and Olduvai subchron are located in405~430and772-816m, respectively. The excursion event of Norwegian-Greenland Sea in the Brunhes Chron, and Cobb Mountain event, Bjorn event, Gardar event, Gilsa event, Reunion Ⅰ and Reunion Ⅱ events in the Matuyama Chron are also discovered. The B/M boundary of Liang-ZK06borehole is located at a depth of326m, and the Jaramillo subchron and Olduvai subchron are located in427-457and904-952m, respectively. The Cobb Mountain and Gardar events are found in the lower part of the borehole.
     Three large environmental changes occurred around2.5-2.2Ma,1.2-0.7Ma and0.4Ma, are identified based on integrated analysis of evaporate rock, clastic rock and pollen records in the Liang-ZK02and Liang-ZK06boreholes. These three events can be traced through entire Qaidam basin. The former two environmental changes may be related to the uplift of Tibetan Plateau, and the later need to be confirmed weather its relation with the uplift of Tibetan Plateau. Paleo-climate in the Qaidam Basin changed from cool, wet climate to cold, dry climate in1.2-0.7Ma because of the uplift of the Tibetan Plateau. It can also be inferred that at least6extreme cold weather conditions revealed after0.9Ma based on the appearance of the mirabilites in the boreholes.
     Gradual increasing composition and variety of evaporate rock indicate the tendency of aridification. However, this trend induced through the uplift is not intensified gradually, the climate became wetter in the humid period since the end of Early Pleistocene, which might result from intensified strength of summer monsoon caused through the uplift of Tibetan Plateau, where the glacier and snow covered areas increased.
引文
艾莉, 强小科,宋友贵等.青海湖晚更新世沉积物中胶黄铁矿的发现及其环境指示意义.地球物理学报,2011,54(9):2309-2316.
    敖红,邓成龙.磁性矿物的磁学鉴别方法回顾.地球物理学进展,2007,22(2):432-442.
    陈贺海,汉景泰,丁仲礼,等.藏南乌郁盆地晚新生代沉积序列的时代及其区域构造意义.中国科学(D辑),2007,37(12):1617-1624.
    陈杰,K M Scharer, D W Burbank,等.西南天山明尧勒背斜的第四纪滑脱褶皱作用.地震地质,2005,27(4):530-547.
    陈克造,Bowler J柴达木盆地察尔汗盐湖沉积特征及其古气候演化的初步研究.中国科学(B辑),1985,(5):463-472.
    陈宣华,党玉琪,尹安,等.柴达木盆地及其周缘山系盆山耦合与构造演化.北京地质出版社,2010.
    陈正乐,宫红良,李丽,等.阿尔金山脉新生代隆升-剥露过程.地学前缘,2006,13(14):91-102.
    崔之久,伍永秋,刘耕年,等.关于“昆仑-黄河运动”.中国科学(D辑),1998,28(1):53-59.
    杜乃秋,孔昭宸.青海柴达木盆地察尔汗盐湖的孢粉组合及其在地理和植物学的意义.植物学报,1983,25(3):275-282.
    方小敏,吕连清,杨胜利,等.昆仑山黄土与中国西部沙漠发育和高原隆升.中国科学(D辑),2001,31(3):177-184.
    方小敏,宋春晖,戴霜,等.青藏高原东北部阶段性变形隆升:西宁、贵德盆地高精度磁性地层和盆地演化记录.地学前缘,2007,14(1):230-242.
    方小敏,赵志军,李吉均,等.祁连山北缘老君庙背斜晚新生代磁性地层与高原北部隆升.中国科学(D辑),2004,34(2):97-106.
    韩凤清,黄麒,王克俊,等.柴达木盆地昆特依湖的地球化学盐湖与古气候变化.海洋与湖沼,1995,26(5):502-508
    侯献华,郑绵平,杨振京,等.柴达木盆地大浪滩130ka以来的孢粉组合与古 气候.干旱区地理,2011,34(2):243-251.
    侯献华,郑绵平,张成君,等.柴达木盆地西部大浪滩140ka以来沉积特征与古环境.地质学报,2010,84(11):1623-1630.
    胡守云,王苏民,Appel E,等.呼伦湖湖泊沉积物磁化率变化的环境磁学机制.1998,28(4):334-339.
    黄麒,Phillips F.柴达木盆地盐湖中石盐的36C1断代法的初步研究.科学通报,1988,(10):765-767.
    黄麒,孟昭强,刘海玲.柴达木盆地察尔汗湖区古气候波动模式的初步研究.中国科学(B辑),1990,(5):652-663.
    李吉均,方小敏,马海洲,等.晚新生代黄河上游地貌演化与青藏高原隆起.中国科学(D辑),1996,26(4):316-322.
    李吉均,方小敏,潘保田,等.新生代晚期青藏高原强烈隆起及其对周边环境的影响.第四纪研究,2001,21(5):381-391.
    李明慧,易朝路,方小敏,等.柴达木盆地西部钻孔盐类矿物及环境意义初步研究.沉积学报,2010,28(6):1213-1228.
    刘栋梁,方小敏,王亚东,等.平衡剖面方法恢复柴达木盆地新生代地层缩短及其意义.地质科学,2008,43(4):637-647.
    刘青松,邓成龙,潘永信.磁铁矿和磁赤铁矿磁化率的温度和频率特性及其环境磁学意义.第四纪研究,2007,27(6):955-962.
    刘青松,邓成龙.磁化率及其环境意义.地球物理学报,2009,52(4):1041-1048.
    刘秀铭,毛学刚,丁仲礼,等.黄土古气候变化趋势与青藏高原隆升关系初探.第四纪研究,2009,29(5):988-999.
    刘泽纯,孙世英,杨藩,等.柴达木盆地三湖地区第四纪地层学和其年代学分析.中国科学(B辑),1990,(11):1202-1212.
    刘泽纯,王建,汪永建,等.柴达木盆地茫崖凹陷井下第三系的年代地层学与气候地层学研究.地层学杂志,1996,20(2):104-113.
    吕厚远,王苏民,吴乃琴,等.青藏高原错鄂湖2.8Ma来的孢粉记录.中国科学(D辑),2001,31(增刊),234-240.
    潘保田,李吉均,曹继秀,等.化隆盆地地貌演化与黄河发育研究.山地学报,1996,14(3):153-158.
    潘保田,邬光剑,王义祥,等.祁连山东段沙沟河阶地的年代与成因.科学通报,2000,45(24):2669-2675.
    青海省地质矿产局.青海省区域地质志.北京:地质出版社.1991.
    青海石油管理局勘探开发研究院,中国科学院南京地质古生物研究所.柴达木盆地第三纪孢粉学研究.北京:石油工业出版社,1988,1-40.
    青海石油管理局勘探开发研究院,中国科学院南京地质古生物研究所.柴达木盆地第三纪介形类动物群.江苏南京:南京大学出版社,1998,69-71,80-81,131-138.
    沈吉,安芷生,王苏民,等.鹤庆深钻岩芯揭示的构造-沉积旋回及其西南季风区2.78Ma以来的气候环境演化.中国科学(D辑),2008,38(3):355-363.
    沈吉,吕厚远,王苏民,等.错鄂孔深钻揭示的青藏高原中部2.8MaBP以来环境演化及其对构造事件响应.中国科学,D辑,2004,34(4):359-366.
    沈吉.湖泊沉积研究的历史进展与展望.湖泊科学,2009,21(3):307-313.
    沈振枢,程果,葛同明.柴达木盆地第四纪磁性地层特征及其意义.青海地质,1992,(2):19-29.
    沈振枢,程果,乐昌硕.柴达木盆地第四纪含盐地层划分及沉积环境.北京,地质出版社,1993,1-152.
    施林峰,郑绵平,李金锁,等.柴达木盆地大浪滩梁ZK05钻孔的磁性地层研究.地质学报,2010,84(11):1631-1640.
    宋春晖,高东林,方小敏,等.青藏高原昆仑山垭口盆地晚新生代高精度磁性地层及其意义.科学通报,2005,50(19):2145-2154.
    孙非非,张菀漪,巩俊成,等.柴达木盆地上新世晚期以来古气候演变的孢粉环境指标重建.地质论评,2010,56(5):621-628.
    汤良杰,金之钧,戴俊生,等.柴达木盆地及相邻造山带区域断裂系统.地球科学,2002,27(6):676-682.
    田庆春,杨太保,张述鑫,等.青藏高原腹地湖泊沉积物磁化率及其环境意义.沉积学报,2011,29(1):143-150.
    万景林,王瑜,李齐,等.阿尔金山北段新生代山体抬升的裂变径迹证据.矿物岩石地球化学通报,200 1,20(4):222-224.
    王建,黄巧华,柏春广,刘泽纯.2.5Ma以来柴达木盆地的气候干湿变化特征及其原因.地理科学,2002,22(1):34-38.
    王世锋,张伟林,方小敏,等.藏西南札达盆地磁性地层学特征及其构造意义.科学通报,2008,53(6):676-683.
    王苏民,张振克.中国湖泊沉积与环境演变研究的新进展.科学通报,1999,44(6):579-587.
    魏乐军,郑绵平,马志邦.西藏台错盐湖TT-1剖面的沉积特征和年代学研究.地球学报,2004,25(4):397-404.
    魏新俊,邵长铎,王弭力.柴达木盆地西部富钾盐湖物质组分、沉积特征及形成条件研究.北京,地质出版社,1993,1-197.
    吴福莉,方小敏,苗运法,等.不同气候带内早更新世湖相沉积孢粉记录的环境对比.科学通报,2010,55(21):2131-3138.
    肖霞云,沈吉,王苏民,等.鹤庆深钻孢粉记录揭示的2.78Ma以来的植被演替与气候变迁.中国科学(D辑),2007,37(6):778-788.
    薛斌,王苏民,夏威岚,等.若尔盖RM孔揭示的青藏高原900kaBP以来的隆升与环境变化.中国科学(D辑),1997.,27(6):543-547.
    颜茂都,方小敏,陈诗越,等.青藏高原更新世黄土磁化率和磁性地层与高原重大气候变化事件.中国科学,D辑,2001,31,增刊:182-186.
    杨藩,马志强,许同春,等.柴达木盆地第三纪磁性地层柱.石油地质,1992,13(2):97-101.
    杨经绥,吴才来,史仁等,等.青藏高原北部鲸鱼湖地区中新世和更新世两期橄榄玄粗质系列火山岩.岩石学报,2002,18(2):161-176.
    张彭熹,张保珍.柴达木地区近三百万年来古气候环境演化的初步研究.地理学报,1991,46(3):327-335.
    赵翔宇,刘青松.粒径分布对磁铁矿磁化率变温曲线的影响.中国科学(D辑),2010,40(7):873-880.
    赵振明,计文化,李荣社,等.青藏高原北部巴颜喀拉与东昆仑地区新近纪以 来火山岩的地球化学特征及其成因.地球化学,2009,38(3):205-230.
    赵志军,方小敏,李吉均,等.酒泉砾石层的古地磁年代与青藏高原隆升.科学通报,2001,46(14):1208-1212.
    郑绵平,侯献华.中国柴达木盆地西部上新统以来富钾硼锂深循环卤水矿产普查钻探岩芯综合研究工作项目报告.2011.
    郑绵平,赵元艺,刘俊英.第四纪盐湖沉积与古气候.第四纪研究,1998,18(4):297-307.
    郑绵平.论中国盐湖.矿床地质,2001,20(2):181-89,128.
    中国石油天然气总公司第三系研究课题协调组.中国油气区第三纪地层对比.石油学报,1991,13(2):97-101.
    朱日祥,郭斌,潘永信,等.甘肃灵台黄土剖面记录地球磁场长期变化的可靠性探析.中国科学(D辑),2000,30(3):324-330.
    朱允铸,钟坚华,李文生.柴达木盆地新构造运动及盐湖发展演化.北京:地质出版社,1994,1-132.
    An Z S. The history and variability of the East Asian paleomonsoon climate. Quaternary Science Review,2000,19:171-187.
    Ao H, Dekkers M J, Deng C L, et al. Paleoclimatic significance of the Xiantai fluvio-lacustrine sequence in the Nihewan Basin (North China), based on rock magnetic properties and clay mineralogy. Geophysical Journal International,2009,177:913-924.
    Ao H, Deng C L, Dekkers M J, et al. Astronomical dating of the Xiantai, Donggutuo and Maliang Paleolithic sites in the Nihewan Basin (North China) and implications for early human evolution in East Asia. Palaeogeography Palaeoclimatology Palaeoecology,2010a,297:129-137.
    Ao H, Deng C L, Dekkers M J, et al. Pleistocene environmental evolution in the Nihewan Basin and implication for early human colonization of North China. Quaternary International,2010b,223-224:472-478.
    Berner R A. Sedimentary pyrite formation:an updata. Geochimica et Cosmochimica Acta,1984,478:605-615.
    Bowler J M, Huang Q, Chen K Z, et al. Radiocarbon dating of playa-lake hydrologic changes:examples from northwestern China and central Australia. Palaeogeography, Paleoclimatology, Palaeoecology,1986,54:241-260.
    Bulter R F. Paleomagnetism:Magnetic domains to geologic terranes. Electronic Edition,1998.
    Cande S C, Kent D V. Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic. Journal of Geophysical Research, 1995,100,6093-6095.
    Canfield D E, Berner R A. Dissolution and pyritization of magnetite in anoxic marine sediments. Geochimica et Cosmochimica Acta,1987,51:645-659.
    Chang L, Roberts A P, Tang Y, et al. Fundamental magnetic parameters from pure synthetic greigite (Fe3S4). Journal of Geophysical Research,2008,113, B06104, doi:10.1029/2007JB005502.
    Channell J E, Mazaud A, Sullivan P, et al. Geomagnetic excursions and paleointensities in the Matuyama Chron at Ocean Drilling Program Sites 983 and 984 (Iceland Basin). Journal of Geophysical Research,2002,107,1-11.
    Channell J E. Late Brunhes polarity excursions (Mono Lake, Laschamp, Iceland Basin and Pringle Falls) recorded at ODP Site 919 (Irminger Basin). Earth and Planetary Science Letters,2006,244:378-393.
    Charreau J, Chen Y, Gilder S, et al. Magnetostratigraphy and rock magnetism of the Neogene Kuitun He Section (northwest China):implications for Late Cenozoic uplift of the Tianshan mountain. Earth and Planetary Science Letters,2005,230:177-192.
    Charreau J, Chen Y, Gilder S, et al. Neogene uplift of the Tian Shan Mountains observed in the magnetic record of the Jingou River section (northwest China). Tectonics,2009a,28, TC2008, doi:10.1029/2007TC002137.
    Chen J, Burbank D W, Scharer K M, et al. Magnetochronology of the Upper Cenozoic strata in the Southwestern Chinese Tian Shan: rates of Pleistocene folding and thrusting. Earth and Planetary Science Letters,2002.195: 113-130.
    Chen J, Herermance R, Burbank D W, et al. Quantification of growth and lateral propagation of the Kashi anticline, southwest Chinese Tian Shan. Journal of Geophysical Research,2007,112, B03S16,DOI:10.1029/2006JB004345.
    Chen K Z, Bowler J M. Late Pleistocene evolution of salt lakes in the Qaidam Basin, Qinghai Province, China. Palaeogeography, Paleoclimatology, Plaeoecology,1986,54:87-104.
    Clark P, Archer D, Pollard D, et al. The middle Pleistocene transition: characteristics, mechanisms, and implications for long-term changes in atmospheric pCO2. Quaternary Science Review,2006,25:3150-3184.
    Craddock W, Kirby E, Zhang H P. Late Miocene-Pliocene range growth in the interior of the northeastern Tibetan Plateau. Lithosphere,2011,3:420-438.
    Dankers P. Relationship between median destructive field and remanent coercive forces for dispersed natural magnetite, titanomagnetite and hematite. Geophysical Journal of the Royal Astronomical Society,1981,64:447-461.
    Decelles P G, Quade J, Kapp P, et al. High and dry in central Tibet during the Late Oligocene. Earth and Planetary Science Letters,2007,253:389-401.
    Dekkers M J, Passier H F, Schoonen M A. Magnetic properties of hydrothermally synthesized gregite (Fe3S4)- II:High- and low-temperature characteristics. Geophysical Journal International,2000,141:809-819.,
    Dekkers. Magnetic properties of natural pyrrhotite. II. High-and low-temperature behaviour of Jrs and TRM as function of grain size. Physics of the Earth and Planet Interiors,1989,57:266-283.
    Deng C L, Zhu R X, Jackson M J, et al. Variability of the temperature-dependent susceptibility of the Holocene eolian deposits in the Chinese Loess Plateau: A pedogenesis indicator. Physics and Chemistry of the Earth(A),2001,26: 873-878.
    Deng C L, Zhu R X, Verosub K L, et al. Paleoclimatic significance of the temperature-dependent susceptibility of Holocene loess along a NW-SE transect in the Chinese loess plateau. Geophysical Research Letter,2000,27: 3715-3718.
    Ding Z L, Derbyshire E, Yang S L, et al. Stacked 2.6-Ma grain size record from the Chinese loess based on five sections and correlation with the deep-seaδ18O record. Paleoceanogarphy,2002,17,10.1029/2001PA000725.
    Dunlop D J, Ozdemir O. Rock Magnetism:Fundamentals and Frontiers. Cambridge(UK):Cambridge University Press,1997.
    Enkelmann E, Ratschbacher L, Jonckheere R, et al. Cenozoic exhumation and deformation of northeastern Tibet and the Qinling:Is Tibetan lower crustal flow diverging around the Sichuan Basin? Geological Society of America Bulletin,2006,118:651-671.
    Evans M E, Heller F. Environmental Magnetism:Principles and Applications of Environmagnetics. Academic Press, Amsterdam,2003.
    Fang X M, Li J J, Van der Voo R. Rock magnetic and grain size evidence for intensified Asian atmospheric circulation since 800,000 yrs B P related to Tibetan uplift. Earth and Planetary Science Letters,1999,165:129-144.
    Fang X M, Garzione C, Van der Voo, et al. Flexural subsidence by 29Ma on the NE edge of Tibet from the magnetostratigarphy of Linxia Basin, China. Earth and Planetary Science Letters,2003,210:545-560.
    Fang X M, Yan M D, Van der Voo, et al. Late Cenozoic deformation and uplift of the NE Tibetan plateau: Evidence from high-resolution magnetostratigraphy of the Guide Basin, Qinghai Province, China. Geological Society of America Bulletin,2005,117:1208-1225.
    Fang X M, Zhang W L, Meng Q Q et al. High-resolution magnetostratigraphy of the Neogene Huaitoutala section in the eastern Qaidam Basin on the NE Tibetan plateau, Qinghai Provence, China and its implication on tectonic uplift of the NE Tibetan Plateau. Earth and Planetary Science Letter,2007, 258:293-306.
    Frank U, Nowaczyk N R. Mineral magnetic properties of artificial samples systematically mixed from haematite and magnetite. Geophysical Journal International,2008,175:449-461.
    George A D, Marshallsea S J, Wyrwoll K H, et al. Miocene cooling in the northern Qilian Shan, northeastern margin of the Tibetan Plateau, revealed by AFT and vitrinite-reflectance analysis. Geology,2001,29:939-942.
    Guo B, Zhu R X, Florindo F, et al. A short, reverse polarity interval within the Jaramillo subchron:Evidence from the Jingbian section, northern Chinese Loess Plateau. Journal of Geophysical Research,2002,107, B6, 10.1029/2001JB000706.
    Hallam D F, Maher B A. A record of reversed polarity carried by the iron sulphide greigite in British early Pleistocene sediments. Earth and Planetary Science Letters,1994,121:71-80.
    Heller F, Evans M E. Loess magnetism. Review of Geophysics,1995,33: 211-240.
    Herrmance R V, Chen J, Burbank D W, et al. Chronology and tectonic controls of Late Tertiary depositon in the southwestern Tian Shan foreland, NW China. Basin Reasearch,2007,19,599-632, doi:10.1111/j.1365-2117.2007.00339.x.
    Holser W T. Mineralogy of evaporates. In:Burns, R.G. (Ed.), Minerals. Mineralogical Society of America Short Course Notes,1979,6,211-235.
    Horng C S, Laj C, Lee T, et al. Magnetic characteristics of sedimentary rocks from the Tsengwen-chi and Erhjen-chi sections in southwestern Taiwan. Terrestrial, Atmospheric, and Oceanic Sciences,1992,3:519-532.
    Horng C S, Torii M, Shea K, et al. Inconsistent magnetic polarities between greigite-and pyrrhotite/magnetite-bearing marine sediments from the Tsailiao-chi section, southwestern Taiwan. Earth and Planetary Science Letters,1998,164:467-481.
    Hu S Y, Appel E, Hoffman V, et al. Gyromagnetic remanence acquired by greigite (Fe3S4) during static three-axis alternating field demagnetization. Geophysical Journal International,1998,134:831-842.
    Husing S K, Dekkers M J, Franke C, et al. The Tortonian reference section at Monte dei Corvi (Italy):evidence for early remanence acquisition in greigite-bearing sediments. Geophysical Journal International, 2009,179: 125-143.
    Jelinowska A, Tucholka P, Gasse F, et al. Mineral magnetic record of environment in Late Pleistocene and Holocene sediments, Lake Manas, Xinjiang, China. Geophysical Research Letter,1995,22:953-956.
    Ji J L, Pan L, White P, Jiang H C, et al. Episodic uplift of the Tianshan Mountain since the late Oligocene constrained by magnetostragraphy of the Jingou Rier section, in the southern margin of the Junggar Basin, China. Journal of Geophysical Research,2008,113, B05102, doi:10.1029/2007JB005064.
    Jiang D, Robbins E. Quaternary palynofloras and paleoclimate of the Qaidam Basin, Qinghai Province, Northwestern China. Palynology,2000,24:95-112.
    Jiang W, Horng C S, Roberts A P, et al. Contradictory magnetic polarities in sediments and variable timing of neoformation of authigenic greigite. Earth and Planetary Science Letters,2001,193:1-12.
    Jiang Z X, Liu Q S, Barron V,et al. Magnetic discrimination between Al-substituted hematites synthesized by hydrothermal and thermal dehydration methods and its geological significance. Journal of Geophysical Research,2012 117, B02102, doi:10.1029/2011JB008605.
    Kalcheva V, Nozharov P, Kovacheva M, et al. Paleomagnetic research on Black Sea Quaternary sediments. Physics of the Earth and Planetary Interiors,1990, 63:113-120.
    Karlin R. Magnetite Diagenesis in Marine Sediments From the Oregon Continental Margin. Journal of Geophysical Research,1990,95(B4), 4405-4419, doi:10.1029/JB095iB04p04405.
    Kirschvink J L. The least-square line and plane and the analysis of paleomagnetic data. Geophysical Journal of the Royal Astronomical Society,1980,62: 699-718.
    Krs M, Krsova M, Pruner P, et al, Petromagnetic study of Miocene rocks bearing microorganic material and the magnetic mineral greigite (Sokolov and Cheb basins, Czechoslovakia). Physics of the Earth and Planet Interiors,1990,63: 98-112.
    Langereis C G, Dekkers M J, Lange G J, et al. Magnetostratigraphy and astronomical calibration of the last 1.1 Myr from an eastern Mediterranean piston core and dating of short events in the Brunhes. Geophysical Journal International,1997,129:75-94.
    Lease R O, Burbank D W, Clark M K, et al. Middle Miocene reorganization of deformation along the northeastern Tibetan Plateau. Geology,2011,39: 359-362.
    Lease R O, Burbank D W, Gehrels G E, et al. Signature of mountain building: Detrital zircon U/Pb ages from northeastern Tibet. Geology,2007,35: 239-242.
    Leslie B W, Lund S P, and Hammond D E. Rock Magnetic Evidence for the Dissolution and Authigenic Growth of Magnetic Minerals Within Anoxic Marine Sediments of the California Continental Borderland. Journal of Geophysical Research,1990,95(B4),4437-4452, doi:10.1029/JB095iB04p04437.
    Li C X, Dupont-Nivet G, Guo Z J. Magnetostratigraphy of the Northern Tian Shan foreland, Taxi He section, China. Basin Research,2011,23,101-117, doi: 10.1111/j.1365-2117.2010.0047 5.x.
    Liu Q S, Banerjee S K, Jackson M J, et al. A new method in mineral magnetism for the separation of weak antiferromagnetic signal from a strong ferromagnetic background. Journal of Geophysical Research,2002,29, NO. 12, 10.1029/2002GL014699.
    Liu Q S, Deng C L, Yu Y, et al. Temperature dependence of magnetic susceptibility in an argon environment: implications for pedogenesis of Chinese loess/palaeosols. Geophysical Journal International,2005,161: 102-112.
    Liu Q S, Jackson M J, Banerjee S K, et al. Mechanism of the magnetic susceptibility enhancements of the Chinese loess. Journal of Geophysical Research,2004,109, B12107, doi:10.1029/2004JB003249.
    Liu Q S, Roberts A P, Torrent J, et al. What do the HIRM and S-ratio really measure in environmental magnetism? Geochemistry, Geophysics, Geosystems,2007,8,10.1029/2007GC001717.
    Liu T S, Ding Z, Rutter N. Comparison of Milankovitch periods between continental loess and deep sea records over the last 2.5Ma. Quaternary Science Review,1999,18:1205-1212.
    Liu Z C, Wang Y J, Chen Y, et al. Magnetostratigraphy and sedimentologically derived geochronology of the Qurternary lacustrine deposits of a 3000m thick sequence in the central Qaidam basin, western China. Palaeogeography, Palaeoclimatology, Palaeoecology,1998,140:459-473.
    Lowrie W. Identification of ferromagnetic minerals in a rock coervicity and unblocking temperature properties. Geophysical Research Letters,1990,17: 159-162.
    Lu H H, Burbank D W, LI Y L, et al. Late Cenozoic structural and stratigraphic evolution of the northern Chinese Tian Shan foreland. Basin Research,2010, 22:249-269.
    Lu H J, Xiong S F. Magnetostratigraphy of the Dahonggou section, northern Qaidam Basin and its bearing on Cenozoic tectonic evolution of the Qilian Shan and Altyn Tagh Fault. Earth and Planetary Science Letter,2009,288: 539-550.
    Lund S, Stoner J S, Channell J, et al. A summary of Brunhes paleomagnetic field variability recorded in Ocean Drilling Program cores. Physics of the Earth and Planet Interiors,2006,156:194-204.
    Maher B A, Haliam D F. Magnetic carriers and remanence mechanisms in magnetite-poor sediments of Pleistocene age, southern North Sea margin. Journal of Quaternary Science,2005,20:79-94.
    Maslin M A, Li X S, Loutre M F. The contribution of orbital forcing to the progressive intensification of Northern Hemisphere Glaciation. Quaternary Science Reviews,1998,17:411-426.
    Mischke S, Herzschuh U, Sun N D, et al. A large Middle Pleistocene freshwater to oligohaline lake in the contemporary hyperarid Qaidam Basin (China). Episodes,2006,29:34-38.
    Mischke S, Sun Z C, Herzschuh U, et al. An ostracod-inferred large Middle Pleistocene freshwater lake in the presently hyper-arid Qaidam Basin (NW China). Quaternary International,2010,218:74-85.
    Molnar P. Late Cenozoic increase in accumulation rates of terrestrial sediment: how might climate change have affected erosion rates? Annual Review of Earth and Planet Science,2004,32:67-89.
    Morin F J. Magnetic susceptibility of a-Fe2O3 and a-Fe2O3 with added titanium. Physical Review,1950,78:819-820.
    Oches E A, Banerjee S K. Rock-magnetic proxies of climate change from loess-paleosol sediments of the Czech Republic. Studia Geophysica et Geodaetica,1996,40:287-300.
    Otofuji Y, Itaya T, Wang H C. Paleomagnetism and K-Ar dating of Pleistocene volcanic-rocks along the Altyn-Tagh fault, northern border of Tibet. Geophysical Journal International,1995,120,367-374.
    Owen L A, Finkel R, Ma H Z, et al. Late Quaternary landscape evolution in the Kunlun Mountains and Qaidam Basin, Northern Tibet:A framework for examining the links between glaciations, lake level changes and alluvial fan formation. Quaternary International,2006,154-155:73-86.
    Pan Y X, Zhu R X, Liu Q S, et al. Geomagnetic episodes of the last 1.2 Myr recorded in Chinese loess. Geophysical Research Letters,2002,29, doi:10.1029/2001GL014024.
    Peters C, Dekkers M J. Selected room temperature magnetic parameters as function of mineralogy, concentration and grain size. Physics and Chemistry of the Earth,2003,28:659-667.
    Philips F M, Zreda M G, Ku T, et al. 230Th/234U and 36Cl dating of evaporate deposits from the western Qaidam Basin, China: Implication for glacial-period dust export from Central Asia. Geological Society of America Bulletin,1993,105:1606-1616.
    Pisias N G, Moore J, The evolution of the Pleistocene climate:a time series approach. Earth and Planetary Science Letter,1981,52:450-458.
    Quade J, Breecker D, Daeron M et al. The paleoaltimetry of Tibet: An isotopic perspective:American Journal of Science,2011,311:77-115.
    Raymo M E. The initiation of northern hemisphere glaciations. Annual Review of Earth and Planet Science,1994,22:353-83.
    recorded in Ocean Drilling Program coresLuo S D, Ku T. U-series isochron dating: A generalized method employing total-sample dissolution. Geochimica et Cosmochimica Acta,1991,55:555-564.
    Reynolds R L, Rosenbaum J G, Metre P V, et al. Greigite (Fe3S4) as an indicator of drought - The 1912-1994 sediment magnetic record from White Rock Lake, Dallas, Texas, USA. Journal of Paleolimnology,1999,21:193-206.
    Reynolds R L, Tuttle M L, Rice C A, et al. Magnetization and geochemistry of greigite-bearing Cretaceous strata, North Slope Basin, Alaska. American Journal of Science,1994,294:485-528.
    Reynolds R L, Tuttle M L, Rice C, et al. Manetization and geochemistry of greigite-bearing Cretaceous strata, North Slope Basin, Alaska. American Journal of Science,1994,294:485-528.
    Roberts A P, Chang Liao, Rowan C J, et al. Magnetic properties of sedimentary greigite (Fe3S4):An update. Review of Geophysics,2011,49, RG1002, doi:10.1029/2010RG000336.
    Roberts A P, Jiang W, Florindo F, et al.. Assessing the timing of greigite formation and the reliability of the Upper Olduvai polarity transition record from the Crostolo River, Italy. Geophysical Research Letters,2005a,32, L05307, doi: 10.1029/2004GL022137.
    Roberts A P, Reynolds R L, Verosub K L, et al, Environmental magnetic implications of greigite (Fe3S4) formation in a 3 m.y. lake sediment record from Butte Valley, northern California. Geophysical Research Letter,1996, 23:2859-2862.
    Roberts A P, Turner G M. Diagenetic formation of ferromagnetic iron sulphide minerals in rapidly deposited marine sediments, South Island, New Zealand. Earth and Planetary Science Letters,1993,115:257-273.
    Roberts A P, Weaver R. Multiple mechanisms of remagnetization involving sedimentary greigite (Fe3S4). Earth and Planetary Science Letters,2005b,231: 263-277.
    Roberts A P. Magnetic properties of sedimentary greigite (Fe3S4). Earth and Planetary Science Letters,1995,134:227-236.
    Roberts AP, Florindo F, Larrasoana I C, et al. Complex polarity pattern at the former Plio-Pleistocene global stratotype section at Vrica (Italy): Remagnetization by magnetic iron sulphides. Earth and Planetary Science Letters,2010,292:98-111.
    Rochette P, Fillion G, Mattei J, et al. Magnetic transition at 30-34 K in Fe7S8: insight into a widespread occurrence of pyrrhotite in rocks. Earth and Planetary Science Letters,1980,98:319-328
    Rohrmann A, Kapp P, Carrapa B, et al. Thermochronologic evidence for plateau formation in central Tibet by 45 Ma. Geology,2012,40:187-190.
    Rowan C J, Roberts A P. Magnetite dissolution, diachronous greigite formation, and secondary magnetization from pyrite oxidation: Unravelling complex magnetization in Neogene marine sediments from New Zealand. Earth and Planetary Science Letters,2006,241:119-137.
    Rowley D B, Currie B S. Palaeo-altimetry of the late Eocene to Miocene Lunpola basin, central Tibet. Nature,2006,439:677-681.
    Ruddiman W F, Raymo M E, Lamb H H, et al. Nothern Hemisphere climate regimes during the past 3Ma: Possible Tectonic connections. Philosophical Transactions of the Royal Society. B,1988,318:411-430.
    Ruddiman W, Raymo M, Martinson C, et al. Pleistocene evolution: Northern Hemisphere ice sheets and North Atlantic Ocean. Paleoceanography,1989,4: 353-412.
    Sagnotti L, Winkler A. Rock magnetism and palaeomagnetism of greigite-bearing mudstones in the Italian peninsula. Earth and Planetary Science Letters,1999, 165:67-80.
    Schwartz E J, Vaughan D J. Magnetic phase relations of pyrrhotite. Journal of Geomagnetism and Geoelectricity,1972,24:441-458.
    Singer B S, Hoffman K A, Schnepp E, et al. Multiple Brunhes Chron excursions recorded in the West Eifel (Germany) volcanics:Support for long-held mantle control over the non-axial dipole field. Physics of the Earth and Planet Interiors,2008,169:28-40.
    Snowall I F, Thompson R. A stable chemical remanence in Holocene sediments. Journal of Geophysical Research,1990,95:4471-4479.
    Snowball I F. Gyroremanent magnetization and the magnetic properties of greigite-bearing clays in southern Sweden. Geophysical Journal International, 1997,129:624-636.
    Song X Y, Spicer R A, Yang J, et al. Pollen evidence for an Eocene to Miocene elevation of central southern Tibet predating the rise of the High Himalaya. Palaeogeography, Palaeoclimatology, Palaeoecology,2010,297:159-168.
    Stephenson A, Snowball I F. A large gyromagnetic effect in greigite. Geophysical Journal International,2001,145:570-575.
    Sun D H, Zhang Y B, Han F, et al. Magnetostratigraphy and palaeoenvironmental records for a Late Cenozoic sedimentary sequence from Lanzhou, Northeastern margin of the Tibetan Plateau. Global and Planetary Change, 2011,76:106-116.
    Sun J M, Liu T S. Stratigraphic evidence for the uplift of the Tibetan Plateau between 1.1-0.9Ma ago. Quaternary Research,2000,54:309-320.
    Sun J M, Xu Q H, Huang B C. Late Cenozoic magnetochronology and paleoenvironmental changes in the northern foreland basin of the Tian Shan Mountain. Journal of Geophysical Research,2007,112, B04107, doi: 10.1029/2006JB004653,2007.
    Sun J M, Zhang Z Q. Syntectonic growth strata and implications for late Cenozoic tectonic uplift in the northern Tian Shan, China. Tectonophysics,2009,463: 60-68.
    Sun J M, Zhu R X, Bowler J. Timing of the Tianshan Mountains uplift contrained by magnetostratigraphic analysis of molasse deposit. Earth and Planetary Science Letters,2004,219:239-253.
    Sun WW, Banerjee S K, Hunt C P. The role of maghemite in the enhancement of magnetic signal in the Chinese loess-paleosol sequence:An extensive rock magnetic study combined with citrate-bicarbonate dithionite treatment. Earth and Planetary Science Letters,1995,133:493-505.
    Sun Y B, Clemens S C, An Z S, et al. Astronomical timescale and palaeoclimatic implication of stacked 3.6-Myr monsoon records from the Chinese Loess Plateau. Quaternary Science Review,2006,25:33-48.
    Sun Z M, Yang Z Y, Pei J L et al. Magnetostratigraphy of Paleogene sediments from northern Qaidam basin, China: implications for tectonic uplift and block rotation in northern Tibetan plateau. Earth and Planetary Science Letter,2005, 237:635-646.
    Tauxe L. Lectures of Paleomagnetism. Web edition. 2005.
    Torii M, Fukuma K, Horng C S, et al. Magnetic discrimination of pyrrhotite-and greigite-bearing sediment samples. Geophysical Research Letters,1996,23: 1813-1816.
    Vasiliev I, Krijgsman W, Langereis C G, et al. Towards an astrochronological framework for the eastern Paratethys Mio-Piocene sedimentary sequences of the Focsani basin (Romania). Earth and Planetary Science Letters,2004,227: 231-247.
    Verwey E J, Heilman E L. Physical properties and cation arrangement of oxides with spinal structure I. Cation arrangement in spinels. Journal of Chemical Physics,1947,15:174-180.
    Wang C S, Zhao X X, Liu Z F, et al. Contraints on the early uplift history of the Tibetan Plateau. Proceedings of the National Academy of Science,2008,105: 4987-4992.
    Wang J T, Derbyshire E, Shaw J. Preliminary magnetostratigraphy of Dabusan Lake, Qaidam Basin, central Asia. Physics of the Earth and Planet Interiors, 1986,44:41-46.
    Wang Q, Wyman D A, Li Z X, et al. Eocene north-south trending dikes in central Tibet:new constraints on the timing of east-west extension with implication for early plateau uplift? Earth and Planetary Science Letters,2010,298: 205-216.
    Wang X M, Qiu Z D, Li Q, et al. Vertebrate paleontology, biostratigraphy, geochronology, and paleoeneironment of Qaidam Basin in northern Tibetan Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology,2007,254: 363-385.
    Wang Z C, Zhang P Z, Garzione C N, et al. Magnetostratigraphy and depositional history of the Miocene Wushan basin on the NE Tibetan plateau, China: Implication for middle Miocene tectonics of the West Qinling fault zone. Journal of Asian Earth Science,2012,44:189-202.
    Yang T S, Hyodo M, Yang Z Y, et al. Evidence for the Kamikatsura and Santa Rosa excursions recorded in eolian deposits from the southern Chinese Loess Plateau. Journal of Geophysical Research,2004,109, B12105, doi:10.1029/2004JB002966.
    Yang T S, Hyodo, M, Yang Z Y, et al. Early and middle Matuyama geomagnetic excursions recorded in the Chinese loess-paleosol sediments. Earth Planets Space,2007,59,825-840.
    Yang S L, Fang X M, Shi Z T. Timing and provenance of loess in the Sichuan Basin, southwsestern China. Palaeogeography, Palaeoclimatology, Palaeoecology,2010,292:144-154.
    Yang W B, Spencer R J, Krouse R H, et al. Stable isotopes of lake and fluid inclusion brines, Dabusun Lake, Qaidam Basin, western China: Hydrology and paleoclimatology in arid environments. Palaeogeography, Palaeoclimatology, Palaeoecology,1995,117:279-290.
    Zhang H P, Craddock W H, Lease R O, et al. Magnetostratigrahpy of the Neogene Chaka basin and its implications for mountain building processes in the north-eastern Tibetan Plateau. Basin Research,2012,24:31-50.
    Zhang P Z, Molnar P, Downs W M. Increased sedimentation rates and grain size 2-4Myr ago due to the influence of climate change on erosion rates. Nature, 2001,410:891-987.
    Zheng D W, Clark M K, Zhang P Z, et al. Erosion, fault initiation and topographic growth of the North Qilian Shan. Geosphere,2010,6:937-941.
    Zheng D W, Zhang P Z, Wan J L, et al. Late Cenozoic deformation subsequence in northeastern margin of Tibet: Detrital AFT records from Linxia Basin. Science in China (Series D),2003,46:266-275.
    Zheng D W, Zhang P Z, Wan J L,et al. Rapid exhumation at ~8 Ma of the Liupan Shan thrust fault from apatite fission-track thermo chronology: Implications for growth of the northeastern Tibetan Plateau margin. Earth and Planetary Science Letters,2006,248:198-208.
    Zhou J X, Xu F Y, Wang T C, et al. Cenozoic deformation history of the Qaidam Basin, NW China: Results from cross-section restoration and implication for Qinghai-Tibet Plateau tectonics. Earth and Planetary Science Letters,2006, 243:195-210.
    Zhou L P, Olfield F, Wintle A G, et al. Partly pedogenic origin of magnetic variations in Chinese loess. Nature,1990,346:737-739.
    Zhu R X, Pan Y X, Liu Q S. Geomagnetic excursions recorded in Chinese loess in the last 70,000 years. Geophysical Research Letters,1999,26,505-508.
    Zhu R X, Zhang R, Deng C L, et al. Are Chinese loess deposits essentially continuous? Geophysical Research Letters,2007,34, L17306, doi: 10.1029/2007GL030591.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700