电化学组装制备聚合物/蒙脱土层状纳米复合材料
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在过去的十几年中,蒙脱土以其独有的性质,在粘土/聚合物基纳米复合材料的制备中,得到了充分的重视和十分广泛的研究。本文主要利用蒙脱土晶片在水中的荷电性质和优异的片层结构,将电泳沉积的方法引入到蒙脱土/聚合物纳米复合材料的制备中,并分别选取绝缘的丙烯酸阴极电泳树脂和导电的聚吡咯作为有机基体,开展了两方面的工作。
     一方面,利用蒙脱土与丙烯酸阴极电泳树脂的良好相容性,以及丙烯酸阴极电泳树脂分子中季铵根对蒙脱土的插层作用,我们直接从水溶液中通过电泳沉积成功地制备了丙烯酸阴极电泳树脂/蒙脱土复合膜(涂层)。XRD、SEM、TEM等表征的结果以及静态拉伸、纳米压痕等测试的结果说明:复合膜结构均一、蒙脱土在树脂基体中分散良好,蒙脱土的加入有效地提高了复合膜的杨氏模量、纳米压痕模量和硬度,拉伸强度随蒙脱土添加量的增大呈现先升高后降低的趋势。我们对复合涂层按照国标进行了柔韧性、黏附力和耐水性测试,发现蒙脱土的引入并没有造成丙烯酸阴极电泳树脂涂层柔韧性和黏附力的降低,但光泽度和耐水性略有下降。由于丙烯酸阴极电泳树脂是作为底漆而不是面漆使用的,因此光泽度和耐水性的稍许下降并不影响我们的设计目的。
     另一方面,采用导电聚合物聚吡咯,取代绝缘的丙烯酸阴极电泳树脂作为基体,并通过电化学沉积的方法制备和表征了聚吡咯/蒙脱土纳米复合薄膜和涂层。利用聚吡咯的良好导电性,使电泳沉积连续进行,从而实现了对复合薄膜的厚度控制,并合成了较厚的复合薄膜,得到了高度有序的有机/无机层状复合结构。另外,通过静态拉伸、纳米压痕等测试发现,在引入少量的蒙脱土后,复合薄膜和涂层的拉伸强度、纳米压痕模量和硬度都得到了明显提高,但当蒙脱土含量进一步提高之后,复合膜或涂层的这些力学性能反而降低。另外,随着蒙脱土的引入,复合膜的电导率也随着蒙脱土含量的增大而呈现出先增大后减小的趋势。
In the past decade, montmorillonite (MMT), due to its specific characteristics, has been extensively studied in the preparation of clay/polymer matrix nanocompoistes. Taking advantage of high aspect ratio of MMT platelets and negative charges on their basal faces, this work introduced the method of electrophoretic deposition (EPD) into preparation of MMT/polymer matrix nanocomposites. For a comparison, insulated cathodic electrophoretic acrylic resin (CEAR) and electrically conductive polypyrrole (PPy) were employed as the polymer matrix, respectively, and two kinds of composites were investigated.
     The first part of our work is the construction of CEAR/MMT nanocomposite films and coatings by EPD. Given the compatibility between MMT and CEAR, and the intercalation of CEAR molecular into NMMT platelets, we prepared the CEAR/MMT nanocomposite films and coatings from the aqueous electrolyte directly. XRD, SEM, TEM, tensile testing and nano-indentation showed good dispersion of MMT in polymer matrix and effective improvement in modulus, strength and hardness. Coating testing showed good flexibility and adhesive force maintained after introduction of MMT but a little decrease in water resistance.
     The second part is the preparation of PPy/MMT nanocomposite films and coatings by EPD, in which we replaced insulated CEAR with electrically conductive PPy. Due to the excellent conductivity of PPy, pyrrole monomer deposited on the electrode and polymerized continuously. As a result, the thickness of films can be controlled by deposition time, in other words, highly ordered composite films could be obtained under a relatively long deposite time. Tensile testing and nano-indentation showed a great improvement of the mechanical properties including modulus, strength and hardness when clay loading was relatively low. And also the electric conductivity of composite films improved for the restrict growth of PPy in the interspace of NMMT platelets.
引文
[1] Heuer A H, Fink D J, Laraia V J, et al. Innovativematerials processing strategies:a biomimetic approach. Science, 1992, 255:1098-1105
    [2]崔福斋,冯庆玲.生物材料学(第二版).北京:清华大学出版社,2004,103-107
    [3] Song F, Soh A K, Bai Y L. Structural and mechanical properties of the organic matrix layers of nacre. Biomaterials, 2003, 24:3623-3631
    [4]王立铎,孙文珍,梁彤翔,等.仿生材料的研究现状.材料工程,1996,2:3-5
    [5] Rousseau M, Lopez E, Stempfle P, et al. Multiscale structure of sheet nacre. Biomaterials, 2005, 26:6254-6262
    [6] Rousseau M, Lopez E, CoutéA, et al. Sheet nacre growth mechanism:a Voronoi model. J. Struct. Biol. 2005, 149:149-157
    [7] Weiner S, Addadi L. Design strategies in mineralized biological materials. J. Mater. Chem. 1997, 7:689-702
    [8] Feng Q L, Su X W, Cui F Z, et al. Crystal orientation, toughening mechanisms and a mimic of nacre. Mater. Sci. Eng. C, 2000, 11:19-25
    [9] Aksay I A, Trau M, Manne S, et al. Biomimetic pathways for assembling inorganic thin films. Science, 1996, 273:892-898
    [10] Marsh M E, Sass R L. Aragonite twinning in the molluscan bivalve hinge ligament. Science, 1980, 208:1262-1263
    [11]李恒德,冯庆玲,崔福斋,等.贝壳珍珠层及仿生制备研究.清华大学学报(自然科学版),2001,4/5:41-47
    [12] Feng Q L, Li H D, Cui F Z, et al. Crystal orientation domains found in the single lamina in nacre of the Mytilus edulis shell. J. Mater. Sci. Lett. 1999, 18:1547-1549
    [13] Hou W T, Feng Q L. Crystal orientation preference and formation mechanism of nacreous layer in mussel. J. Cryst. Growth, 2003, 258:402-408
    [14] Wang R Z, Wen H B, Cui F Z, et al. Observations on the damage morphologies of nacre during deformation and fracture. J. Mater. Sci. 1995, 30:2299-2304
    [15] Wang R Z, Suo Z, Evans A G, et al. Deformation mechanism in nacre. J. Mater. Res. 2001, 16:2485-2493
    [16] Faber K T, Evans A G. Crack deflection processes-I, theory. Acta. Metal. 1983, 31:565-576
    [17] Albeck S, Aizenberg J, Addadi L, et al. Interactions of various skeletal intracrystalline components with calcite crystals. J. Am. Chem. Soc. 1993, 115:11691-11697
    [18] Michenfelder M, Fu G, Lawrence C, et al. Characterization of two molluscan crystal-modulating biomineralization proteins and identification of putative mineral binding domains. Biopolymers, 2003, 70:522-533
    [19] Kalisman Y L, Falini G, Addadi L, et al. Structure of the nacreous organic matrix of a bivalve Mollusk shell examined in the hydrated state using cryo-TEM. J. Struct. Biol. 2001, 135:8-17
    [20] Katti K S, Katti D R, Tang J, et al. Modeling mechanical responses in a laminated biocomposite Part II Nonlinear responses and nuances of nanostructure. J. Mater. Sci. 2005, 40:1749-1755
    [21] Katti K S, Katti D R. Why is nacre so tough and strong. Mater. Sci. Eng. C, 2006, 26:1317-1324
    [22] Ha J S, Chaw K K. Effect of SiC/BN double coating on fibre pull-out in mullite fibre/mullite matrix composites. J. Mater. Sci. Lett. 1993, 12:84-86
    [23] Katti K S, Katti D R, Pradhan S M, et al. Platelet interlocks are the key to toughness and strength in nacre. J. Mater. Res. 2005, 20:1097-1100
    [24] Mohanty B, Katti K S, Katti D R, et al. Dynamic nanomechanical response of nacre. J. Mater. Res. 2006, 21:2045-2051
    [25] Wang J, Li W Z, Li H D, et al. Nano indentation study on the mechanical properties of TiC/Mo multilayers. Thin Solid Films, 2000, 366:117-120
    [26] Wang J, Li W Z, Li H D. Structural properties of T iC/Fe nano scale multilayers synthesized by ion beam sputtering technique. Japan J. Appl. Phy. 2000, 39:541-544
    [27] He J L, Li W Z, Li H D, et al. Simulation of nacre with TiC/Teflon multilayers and a study of their properties. Surf. Coat. Tech. 1998, 103-104:109-112
    [28] Wang J, Li W Z, Li H D. Nano indentation study on the mechanical properties of nano scale TiC/Mo multilayers deposited by IBAD. Surf. Coat. Tech. 2000, 128-129:161-165
    [29] Wang J, Li W Z, Li H D. Preparation and characterization of super hard TiC/Mo multilayers. J. Mater. Sci. 2000, 35:2689-2693
    [30] Decher G. Fuzzy nanoassemblies:toward layered polymeric multicomposites. Science, 1997, 277:1232-1237
    [31] Ferreira M, Cheung J H, Rubner M F. Molecular self-assembly of conjugated polyions:a new process for fabricating multilayer thin film heterostructures. Thin. Solid. Films. 1994, 244:806-809
    [32] Lvov Y, Haas H, Decher G, et al. Assembly of polyelectrolyte molecular films onto plasma-treated glass. J. Phys. Chem. 1993, 97:12835–12841
    [33]梁振鹏,王朝阳,孙启龙,等.LbL层层纳米自组装法制备新型微胶囊化学进展.2004,16:485-491
    [34] Kleinfeld E R, Ferguson G S. Stepwise formation of multilayered nanostructural films from macromolecular precursors. Science, 1994, 265:370-373
    [35] Kotov N A. Ordered layered assemblies of nanoparticles. Mater. Res. Bull. 2001, 26, 92-97
    [36] Keller S W, Kim H N, Mallouk T E. Layer-by-layer assembly of intercalation compounds and heterostructures on surfaces:toward molecular“beaker”epitaxy. J. Am. Chem. Soc. 1994, 116, 8817-8818
    [37] Glinel K, Laschewsky A, Jonas A M. Ordered polyelectrolyte“multilayers”. 3.Complexing clay platelets with polycations of varying structure.Macromolecules, 2001, 34:5267-5274
    [38] Glinel K, Laschewsky A, Jonas A M. Ordered polyelectrolyte“multilayers”. 4. Internal structure of clay-based multilayers. J. Phys. Chem. B, 2002, 106:11246-11252
    [39] Podsiadlo P, Paternel S, Rouillard J, et al. Layer-by-Layer assembly of nacre-like nanostructured composites with antimicrobial properties. Langmuir, 2005, 21:11915-11921
    [40] Tang Z Y, Kotov N A, Magonov S, et al. Nanostructured artificial nacre. Nat. Mater. 2003, 2:413-418
    [41] Sellinger A, Weiss P M, Nguyen A, et al. Continuous self-assembly of organic-inorganic nanocomposite coatings that mimic nacre. Nature, 1998, 394:256-260
    [42] Deville S, Saiz E, Nalla R K, et al. Freezing as a path to build complex composites. Science, 2006, 311:515-518
    [43] Almqvist N, Thomson N H, Smith B L, et al. Methods for fabricating and characterizing a new generation of biomimetic materials. Mater. Sci. Eng. C, 1999, 7:37-43
    [44] Lan T, Pinnavaia T J. Clay-reinforced epoxy nanocomposits. Chem. Mater. 1994, 6:2216-2219
    [45] Vaia R A, Jandt K D, Kramer E J, et al. Kinetics of polymer melts intercalation. Macromolecules, 1995, 28:8080-8085
    [46] Vaia R A, Giannelis E P. Lattice model of polymer melt intercalation in organically-modified layered silicates. Macromolecules, 1997, 30:7990-7999
    [47] Vaia R A, Teukolsky R K, Giannelis E P. Chem. Mater. 1994, 6:1017-1022
    [48] Lee J Y, Baljon A R C, Loring R F. Simulation of polymer melt intercalation in layered nanocomposites. J. Chem. Phys. 1998, 109:10321-10330
    [49] Balazs A C, Singh C, Zhulina E. Modeling the interactions between the polymers and clay surfaces through self-consistent field theory. Macromolecules, 1998, 31:8370-8381
    [50] Messersmith P B, Giannelis E P. Synthesis and barrier properties of poly(1-caprolactone)-layered silicate nanocomposites. J. Polym. Sci. Part A:Polym. Chem. 1995, 33:1047-1057
    [51] Fredrickson G H, Bicerano J. Barrier properties of oriented disk composites. J. Chem. Phys. 1999, 110:2181-2188
    [52] Giannelis E P. Polymer layered silicate nanocomposites. Adv. Mater. 1996, 8:29-35
    [53] Giannelis E P, Krishnamoorti R, Manias E. Polymer-silicate nanocomposites:model systems for confined polymers and polymer brushes. Adv. Polym. Sci. 1999, 138:107-147
    [54] Biswas M, Sinha R S. Recent progress in synthesis and evaluation of polymer-montmorillonite nanocomposites. Adv. Polym. Sci. 2001, 155:167-221
    [55] Giannelis E P. Polymer-layered silicate nanocomposites:synthesis, properties and applications. Appl. Organomet. Chem. 1998, 12:675-680
    [56] Xu R, Manias E, Snyder A J, et al. New biomedical poly(urethane uera)-layered silicate nanocomposites. Macromolecules, 2001, 34:337-339
    [57] Bharadwaj R K. Modeling the barrier properties of polymerlayered silicate nanocomposites. Macromolecules, 2001, 34:1989-1992
    [58] Gilman J W, Jackson C L, Morgan A B, et al. Flammability properties of polymer-layered silicate nanocomposites. Propylene and polystyrene nanocomposites. Chem. Mater. 2000, 12:1866-1873
    [59] Lin W, Wang C, Le H, et al. Special assembly of laminated nanocomposite that mimics nacre. Mater. Sci. Eng. C, 2008, 28:1031-1037
    [60] Plummer C, Garamszegi L, Leterrier Y, et al. Hyperbranched polymer-layered silicate nanocomposites. Chem. Mater. 2002, 14:486-488
    [61] Kim J W, Kim S G, Choi H J, et al. A commentary on“synthesis and electrorheological properties polyaniline-Na+-montmorillonite suspensions”. Macromol. Rapid Commun. 1999, 20:450-452
    [62] Liu T X, Liu Z H, Ma K X, et al. Morphology, thermal and mechanical behavior of polyamide 6/layered-silicate nanocomposites. Compos. Sci. Technol. 2003, 63:331-337
    [63] Magaraphan R, Lilayuthalert W, Johannes A S, et al. Preparation, structure, properties and thermal behavior of rigid-rod polyimide/montmorillonite nanocomposites. Compos. Sci. Technol. 2001, 61:1253-1264
    [64] Ray S S, Okamoto M. Polymer/layered silicate nanocomposites:a review from preparation to processing. Prog. Polym. Sci. 2003, 28:1539-1641
    [65] Wang K, Chen L. Wu J, et al. Epoxy nanocomposites with highly exfoliated clay:mechanical properties and fracture mechanisms. Macromolecules, 2005, 38:788-800
    [66] Kotaki M, Wang K, Toh M L, et al. Electrically Conductive Epoxy/Clay/Vapor Grown Carbon Fiber Hybrids. Macromolecules, 2006, 39:908-911
    [67] Shima B S, Starkovichb J, Kotov N A. Multilayer composites from vapor-grown carbon nano-fibers. Compos. Sci. Technol. 2006, 66:1174-1181
    [68] Maiti P, Okamoto M. Crystallization controlled by silicate surfaces in nylon 6-clay nanocomposites. Macromol. Mater. Eng. 2003, 288:440-445
    [69] Zhang L, Wang Y, Wang Y, et al. Morphology and mechanical properties of clay/styrene-butadiene rubber nanocomposites. J. Appl. Polym. Sci. 2000, 78:1873-1878
    [70] Sun Q, Schork F J, Deng Y. Water-based polymer/clay nanocomposite suspension for improving water and moisture barrier in coating, Compos. Sci. Technol. 2006, doi:10.1016/j.compscitech.2006.10.022
    [71]漆宗能,尚文宇.聚合物/层状硅酸盐纳米复合材料理论与实践.北京:化学工业出版社,材料科学与工程出版中心,2002:1-3,20-23
    [72] Tabtiang A, Lumlong S, Venables R A. Influence of preparation method upon structure and relaxation characteristics of PMMA/clay composites. Eur. Polym. J. 2000, 36:2559-2568
    [73] Lin J, Wu J, Yang Z, et al. Synthesis and properties of poly(acrylic acid)/mica superabsorbent nanocomposite. Macromol. Rapid. Commun. 2001, 22:422-424
    [74] Gilman J W, Awad W H, Davis R D, et al. Polymer/layered silicate nanocomposites from thermally stable trialkylimidazolium-treated montmorillonite. Chem. Mater. 2002, 14:3776-3785
    [75] Churochkina N A, Starodoubtsev S G, Khokhlov A R. Swelling and collapse of the gel composites based on natural and slightly charged poly(acrylamide) gels containing Na+-montmorillonite. Polym. Gels. Networks, 1998, 6:205-215
    [76] Kurokawa Y, Yasuda H, Oya A. Preparation of nanocomposites of polypropylene and smectite. J. Mater. Sci. Lett. 1996, 15:1481-1487
    [77] Zhao X, Urano K, Ogasawara S. Adsorption of poly(ethylene vinyl alcohol) from aqueous solution on montmorillonite clays. Colloid Polym. Sci. 1989, 267:899-906
    [78] Jeon H G, Jung H T, Lee S W, et al. Morphology of polymer silicate nanocomposites. High density polyethylene and a nitrile. Polym. Bull. 1998, 41:107-113
    [79] Pletcher D, Walsh F C, eds. Industrial Electrochemistry. London:Chapmann and Hall, 1990. 161-162
    [80] (日)雀部博之编,曹镛,叶成,朱道本译.导电高分子材料.北京:科学出版社,1989,2-4,41-43,47-50
    [81] Diaz A F, Kanazawa K K, Gardini G P, Electrochemical polymerization of pyrrole, J. Chem. Soc., Chem. Commun. 1979, 14:635-636
    [82] E. Garfias-Garcia, M. Romero-Romo, M.T. Ramirez-Silva, et al. Mechanism and kinetics of the electrochemical formation of polypyrrole under forced convection conditions. Journal of Electroanalytical Chemistry. 2008, 613:67-79
    [83]李永舫.导电聚吡咯的研究.高分子通报,2005,4:51-57
    [84] Bier M. Electrophoresis Theory, Methods and Application. New York. Academic Press, 1959. XV-XX
    [85] Omer O, Van B, Luc J V. Electrophoretic deposition of materials. Annu. Rev. Mater. Sci. 1999, 29:327-352
    [86] Hiemenz P C. Principles of Colloid and Surface Chemistry (2nd. ed.). New York: Dekker, 1986. 815
    [87] Sarkar P, Nicholson P S. Electrophoretic Deposition (EPD): Mechanisms, Kinetics, and Application to Ceramics. J. Am. Ceram. Soc. 1996, 79:1987-2002
    [88] Russ B E, Talbot J B. A study of the adhesion of electrophoretically deposited phosphors. J. Electrochem. Soc. 1998, 145:1253-1256
    [89] Bouyer F, Foissy A. Electrophoretic deposition of silicon carbide. J. Am. Ceram. Soc. 1999, 82:2001-2010
    [90] Boccaccini A R, Zhitomirsky I. Application of electrophoretic and electrolytic deposition techniques in ceramics processin. Curr. Opin. Solid. St. M. 2002, 6:251-260
    [91] Wang C, Ma J, Cheng W. Formation of polyetheretherketone polymer coating by electrophoretic deposition method. Surf. Coat. Tech. 2003, 173:271-275
    [92] Song C, Villemure G. Preparation of clay-modified electrodes by electrophoretic deposition of clay films. J. of Electroanal. Chem. 1999, 462:143-149
    [93] Put S, Vleugels J, Van B. Functionally graded WC-Co materials produced by electrophoretic deposition. Scripta Mater. 2001, 45:1139-1145
    [94] You C, Jiang D L, Tan S H. SiC/TiC laminated structure shaped by electrophoretic deposition. Ceram. Inter. 2004, 30:813-815
    [95] Kaya C, Kaya F, Boccaccini A R, et al. Fabrication and characterisation of Ni-coated carbon fibre-reinforced alumina ceramic matrix composites using electrophoretic deposition. Acta Mater. 2001, 49:1189-1197
    [96] Kaya C, Boccaccini A R, Chawla K K. Electrophoretic deposition forming of Ni-coated carbon fibre-reinforced borosilicate matrix composites. J. Am. Ceram. Soc. 2000, 83:1885-1888
    [97] Kaya C, Boccaccini A R. Colloidal processing of complex shape electrostainless steel woven fiber mat reinforced alumina ceramic matrix composites using electrophoretic deposition. J. Mater. Sci. Lett. 2001, 20:1465-1467
    [98] Negishi H, Sakai N, Yamaji K, et al. Application of electrophoretic deposition technique to solid oxide fuel cells. J. Electrochem. Soc. 2000, 147:1682-1687
    [99] Will J, Hrushka M, Gubler L, et al. Electrophoretic deposition of zirconia and porous anodic substrates. J. Am. Ceram. Soc. 2001, 84:328-332
    [100] Chen F, Liu M. Preparation of yttria-stabilised zirconia (YSZ) films on La0.85Sr0.15MnO3 (LSM) and LSM-YSZ substrates using an electrophoretic deposition (EPD) process, J. Eur. Ceram. Soc. 2001, 21:127-134
    [101] Limmer S J, Seraji S, Wu Y, et al. Templateent based growth of various oxide nanorods by sol–gel electrophoresis. Adv. Funct. Mater. 2002, 12:59-64
    [102] Limmer S J, Seraji S, Forbess M J, et al. Electrophoretic growth of lead zirconate titanate nanorods. Adv. Mater. 2001, 13:1269-1272
    [103] Gao B, Yue G Z, Qiu Q, et al. Fabrication and electron field emission properties of carbon nanotube films by electrophoretic deposition. Adv. Mater. 2001, 13:1770-1773
    [104] Affoune A M, Prasad B, Sato H, et al. Electrophoretic deposition of nanosized diamond particles. Langmuir, 2001, 17:547-551
    [105] Santhiya D, Subramanian S, Natarajan K A, et al. Surface chemical studies on the competitive adsorption of poly(acrylic acid) and poly(vinyl alcohol) onto alumina. J. Colloid Interf. Sci. 1999, 16:143-153
    [106] Neumann M G, Gessner F, Schmitt C C, et al. Influence of the layer charge and clay particle size on the interactions between the cationic dye methylene blue and clays in an aqueous suspension. J. Colloid Interf. Sci. 2002, 255:254-259
    [107] Chen J H, Huang Z P, Wang D Z, et al. Electrochemical synthesis of polypyrrole films over each of well-aligned carbon nanotubes. Synthetic Metals, 2002, 125:289-294
    [108] Deepa M, Ahmad S. Polypyrrole films electropolymerized from ionic liquids and in a traditional liquid electrolyte: A comparison of morphology and electro-optical properties. European Polymer Journal, 2008, 44:3288-3299
    [109] Rodriguez F J, Garcia L A, Alatorre A, et al. Analysis of the effect of polypyrrole synthesis conditions on its capacity to reduce hexavalent chromium. Progress in Organic Coatings 2007, 60:297-302
    [110] Wang J Z, Chou S L, Chen J, et al. Paper-like free-standing polypyrrole and polypyrrole-LiFePO4 composite films for flexible and bendable rechargeable battery. Electrochemistry Communications, 2008, 10:1781-1784
    [111] Kuwabata S, Kishimoto A, Tanaka T, et al. Electrochemical synthesis of composite films of manganese dioxide and polypyrrole and their properties as an active material in lithium secondary batteries. J. Electrochem. Soc., 1994, 141:10-15
    [112] Manuel J, Kim J K, Ahn J H, et al. Surface-modified maghemite as the cathode material for lithium batteries. Journal of Power Sources, 2008, 184:527-531
    [113] Pytel R Z, Thomas E L, Chen Y, et al. Anisotropic actuation of mechanically textured polypyrrole films. Polymer 2008, 49:1338-1349

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700