NSSR1在NCAML1、GLUR-B前体mRNA剪接和细胞凋亡中的作用及机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
NSSR1在NCAML1、GluR-B前体mRNA剪接和细胞凋亡中的作用及机制
     本课题组在以往的研究中,克隆了NSSR1基因并发现它在神经系统中的特异分布以及它可以调节NCAM L1和Trk C的前体mRNA可变剪接。本论文在此基础上研究了NSSR1基因在小鼠中枢神经系统发育过程中的表达分布,NSSR1蛋白及其去磷酸化对前体mRNA可变剪接的调控以及它在P19细胞凋亡及分化中的功能。
     我们首先系统的研究了NSSR1基因在小鼠中枢神经系统各组织在发育过程中的表达以及分布情况,不同发育时期的小鼠全脑组织Westem-blot结果显示,NSSR1蛋白随着胚胎发育其表达也不断增加,其中增加最明显的时间在E10-E12之间,在出生后NSSR1的表达趋于稳定。大脑不同部位组织的Western—blot分析显示NSSR1在中枢神经系统的各组分中都有表达。
     通过对新生小鼠和成年小鼠不同组织的IHC结果显示,NSSR1在新生小鼠大脑和成年鼠大脑中的表达分布有着较明显的不同。在海马中,新生小鼠大脑海马中的NSSR1表达较低而成鼠的表达显著增强。在成鼠小脑中,NSSR1广泛分布在小脑皮质包括浦肯野氏等神经元细胞中,而在新生鼠中主要在浦肯野氏细胞中表达。NSSR1在新生鼠和成鼠中枢神经系统中表达的差异与神经元的发育是密切相关的,海马颗粒细胞在发育时序上是最晚形成的神经元,因此在新生鼠海马颗粒细胞中几乎检测不到NSSR1的表达,而在成鼠海马中,NSSR1的表达非常强烈。而小脑浦肯野氏细胞是小脑中最早产生的神经元,因此在发育早期NSSR1就有明显的表达,然后随着神经元细胞的迁移,小脑皮层的其它神经元如颗粒细胞也开始表达NSSR1蛋白。与其它神经组织中NSSR1主要在细胞核内表达不同,视网膜中NSSR1主要表达在细胞质中。此外,NSSR1仅在新生鼠ONL中有少量表达,随着发育NSSR1蛋白开始在成鼠INL、GCL层表达。视网膜中神经元的发育属于调节型发育(regulative development),新生小鼠视网膜的神经网络比较简单,然后随着发育其复杂程度不断提高,NSSR1的表达与此一致。
     以往的研究(多数为体外剪接试验)显示NSSR1可以调节β-Globin等基因前体mRNA的可变剪接,本课题组也发现NSSR1能够调节两个在神经发育和功能中发挥重要作用的基因—内源性NCAM L1和Trk C的前体mRNA剪接,为了深入研究NSSR1在体内对前体mRNA剪接的调节作用,我们首先构建了NCAM L1小基因,然后研究了NSSR1对该小基因exon2的剪接调节作用。在内源表达NSSR1的Hela、PFSK细胞中,小基因被剪接产生两个亚型(含exon2与不含exon2),而无内源NSSR1的COS-1、R28细胞内则只有一个亚型(含exon2)。另外,过表达NSSR1或siRNA也已经证明可以影响内源性NCAM L1基因exon2的剪接。然而接下来我们过表达NSSR1及其siRNA的实验结果表明,NCAM L1小基因的可变剪接不受NSSR1的调控。我们的结果提示NSSR1在调节NCAMLl基因exon2的剪接时可能需要我们构建的NCAM L1小基因外的顺式元件的参与。
     在前体mRNA剪接过程中,SR蛋白的磷酸化与其功能有密切关系。Shin等人的研究发现热休克可以使NSSR1去磷酸化从而抑制β-Globin等基因前体mRNA的可变剪接。为了研究NSSR1的磷酸化状态对内源性NCAM L1基因可变剪接的影响,我们对PFSK细胞热休克处理,结果发现NSSR1蛋白的去磷酸化形式增加,同时热休克后,过表达NSSR1可以增加内源NCAM L1基因不含Exon2的剪接亚型的产生。我们的结果说明在热休克后,NSSR1也可以通过调节被剪接基因不同剪接亚型的产生来帮助细胞进入应激状态。接下来我们用非特异的激酶抑制剂K252a处理转染的PFSK细胞,结果发现K252a也可以促使NSSR1蛋白向去磷酸化状态转变,同时PFSK细胞在K252a处理后,过表达NSSR1可以增加内源NCAML1基因不含Exon2的剪接亚型的剪接,证明用非特异的激酶抑制剂K252a处理转染的PFSK细胞,其对NSSR1蛋白的影响与用热休克处理细胞一致。提示NSSR1的磷酸化状态可以影响前体mRNA的剪接。
     同时我们也研究了NSSR1对GluR-B小基因前体mRNA剪接的调节作用,发现NSSR1过表达可以促进GluR-B小基因FLIP亚型(含Exon 14)的剪接。而热休克以及K252a处理都促进GluR-B小基因Trruncate亚型(不含exon14、15)的剪接,说明NSSR1磷酸化状态的改变同样影响GluR-B小基因的剪接。
     为研究NSSR1各功能域在调节可变剪接中的功能,我们用分别缺失RRM、RS1、RS2、RS3等功能域的缺失突变克隆与GluR-B小基因共转染COS-1细胞,结果发现NSSR1的各功能域在调节前体mRNA的可变剪接中都有作用,与野生型NSSR1比,三个RS功能域的分别缺失都使GluR-B小基因FLIP亚型的剪接减少,而RRM功能域的缺失则使GluR-B小基因FLIP亚型的剪接增加。
     前体mRNA剪接在细胞的程序性死亡中发挥重要作用,作为一个有着重要功能的SR蛋白,NSSR1可能在其中发挥作用。我们的研究发现,NSSR1可以抑制由RA/BMP4联合诱导的P19细胞凋亡,但RA单独作用没有效果,进一步的研究发现,NSSR1可以促进由RA/BMP4联合诱导的P19向神经元方向的分化,并且促进其神经突起的生长。在调节细胞凋亡的过程中,NSSR1有可能通过调节凋亡相关蛋白的可变剪接来发挥作用,目前我们正在对此可能性进行验证。
     最后,我们建立了NSSR1的昆虫表达体系,在果蝇细胞系S2细胞中成功的表达了NSSR1蛋白,为将来进行体外剪接等研究打下基础。
     综合本文结果,我们通过小鼠中枢神经系统发育过程中的NSSR1蛋白表达特征、脑发育过程中的表达和分布变化、NSSR1蛋白去磷酸化后对前体mRNA剪接的调控以及NSSR1对细胞凋亡和分化的调控等方面的研究结果,提示了NSSR1在神经发育中及调节前体mRNA可变剪接和细胞凋亡中具有重要作用。
Function and mechanism of NSSR1 in regulating NCAM L1 and GluR-B pre-mRNA splicing and apoptosis
     We have previously cloned the NSSR1 cDNA and demonstrated its neural-specific expression and its potential roles in the alternative splicing of NCAM L1 and TrkC pre-mRNAs.The goal of this thesis is to continue our studies by focusing on the expression and distribution of NSSR1 during the development of central nerve system and functions of NSSR1 and its phosphorylated forms in regulating the alternative splicing of NCAM L1 and GluR-B pre-mRNAs,apoptosis and cell differentiation.
     We first systemically investigated the expression and distribution of NSSR1 in various tissues of mouse central nervou system at different developmental stages by Western blot analysis.The studies with whole-brain samples showed that the expression of NSSR1 proteins increases continuously during embryogenesis most significantly between E10 to E12.The expression became stable after the birth.The analysis also showed that NSSR1 expression is ubiquitous in various regions of mouse CNS.
     The immunohistochemical(IHC)analysis showed that in E12 embyos,NSSR1 is specifically distributed in the marginal and mantle layers but no signal in the ependymal layer observed.In addition,the expression of NSSR1 is different in neonatal and adult mouse neural tissues,for example,NSSR1 expression is very low in neonatal hippocampus but stong in adult.In cerebellar cortex,NSSR1 is widely expressed in adult purkinje and granule cell,but mainly expressed in Purkinje cell in neonatal.The observed difference of the expression and distribution of NSSR1 in neonatal and adult mouse neural tissues indicates that the expression may be closely related to the development of neurons.Such as,in granule cells in the hippocampus that develop at the latest,compared to the other brain regions,the expression of NSSR1 is barely detected in the neonates,but significant in the adults.In comparison,in the cerebellar Purkinje cells that are the ealiest formed neuron in the brain,NSSR1 expression occurs at the early stages of the development.In comparison,in the other neurons that develop later such as cerebellar granular cells,NSSR1 begins to be expressed at the stage when the cerebellar Purkinje cells are migrated to the other region of the cerebellum.In the retina,NSSR1 is cytosolic, but not nuclear as in other neural tissues.Moreover,it is only weakly expressed in ONL but much higher in adult GCL,INL and ONL.It is known that the development of retinal neurons is regulative one.The neonatal mouse retinal network is not fully developed in relative to that in aldult.We observed that in the neonatal retina,the expression of NSSR1 is extremely low and only occurs in the outnuclear layer(ONL).However,in the adult retina,NSSR1 is expressed highly in the inner nuclear layer(INL)and granular cell layer (GCL).Those results strongly suggest that NSSR1 expression is closely associated with neuronal maturation,indicating its roles in neuronal functions.
     Previous in vitro studies have shown that NSSR1 regulate the alternative splicing of pre-mRNA,such asβ-Globin pre-mRNA.Our studies have also demonstrated that NSSR1 moldulates the alternative splicing of endogenous NCAM L1 and Trk C pre-mRNAs,two genes important in neural development and function.In this thesis,in order to further study the neuronal function of NSSR1 in terms of regulating the alternative pre-mRNA splicing in vivo,we constructed a NCAML1 minigene.Using this minigene,we studied the function of NSSR1 in the splicing of the exon2.The result showed that in the cells expressing NSSR1 endogenously(Hela and PFSK),two spliced products(With or without the exon 2)are generated from the NCAM L1,but only one product containing the exon 2 in the cells containing no endogenous NSSR1(COS-1 and R28).Moreover,the studies with overexpression or silence of NSSR1 demonstrated that the splicing pattern of the exon 2 was altered for endogenous NCAM L1,but not for minigenes.All together,the results suggest that NSSR1 may regulate the splicing of the exon 2 via mechanisms associated with cis-elements located outsides the minigene.It means that this effect may require the cis-elements that are not included in the minigene.
     It is known that the function of SR proteins in regulating the alternative splicing of pre-mRNA is closely associated with their phosphorylation status.Shin et al demonstrated that heat shock causes depnosphorylation of NSSR1 and thereby inhibits the alternative splicing ofβ-Globn pre-mRNA.In order to investigate if phosphorylation status of NSSR1 alters the alternative splicing of NCAM L1 pre-mRNA,we used a similar strategy to heat shock the cells and found that the dephosphorylation of NSSR1 and exon 2 exclusion of endogenous NCAM L1 were increased or enhanced.We also further demonstated that K252a,a non-specific kinase inhibitor promotes NSSR1 overexpression-caused exon 2 exlusion of NCAM L1,a result consistent with that observed in heat shock treatment.The results suggest that NSSR1-regulated splicing of the exon 2 of NCAM L1 pre-mRNA is associated with phosphorylation-associated mechanisms.
     We salso tudied the function of NSSR1 in regulating the splicing of GluR-B minigene and found that NSSR1 overexpression promotes inclusion of the exon 14 (FLIP).Moreover,heat shock and K252a treatments both enhance the exon 14 inclusion in the splicing of the minigene.The results indicate that alteration of NSSR1 phosphorylation can elicit changes in splicing pattern of the exon 14.
     NSSR1 contains one N-terminal RNP-type RNA binding domain(RBD)and three C-terminal arginine-/serine-rich domain(RS)of various lengths and compositions.In order to understand the function of each domain in NSSR1-regulated pre-mRNA splicing, we prepared four DNA constructs with RRM,RS1,RS2 or RS3 deletion.The co-transfection studies with GluR-B minigene in COS-1 show that four domains are functionally important.In comparison with the wild-type NSSR1,the deletion of RS domains reduces the exon 14 inclusion.But,a deletion of the RRM domain increases the exon 14 inclusion,an opposite effect to RS domains.The results suggest that both protein-protein and protein-mRNA interactions are required for NSSR1 to regulate the exon 14 splicing of GluR-B minigene.
     The importance of alternative pre-mRNA splicing in regulating apoptosis has been recognized,such as that SC35 and ASF/SF2 has been proved to control caspase-2 pre-mRNA splicing.In the present studies,our study showed that NSSR1 reduces the apoptosis of RA/BMP4 co-induced P19 embryonal carcinoma cells but have no effect on P19 cells induced by RA only.In addition,we demonstrated that NSSR1 promotes the neural differentiation of RA/BMP4 co-induced P19 embryonal carcinoma cells and growth of neuritis.These results lead to the possibility that that NSSR1 may regulate the pre-mRNA splicing of apoptosis-assiociated genes.Currently,we are identifying the several candidate genes potentially regulated by NSSR1.
     In conclusion,by analyzing the expression and distribution of NSSR1 proteins during brain development,examining the effects of NSSR1 and phosphorylation on alternative pre-mRNA splicing and its structure-function relation and apoptosis,we began to demonstrate the molecular basis important in understanding the neuronal roles of NSSR1.
引文
1. Claverie, J.M. Gene number: what if there are only 30,000 human genes? Science. (2001)291:1255-1257.
    2. Harrison, P. M, Kumar, A., Lang, N., Snyder, M., Gerstein, M. A question of size: the eukaryotic proteome and the problems in defining it. Nucleic Acids Res (2002) 30: 1083-1090
    3. Ball CA, Cherry JM. Genome comparisons highlight similarity and diversity within the eukaryotic kingdoms.Curr Opin Chem Biol. (2001) 5(l):86-9.
    4. Graveley BR. Alternative splicing: increasing diversity in the proteomic world. Trends Genet. (2001) 17(2):100-7
    5. Garcia-Blanco, M. A.. Messenger RNA reprogramming by spliceosome-mediated RNA trans-splicing. J. Clin. Invest. (2003) 112:474-480
    6. Caceres JF, Kornblihtt AR. Alternative splicing: multiple control mechanisms and involvement in human disease.Trends Genet. (2002) 18(4):186-93.
    7. Nilsen TW. The spliceosome: the most complex macromolecular machine in the cell? Bioessays. (2003) 25(12):1147-9
    8. Zhou Z, Licklider LJ, Gygi SP, Reed R. Comprehensive proteomic analysis of the human spliceosome. Nature. (2002) 419(6903):182-5
    9. Musunuru K. Cell-specific RNA-binding proteins in human disease. Trends Cardiovasc Med. (2003) 13(5):188-95
    10. Dredge BK, Polydorides AD, Darnell RB. The splice of life: alternative splicing and neurological disease. Nat Rev Neurosci. (2001) 2(1):43-50
    11. Black DL, Grabowski PJ. Alternative pre-mRNA splicing and neuronal function. Prog MolSubcell Biol (2003) 31:187-216.
    12. Ma E, Morgan R, Godfrey EW. Agrin mRNA variants are differentially regulated in developing chick embryo spinal cord and sensory ganglia. J Neurobiol. (1995) 26(4):585-97.
    13. Stamm S, Casper D, Hanson V, Helfman DM. Regulation of the neuron-specific exonof clathrin light chain B. Brain Res Mol Brain Res. (1999) 64(1):108-18
    14. Rowen L, Young J, Birditt B, Kaur A, Madan A, Philipps DL, Qin S, Minx P, Wilson RK, Hood L, Graveley BR. Analysis of the human neurexin genes: alternative splicing and the generation of protein diversity. Genomics. (2002) 79(4):587-97.
    15. Shipston MJ. Alternative splicing of potassium channels: a dynamic switch of cellular excitability. Trends Cell Biol. (2001) 11(9):353-8
    16. Stojdl DF, Bell JC. SR protein kinases: the splice of life. Biochem Cell Biol. (1999) 77(4):293-8.
    17. Mount SM. Genetic depletion reveals an essential role for an SR protein splicing factor in vertebrate cells. Bioessays. (1997) 19(3):189-92.
    18. de la Mata M, Alonso CR, Kadener S, Fededa JP, Blaustein M, Pelisch F, Cramer P, Bentley D, Kornblihtt AR. A slow RNA polymerase II affects alternative splicing in vivo. Mol Cell. (2003) ; 12(2):525-32.
    19. Landry JR, Mager DL, Wilhelm BT. Complex controls: the role of alternative promoters in mammalian genomes. Trends Genet. (2003) 19(11):640-8.
    20. Jensen KB, Dredge BK, Stefani G, Zhong R, Buckanovich RJ, Okano HJ, Yang YY, Darnell RB. Nova-1 regulates neuron-specific alternative splicing and is essential for neuronal viability. Neuron. 2000 Feb;25(2):359-71.
    21. Seshaiah P, Miller B, Myat MM, Andrew DJ. pasilla, the Drosophila homologue of the human Nova-1 and Nova-2 proteins, is required for normal secretion in the salivary gland. Dev Biol. (2001) ; 239(2):309-22.
    22. Kumar DV, Nighorn A, St John PA. Role of Nova-1 in regulating alpha2N, a novel glycine receptor splice variant, in developing spinal cord neurons. J Neurobiol. (2002) ; 52(2):156-65.
    23. Rossi E. The bioinformatics of psychosocial genomics in alternative and complementary medicine. Forsch Komplementarmed Klass Naturheilkd. (2003) 10(3):143-50.
    24. Munch C, Zhu BG, Leven A, Stamm S, Einkorn H, Schwalenstocker B, Ludolph AC, Riepe MW, Meyer T. Differential regulation of 5' splice variants of the glutamate transporter EAAT2 in an in vivo model of chemical hypoxia induced by 3-nitropropiomc acid.J Neurosci Res. (2003) ; 71(6):819-25.
    25. Shinozaki A, Arahata K, Tsukahara T. Changes in pre-mRNA splicing factors during neural differentiation in P19 embryonal carcinoma cells. Int J Biochem Cell Biol. (1999)31(11):1279-87.
    26. Ashiya M, Grabowski PJ. A neuron-specific splicing switch mediated by an array of pre-mRNA repressor sites: evidence of a regulatory role for the polypyrimidine tract binding protein and a brain-specific PTB counterpart. RN4. (1997); 3(9):996-1015.
    27. Polydorides AD, Okano HJ, Yang YY, Stefani G, Darnell RB A brain-enriched polypyrimidine tract-binding protein antagonizes the ability of Nova to regulate neuron-specific alternative splicing. PNAS (2000); 97(12):6350-5.
    28. Komatsu M, Kominami E, Arahata K, Tsukahara T. Qoning and characterization of two neural-salient serine/arginine-rich (NSSR) proteins involved in the regulation of alternative splicing in neurones. Genes Cells. (1999) ; 4(10):593-606.
    29. Leiliu et al, Neural salient SR protein 1 promotes meuronal differentiation of P19cells and regulates alterntive slicing of NCAML1 and TrKC genes, Neuroreport. 2004 Apr 9;15(5):823-8
    30. Cowper AE, Caceres JF, Mayeda A, Screaton GR. Serine-arginine (SR) protein-like factors that antagonize authentic SR proteins and regulate alternative splicing. J Biol Chem. (2001) ; 276(52):48908-14
    31. Shin, C; Manley, J. L. The SR protein SRp38 represses splicing in M phase cells. Cell 111: 407-417,2002.
    32. Yang L, Embree LJ, Tsai S, Hickstein DD. Oncoprotein TLS interacts with serine-arginine proteins involved in RNA splicing. J Biol Chem. (1998) 273(43):27761-4.
    33. Yang L, Embree LJ, Hickstein DD. TLS-ERG leukemia fusion protein inhibits RNA splicing mediated by serine-arginine proteins. Mol Cell Biol. ( 2000 ) ; 20(10):3345-54.
    34. Cowper AE, Caceres JF, Mayeda A, Screaton GR. Serine-arginine (SR) protein -likefactors that antagonize authentic SR proteins and regulate alternative splicing. J Biol Chem. (2001) ; 276(52):48908-14
    35. Clinton JM, Chansky HA, Odell DD, Zielinska-Kwiatkowska A, Hickstein DD, Yang L. Characterization and expression of the human gene encoding two translocation liposarcoma protein-associated serine-arginine (TASR) proteins. Gene. (2002) 284(1-2): 141-7.
    36. Leiliu,jun-ji lin,xuan liu and Ping Xu, neural expression and regulation of NSSR1 proteins ,.Neuroreport, Vol 14 No 12,2003.
    37. Reed J.C. Splicing and dicing apoptosis genes. Nat. Biotechnol. 1999;17:1064-1065.
    38. Mercatante D.R., Bortner C.D., Cidlowski J.A., Kole R. Modification of alternative splicing of Bcl-x pre-mRNA in prostate and breast cancer cells. Analysis of apoptosis and cell death. J. Biol. Chem. 2001;276:16411-16417.
    39. Schwerk C, Schulze-Osthoff K. Regulation of apoptosis by alternative pre-mRNA splicing. Mol Cell. 2005 Jul 1;19(1):1-13.
    40. Regulation of Ich-1 pre-mRNA alternative splicing and apoptosis by mammalian splicing factors.Proc Natl Acad Sci U S A. 1998 Aug 4;95(16):9155-60.
    41. Liu KJ, Harland RM.Inhibition of neurogenesis by SRp38, a neuroD-reguIated RNA-binding protein.Development. 2005 Apr;132(7):1511-23. Epub 2005 Feb 23.
    42. Alvarez-Buylla A, Garcia-Verdugo JM. 2002. Neurogenesis in adult subventricular zone. J Neurosci 22:629-634.
    43. D. Kent Morest, Jerry Silver.. Precursors of neurons, neuroglia, and ependymal cells in the CNS: What are they? Where are they from? How do they get where they are in the CNS: What are they? Where are they from? How do they get where they are going? GliaVolume 43, Issue 1, Pages 6-18
    44. Brittis PA, Meiri K, Dent E, Silver, J. 1995. The earliest patterns of neuronal differentiation and migration in the mammalian central nervous system. Exp Neurol 134:1-12.
    45. Campbell K, Gotz M. 2002. Radial glia: multi-purpose cells for vertebrate brain development. TINS 25:235-238.
    46. Grabowski PJ, Black DL. Alternative RNA splicing in the nervous system. Prog Neurobiol. (2001) 65(3):289-308.
    47. Ladd AN, Cooper TA. Finding signals that regulate alternative splicing in the post-genomic era. Genome Biol. (2002) 3(11):reviews0008.
    48. Weighardt F, Biamonti G, Riva S. The roles of heterogeneous nuclear ribonucleoproteins (hnRNP) in RNA metabolism. Bioessays. (1996)18(9):747-56.
    49. Caceres JF, Kornblihtt AR. Alternative splicing: multiple control mechanisms and involvement in human disease. Trends Genet. (2002) ;18(4):186-93.
    50. 小鼠发育生物学与胚胎实验方法.金岩,人民卫生出版社2005.1.
    51. Komatsu, M.; Kominami, E.; Arahata, K.; Tsukahara, T. : Cloning and characterization of two neural-salient serine/arginine-rich (NSSR) proteins involved in the regulation of alternative splicing in neurones. Genes Cells 4:593-606,1999.
    52. Cowper, A. E.; Caceres, J. F.; Mayeda, A.; Screaton, G R. Serine-arginine (SR) protein-like factors that antagonize authentic SR proteins and regulate alternative splicing.J. Biol. Chem. 276:48908-48914,2001.
    53. Leiliu,jun-ji lin,xuan liu and Ping Xu, neural expression and regulation of NSSR1 proteins ,.Neuroreport, Vol 14 No 12,2003
    54. Liu KJ, Harland RM.Inhibition of neurogenesis by SRp38, a neuroD-regulated RNA-binding protein.Development. 2005 Apr;132(7):1511-23. Epub 2005 Feb 23.
    55. Shinozaki A, Arahata K, Tsukahara T. Changes in pre-mRNA splicing factors during neural differentiation in P19 embryonal carcinoma cells. Int J Biochem Cell Biol. neural differentiation in P19 embryonal carcinoma cells. Int J Biochem Cell Biol. (1999)31(11):1279-87.
    56. 安靓,医学发育生物学,人民卫生出版社,2002.1
    57. Gilthoipe JD, Papantoniou E-K, Chedotal A, Lumsden A, Wingate RJT. 2002. The migration of cerebellar rhombic lip derivatives. Development 129:4719-4728.
    58. Liesi P, Akinshola E, Matsuba K, Lange K, Morest K. 2003. Cellular migration in the postnatal rat cerebellar cortex: confocal-infrared microscopy and the rapid Golgi method. J Neurosci Res 72:290-302
    59. Nadarajah B, Brunstrom JE, Gruzendler J, Wong ROL, Pearlman AL. 2001. Two modes of radial migration in early development of the cerebral cortex.
    60. Snow RL, Robson JA. 1995. Migration and differentiation of neurons in the retina and optic tectum of the chick. Exp Neurol 134:13-24.
    61. Morest DK. 1970b. The pattern of neurogenesis in the retina of the rat. Z Anat Entwickl-Gesch 131:45-67.
    62. Croft L., etal. 2000, ISIS, the intron information system, reveals the high frequency of alternative splicing in the human genome. Nat. Genet. 24,340-341
    63. Missler M, Sudhof TC. 1998, Neurexins: three genes and 1001 products. Trends Genet. 14(1):20-6.
    64. Langer P, etal, 2003, Expression of Ca2+-activated BK channel mRNA and its splice variants in the rat cochlea. J Comp Neurol. 455(2): 198-209
    65. Venter JC, Adams MD, Myers EW, et al. The Sequence of the Human Genome. Science,2001,291:1304-1351
    66. Tabuchi K and Sudhof TC. 2002, Structure and evolution of neurexin genes: insight into the mechanism of alternative splicing. Genomics 79(6):849-59.
    67. Grabowski PJ, Black DL. 2001 Alternative RNA splicing in the nervous system. Prog Neurobiol. 65(3):289-308.
    68. Yang, L; Embree, L J.; Hickstein, D. D. TLS-ERG leukemia fusion protein inhibit RNA splicing mediated by serine-arginine proteins. Molec. Cell. Biol. 20:3345-3354, 2000.
    69. Shin C, Kleiman FE, Manley JLMultiple properties of the splicing repressor SRp38 distinguish it from typical SR proteins.Mol Cell Biol. 2005 Sep;25(18):8334-43.
    70. Grabowski PJ, Black DL. 2001 Alternative RNA splicing in the nervous system. Prog Neurobiol. 65(3):289-308.
    71. Harris-Warrick RM 2000 Ion channels and receptors: molecular targets for behavioral evolution. J Comp Physiol [A] 186(7-8):605-16
    72. Chao MV. 1992 Neurotrophin receptors: a window into neuronal differentiation. Neuron. 9(4):583-93.
    73. Dean C, Scholl FG, et al, 2003, Neurexin mediates the assembly of presynaptic terminals. Nat Neurosci.6(7):708-16
    74. Chao MV. 1992 Neurotrophin receptors: a window into neuronal differentiation. Neuron. 9(4):583-93.
    75. Bothwell M. 1995 Functional interactions of neurotrophins and neurotrophin receptors. Amu Rev Neurosci 18:223-53
    76. Tamura M, Koyama R,.K252a, an inhibitor of Trk, disturbs pathfinding of hippocampal mossy fibers.Neuroreport. 2006 Apr 3;17(5):481-6.
    77. S Hashimoto .K-252a, a potent protein kinase inhibitor, blocks nerve growth factor-induced neurite outgrowth and changes in the phosphorylation of proteins in PC12h cells, The Journal of Cell Biology, Vol 107,1531-1539
    78. Wu CF, Howard BD.K252a-potentiation of EGF-induced neurite outgrowth from PC12 cells is not mimicked or blocked by other protein kinase activators or inhibitors. Brain Res Dev Brain Res. 1995 May 26;86(1-2):217-26.
    79. Marin-Vinader L, Shin C, Onnekink C, Manley JL. Hsp27 enhances recovery of splicing as well as rephosphorylation of SRp38 after heat shock.Mol Biol Cell. 2006 Feb;17(2):886-94. Epub 2005 Dec 7.
    80. Dauksaite V, Akusjarvi G, The second RNA-binding domain of the human splicingFeb;17(2):886-94. Epub 2005 Dec 7.
    80. Dauksaite V, Akusjarvi G., The second RNA-binding domain of the human splicingsite selection. Biochem J. 2004 Jul 15;381(Pt 2):343-50.
    81. Cazalla D, Zhu J, Manche L, .Nuclear export and retention signals in the RS domain of SR proteins.Mol Cell Biol. 2002 Oct;22(19):6871-82.
    82. Mayeda A, Screaton GR,.Substrate specificities of SR proteins in constitutive splicingare determined by their RNA recognition motifs and composite pre-mRNA exonic elements.Mol Cell Biol. 1999 Mar;19(3):1853-63.
    83. Shin C, Kleiman FE, Manley JL.Multiple properties of the splicing repressor SRp38 distinguish it from typical SR proteins.Mol Cell Biol. 2005 Sep;25(18):8334-43.
    84.寿天德,神经生物学.高等教育出版社,2002.1
    85.杨雄里等译,神经生物学.从神经元到脑.科学出版社,2003.4
    86. Neradil J, Veselska R, Svoboda A.The role of actin in the apoptotic cell death of P19 embryonal carcinoma cells.Int J Oncol. 2005 Oct;27(4):1013-21.
    87. Pachernik J, Bryja V, Esner M, Hampl A, Dvorak P.Retinoic acid-induced neural differentiation of P19 embryonal carcinoma cells is potentiated by leukemia inhibitory factor.Physiol Res. 2005;54(2):257-62. Epub 2005 Jan 10.
    88. Lee YF, Bao BY, Chang CModulation of the retinoic acid-induced cell apoptosis and differentiation by the human TR4 orphan nuclear receptor.Biochem Biophys Res Commun. 2004 Oct 22;323(3):876-83.
    89. Glozak MA, Rogers MB.Specific induction of apoptosis in P19 embryonal carcinoma cells by retinoic acid and BMP2 or BMP4.Dev Biol. 1996 Nov l;179(2):458-70.
    90. Glozak MA, Rogers MB.BMP4- and RA-induced apoptosis is mediated through the activation of retinoic acid receptor alpha and gamma in P19 embryonal carcinoma cells.Exp Cell Res. 1998 Jul 10;242(1): 165-73.
    91. Lee YF, Bao BY, Chang CModulation of the retinoic acid-induced cell apoptosis and differentiation by the human TR4 orphan nuclear receptor.Biochem Biophys Res Commun. 2004 Oct 22;323(3):876-83.and its potential role in retinoic acid-induced P19 apoptosis.Biochem Pharmacol. 2000 Jul l;60(l):127-36.
    93. Tsukane M, Yamauchi Xlncrease in apoptosis with neural differentiation a ndshortening of the lifespan of P19 cells overexpressing tau.Neurochem Int. 2006 Mar;48(4):243-54. Epub 2006 Jan 18.
    94. Gong SG, Guo C.Bmp4 gene is expressed at the putative site of fusion in the midfacial region.Differentiation. 2003 Apr;71(3):228-36.
    95. Fatehi AN, van den Hurk R,Expression of bone morphogenetic protein2 (BMP2), BMP4 and BMP receptors in the bovine ovary but absence of effects of BMP2 and BMP4 during IVM on bovine oocyte nuclear maturation and subsequent embryo development.Theriogenology. 2005 Feb;63(3):872-89.
    96. Keyes WM, Logan C, Parker E, Sanders EJ.Expression and function of bone morphogenetic proteins in the development of the embryonic endocardial cushions.Anat Embryol (Berl). 2003 Sep;207(2): 135-47. Epub 2003 Aug 1.
    97. Glozak MA, Rogers MB.Specific induction of apoptosis in P19 embryonal carcinoma cells by retinoic acid and BMP2 or BMP4.Dev Biol. 1996 Nov 1;179(2):458-70.
    98. Glozak MA, Rogers MB.BMP4- and RA-induced apoptosis is mediated through the activation of retinoic acid receptor alpha and gamma in P19 embryonal carcinoma cells.
    99. Glozak MA, Rogers MB.Retinoic acid- and bone morphogenetic protein 4-induced apoptosis in P19 embryonal carcinoma cells requires p27.Exp Cell Res. 2001 Aug 15;268(2):128-38.
    100. Chen X, Huang J, Li J, Han Y, Wu K, Xu P.Tra2betal regulates P19 neuronal differentiation and the splicing of FGF-2R and GluR-B minigenes.Cell Biol Int. 2004;28(11):791-9.
    101. Chen X, Li J, Wu K, Han Y, Xu P.Tra2alpha promotes RA induced neural
    102. Xu MQ, Evans TC JnRecent advances in protein splicing: manipulating proteins in vitro and in vivo.Curr Opin Biotechnol. 2005 Aug;16(4):440-6. Review.
    103. Aldecoa A, Gujer R, Fischer JA, Born W.Mammalian calcitonin receptor-like receptor/receptor activity modifying protein complexes define calcitonin gene-related peptide and adrenomedullin receptors in Drosophila Schneider 2 cells.
    1. Matlin, A. J., Clark, E, and Smith, C. W. (2005). Understanding alternative splicing: towards a cellular code. Nat Rev Mol Cell Biol 6,386-398. (review)
    2. Graveley, B.R. (2002) Sex, Agility, and the Regulation of Alternative Splicing. Cell, 109:409-412. (review)
    3. Gravely, B.R. and Maniatis, T. (1998) Arginine/serine-rich domains of SR proteins can function as activators of pre-mRNA splicing. Mol. Cell, 1:765-771.
    4. Graveley, B.R. (2000) Sorting out the complexity of SR protein functions. RNA, 6: 1197-1211.
    5. Tacke, R., Tohyama, M., Ogawa, S. and Manley, J.L. (1998) Human Tra2 proteins are sequence-specific activators of pre-mRNA splicing. Cell, 93:139-148.
    6. Sun, Q., Mayeda, A., Hampson, R. K., Krainer, A R. and Rottman, F. M. (1993) General splicing factor SF2/ASF promotes alternative splicing by binding to an exonic splicing enhancer. Genes Dev., 7:2598-608.
    7. Yang, L; Embree, L. J.; Tsai, S.; Hickstein, D. DOncoprotein TLS interacts with serine-arginine proteins involved in RNA splicing. J. Biol. Chem. 273:27761-27764, 1998.8
    8. Komatsu, M.; Kominami, E.; Arahata, K.; Tsukahara, T. : Cloning and characterization of two neural-salient serine/arginine-rich (NSSR) proteins involved in the regulation of alternative splicing in neurones. Genes Cells 4:593-606,1999.
    9. Cowper, A. E.; Caceres, J. E; Mayeda, A.; Screaton, G R. Serine-arginine (SR) protein-like factors that antagonize authentic SR proteins and regulate alternative splicing.J. Biol. Chem. 276:48908-48914,2001.
    10. Shin, G; Manley, J. L. The SR protein SRp38 represses splicing in M phase cells. Cell 111: 407-417,2002.
    11. Clinton, J. M.; Chansky, H. A.; Odell, D. D.; Zielinska-Kwiatkowska, A.; Hickstein, D. D.; Yang, L: Characterization and expression of the human gene encoding twotranslocation liposarcoma protein-associated serine-arginine (TASR) proteins. Gene 284:141-147,2002.
    12. Leiliu,jun-ji lin,xuan liu and Ping Xu, neural expression and regulation of NSSR1 proteins ,.Neuroreport, Vol 14 No 12,2003
    13. Karen J. Liu & Richard M.Harland 2002 santa cruz conference on developmental biology, Regulation of Neurogenesis and Notch Signaling by the SR protein TASR
    14. Yang, L; Embree, L. J.; Hickstein, D. D. TLS-ERG leukemia fusion protein inhibit300RNA splicing mediated by serine-argmine proteins. Molec. Cell Biol. 20: 3345-3354,2000.
    15. Leiliu et al, Neural salient SR protein 1 promotes meuronal differentiation of P19cells and regulates alterntive slicing of NCAML1 and TrKC genes, Neuroreport. 2004 Apr 9;15(5):823-8.
    16. Hortsch M (2000) Structural and functional evolution of the L1 family: are four adhesi-10.on molecules better than one? Mol Cell Neurosci 15:1
    17. Lee AY.The cell recognition molecule L1 and cognition.Chin J Physiol. 2005 Dec 31;48(4):169-75. Review.
    18. Izumoto S, Yoshimine T. Role of neural cell adhesion molecule L1 in glioma invasion.Nippon Rinsho. 2005 Sep;63 Suppl 9:74-8. Review.
    19. Takeo C, Nakamura S,.Rat cerebral endothelial cells express trk C and are regulated by neurotrophin-3.Biochem Biophys Res Commun. 2003 May 30;305(2):400-6.
    20. Huang EJ, Reichardt LF.Trk receptors: roles in neuronal signal transduction. Annu Rev Biochem. 2003;72:609-42. Epub 2003 Mar 27. Review.
    21. Yang, L; Chansky, H February 25 - 28, 2001, San Francisco, California EWING'S sarcoma fusion protein EWS/FLI-1 interferes with EWS-mediated RNA splicing
    22. Liu Yang§, Howard A. Chansky§, and Dennis D. Hickstein, EWS·Fli-1 Fusion Protein Interacts with Hyperphosphorylated RNA Polymerase II and Interferes with Serine-Arginine Protein-mediated RNA Splicing J. Biol. Chem., Vol. 275, Issue 48,37612-37618
    23. Liu KJ, Harland RM.Inhibition of neurogenesis by SRp38, a neuroD-regulated RNA-binding protein.Development. 2005 Apr;132(7):1511-23. Epub 2005 Feb 23.
    24. Sticker,e. ,F.Kttrell, D.Medina,and S.M.Berget,1999 Stage-specific changes in SR splicing factors and alternative splicing in mammary tumorigenesis. Oncogene 18:3574-3582
    25. Marin-Vinader L, Shin C, Onnekink C, Manley JL. Hsp27 enhances recovery of splicing as well as rephosphorylation of SRp38 after heat shock.Mol Biol Cell. 2006 Feb;17(2):886-94. Epub 2005 Dec 7.
    26. Shin C, Kleiman FE, Manley JLMultiple properties of the splicing repressor SRp38 distinguish it from typical SR proteins.Mol Cell Biol. 2005 Sep;25(18):8334-43.
    27. Shin C, Feng Y, Manley JL.Dephosphorylated SRp38 acts as a splicing repressor in response to heat shock.Narure. 2004 Feb 5;427(6974):553-8.
    28. Nilsen, T. W. (2004) Too hot to splice. Nat Struct Mol Biol, 11:208-9. (review)
    29. Shaolin Shi and Pamela Stanley, Protein O-fucosyltransferase 1 is an essential component of Notch signaling pathways, PNAS April 29,2003 vol. 100 no. 9 , 5234-5239
    1.Claverie,J.M.Gene number:what if there are only 30,000 human genes? Science.(2001)291:1255-1257.
    1.Ball CA,Cherry JM.Genome comparisons highlight similarity and diversity within the eukaryotic kingdoms.Curr Opin Chem Biol.(2001)5(1):86-9.
    2.J.P.Venables,Aberrant and Alternative Splicing in Cancer.Cancer Res.,November 1,2004;64(21):7647-7654.
    3.D Baralle and M Baralle,Splicing in action:assessing disease causing sequence changes.J.Med.Genet.,October 1,2005;42(10):737-748.
    4.Nilsen,T.W.(2003)The spliceosome:the most complex macromolecular machine in the cell? Bioessays,25:1147-9.(review)
    5.Jurica,M.S.and Moore,M.J.(2003)Pre-mRNA splicing:awash in a sea of proteins.Mol Cell,12:5-14.(review)
    6.Barrass,J.D.,Beggs,J.D.(2003)Splicing goes global.Trends Genet,19:295-8.(review)
    7.Cartegni,L.,Chew,S.L.,Krainer,A.R.(2002)Listening to silence and understanding nonsense:exonic mutations that affect splicing.Nat Rev Genet,3:285-298.(review)
    8.G.W.Yeo,E.Van Nostrand,D.Holste,T.Poggio,and C.B.Burge Identification and analysis of alternative splicing events conserved in human and mouse.PNAS,February 22,2005;102(8):2850-2855.
    9.Wu,Q.,Krainer,A.R.(1999)AT-AC pre-mRNA splicing mechanisms and conservation of minor introns in voltage-gated ion channel genes.Mol Cell Biol,19:3225-3236.(review)
    10.Garcia-Blanco,M.A..Messenger RNA reprogramming by spliceosome-mediated RNA trans-splicing.J.Clin.Invest.(2003)112:474-480
    11.Graveley BR.Alternative splicing:increasing diversity in the proteomic world. Trends Genet. (2001) 17(2):100-7
    12. Zhou Z, Licklider LJ, Gygi SP, Reed R. Comprehensive proteomic analysis of the human spliceosome. Nature. (2002) 419(6903):182-5
    13. Caceres JF, Kornblihtt AR. Alternative splicing: multiple control mechanisms and involvement in human disease.Trends Genet. (2002) 18(4): 186-93.
    14. Krawczak, M., Reiss, J., and Cooper, D.N. 1992. The mutational spectrum of single base-pair substitutions in messenger RNA splice junctions of human genes-Causes and consequences. Hum. Genet. 90:41-54
    15. Cooper, T.A. and Mattox, W. 1997. The regulation of splice site selection and its role in human disease. Am. J. Hum. Genet. 61: 259-266
    16. Caceres, J.F. and Kornblihtt, A.R. 2002. Alternative splicing: Multiple control mechanisms and involvement in human disease. Trends Genet. 18:186-193
    17. Cartegni, L, Chew, S.L., and Krainer, A.R. 2002. Listening to silence and understanding nonsense: Exonic mutations that affect splicing. Nat. Rev. Genet. 3: 285-298
    18. Slaugenhaupt, SA, Blumenfeld, A., Gill, S.P., Leyne, M., Mull, J., Cuajungco, M.P., Liebert, C.B., Chadwick, B., Idelson, M., Reznik, L. et al. 2001. Tissue-specific expression of a splicing mutation in the IKBKAP gene causes familial dysautonomia. Am. J. Hum. Genet. 68: 598-605
    19. McCarthy, E.M. and Phillips, J.A., III 1998. Characterization of an intron splice enhancer that regulates alternative splicing of human GH pre-mRNA. Hum. Mol. Genet. 7:1491-1496
    20. D'Souza, I., Poorkaj, P., Hong, M., Nochlin, D., Lee, V.M., Bird, T.D., and Schellenberg, GD. 1999. Missense and silent tau gene mutations cause frontotemporal dementia with Parkinsonism-chromosome 17 type, by affecting multiple alternative RNA splicing regulatory elements. Proc. Natl. Acad. Sci. 96: 5598-5603
    21. Pagani, F., Buratti, E., Stuani, C, Romano, M., Zuccato, E., Niksic, M., Giglio, L, Faraguna, D., and Baralle, EE. 2000. Splicing factors induce cystic fibrosis transmembrane regulator exon 9 skipping through a nonevolutionary conserved intronic element. J. Biol. Chem. 275:21041-21047
    22. D.-Q. Xu and W. Mattox Identification of a splicing enhancer in MLH1 using COMPARE, a new assay for determination of relative RNA splicing efficiencies Hum. Mol. Genet., January 15,2006; 15(2): 329 - 336. 24. Blencowe, B.J. 2000. Exonic splicing enhancers: Mechanism of action, diversity and role in human genetic diseases. Trends Biochem. Sci. 25:106-110
    23. Kan, J.L. and Green, M.R. 1999. pre-mRNA splicing of IgM exons Ml and M2 is directed by a juxtaposed splicing enhancer and inhibitor. Genes & Dev. 13: 462-471
    24. D Baralle and M Baralle Splicing in action: assessing disease causing sequence changes J. Med. Genet., October 1,2005; 42(10): 737 - 748.
    25. Coulter, L.R., Landree, M.A., and Cooper, T.A. 1997. Identification of a new class of exonic splicing enhancers by in vivo selection. Mol. Cell. Biol. 17: 2143-2150
    26. Stickeler, E., Fraser, S.D., Honig, A., Chen, A.L., Berget, S.M., and Cooper, T.A. 2001. The RNA binding protein YB-1 binds A/C-rich exon enhancers and stimulates splicing of the CD44 alternative exon v4. EMBO J. 20:3821-3830
    27. Cogan, J.D., Phillips, J.A., III, Schenkman, S.S., Milner, R.D., and Sakati, N. 1994. Familial growth hormone deficiency: A model of dominant and recessive mutations affecting a monomeric protein. J. Clin. Endocrinol. Metab. 79:1261-1265
    28. Binder, G, Brown, M., and Parks, J.S. 1996. Mechanisms responsible for dominant expression of human growth hormone gene mutations. J. Clin. Endocrinol. Metab. 81: 4047-4050
    29. Cogan, J.D., Prince, M.A., Lekhakula, S., Bundey, S., Futrakul, A., McCarthy, E.M., and Phillips, J.A., III 1997. A novel mechanism of aberrant pre-mRNA splicing in humans. Hum. Mol. Genet. 6: 909-912
    30. Moseley, C.T., Mullis, P.E., Prince, M.A., and Phillips, J.A., III 2002. An exon splice enhancer mutation causes autosomal dominant GH deficiency. J. Clin. Endocrinol. Metab. 87: 847-852
    31. Call, K.M., Glaser, T., Ito, C.Y, Buckler, A.J., Pelletier, J., Haber, D.A., Rose, E.A., Kral, A., Yeger, H., Lewis, W.H. et al. 1990. Isolation and characterization of a zinc finger polypeptide gene at the human chromosome 11 Wilms' tumor locus. Cell 60: 509-520
    32. Gessler, M., Poustka, A., Cavenee, W., Neve, R.L., Orkin, S.H., and Bruns, G.A. 1990. Homozygous deletion in Wilms tumours of a zinc-finger gene identified by chromosome jumping. Nature 343:774-778
    33. Miles, C, Elgar, G, Coles, E., Kleinjan, D.J., van Heyningen, V, and Hastie, N. 1998. Complete sequencing of the Fugu WAGR region from WT1 to PAX6: Dramatic compaction and conservation of synteny with human chromosome 11p13. Proc. Natl. Acad. Sci. 95:13068-13072
    34. Haber, D.A., Sohn, R.L., Buckler, A.J., Pelletier, J., Call, K.M., and Housman, D.E. 1991. Alternative splicing and genomic structure of the Wilms tumor gene WT1. Proc. Natl. Acad. Sci. 88: 9618-9622
    35. Barbaux, S., Niaudet, P., Gubler, M.C., Grunfeld, J.P., Jaubert, F., Kuttenn, F., Fekete, C.N., Souleyreau-Therville, N., Thibaud, E., Fellous, M. et al. 1997. Donor splice-site mutations in WT1 are responsible for Frasier syndrome. Nat. Genet. 17: 467-470
    36. Kohsaka, T., Tagawa, M., Takekoshi, Y., Yanagisawa, H., Tadokoro, K., and Yamada, M. 1999. Exon 9 mutations in the WT1 gene, without influencing KTS splice isoforms, are also responsible for Frasier syndrome. Hum. Mutat. 14: 466-470
    37. Melo, K.F., Martin, R.M., Costa, E.M., Carvalho, F.M., Jorge, A.A., Arnhold, I.J., and Mendonca, B.B. 2002. An unusual phenotype of Frasier syndrome due to IVS9 +4C →T mutation in the WT1 gene: Predominantly male ambiguous genitalia and absence of gonadal dysgenesis. J. Clin. Endocrinol. Metab. 87: 2500-2505
    38. Hammes, A., Guo, J.K., Lutsch, G, Leheste, J.R., Landrock, D., Ziegler, U., Gubler, M.C., and Schedl, A. 2001. Two splice variants of the Wilms' tumor 1 gene have distinct functions during sex determination and nephron formation. Cell 106: 319-329
    39. Hossain, A. and Saunders, G.F. 2001. The human sex-determining gene SRY is a direct target of WT1. J. Biol. Chem. 276:16817-16823
    40. T. Rodriguez-Martin, M. A. Garcia-Blanco, S. G Mansfield, A. C. Grover, M. Hutton, Q. Yu, J. Zhou, B. H. Anderton, and J.-M. Gallo Reprogramming of tau alternative splicing by spliceosome-mediated RNA trans-splicing: Implications for tauopathies PNAS, October 25, 2005; 102(43): 15659 -15664.
    41. Golling, G, Amsterdam, A., Sun, Z., Antonelli, M., Maldonado, E., Chen, W., Burgess, S., Haldi, M., Artzt, K., Farrington, S. et al. 2002. Insertional mutagenesis in zebrafish rapidly identifies genes essential for early vertebrate development. Nat. Genet. 31:135-140
    42. McKie, A.B., McHale, J.C., Keen, T.J., Tarttelin, E.E., Goliath, R., van Lith-Verhoeven, J.J., Greenberg, J., Ramesar, R.S., Hoyng, C.B., Cremers, F.P. et al. 2001. Mutations in the 前体 mRNA splicing factor gene PRPC8 in autosomal dominant retinitis pigmentosa (RP13). Hum. Mol. Genet. 10:1555-1562
    43. Vithana, E.N., Abu-Safieh, L., Allen, M.J., Carey, A., Papaioannou, M., Chakarova, C, Al-Maghtheh, M., Ebenezer, N.D., Willis, C, Moore, A.T. et al. 2001. A human homolog of yeast pre-mRNA splicing gene, PRP31, underlies autosomal dominant retinitis pigmentosa on chromosome 19ql3.4 (RP11). Mol. Cell 8: 375-381
    44. Chakarova, C.F., Hims, M.M., Bolz, H., Abu-Safieh, L., Patel, R.J., Papaioannou, M.G, Inglehearn, C.F., Keen, T.J., Willis, C, Moore, AT. et al. 2002. Mutations in HPRP3, a third member of pre-mRNA splicing factor genes, implicated in autosomal dominant retinitis pigmentosa. Hum. Mol. Genet. 11: 87-92
    45. Zhou, Z., Licklider, L.J., Gygi, S.P., and Reed, R. 2002. Comprehensive proteomic analysis of the human spliceosome. Nature 419:182-185
    46. Weidenhammer, E.M., Singh, M, Ruiz-Noriega, M., and Woolford, J.L., Jr. 1996. The PRP31 gene encodes a novel protein required for pre-mRNA splicing in Saccharomyces cerevisiae. Nucleic Acids Res. 24:1164-1170
    47. Bishop, D.T., McDonald, W.H., Gould, K.L., and Forsburg, S.L. 2000. Isolation of an essential Schizosaccharomyces pombe gene, prp31+, that links splicing and meiosis. Nucleic Acids Res. 28: 2214-2220
    48. Makarova, O.V., Makarov, E.M., Liu, S., Vornlocher, H.P., and Luhrmann, R. 2002. Protein 61K, encoded by a gene (PRPF31) linked to autosomal dominant retinitis pigmentosa, is required for U4/U6 · U5 tri-snRNP formation and pre-mRNA splicing. EMBOJ. 21:1148-1157
    49. Wang, A., Forman-Kay, J., Luo, Y., Luo, M., Chow, Y.H., Plumb, J., Friesen, J.D., Tsui, LC, Heng, H.H., Woolford, J.L., Jr. et al. 1997. Identification and characterization of human genes encoding Hprp3p and Hprp4p, interacting components of the spliceosome. Hum. Mol. Genet. 6:2117-2126
    50. Gonzalez-Santos, J.M., Wang, A., Jones, J., Ushida, C, Liu, J., and Hu, J. 2002. Central region of the human splicing factor Hprp3p interacts with Hprp4p. J. Biol. Chem. 277:23764-23772
    51. Wyatt, J.R., Sontheimer, E.J., and Steitz, J.A. 1992. Site-specific cross-linking of mammalian U5 snRNP to the 5' splice site before the first step of pre-mRNA splicing. Genes & Dev. 6: 2542-2553
    52. Teigelkamp, S., Newman, A.J., and Beggs, J.D. 1995. Extensive interactions of PRP8 protein with the 5' and 3' splice sites during splicing suggest a role in stabilization of exon alignment by U5 snRNA. EMBO J. 14: 2602-2612
    53. Vidal, V.P., Verdone, L., Mayes, A.E., and Beggs, J.D. 1999. Characterization of U6 snRNA-protein interactions. RNA 5:1470-1481
    54. Collins, C.A. and Guthrie, C. 2000. The question remains: Is the spliceosome a ribozyme? Nat. Struct. Biol. 7: 850-854
    55. Wirth, B. 2000. An update of the mutation spectrum of the survival motor neuron gene (SMN1) in autosomal recessive spinal muscular atrophy (SMA). Hum. Mutat. 15:228-237
    56. Cifuentes-Diaz, C, Frugier, T., Tiziano,F.D., Lacene, E., Roblot, N., Joshi, V, Moreau, M.H., and Melki, J. 2001. Deletion of murine SMN exon 7 directed to skeletal muscle leads to severe muscular dystrophy. J. Cell Biol. 152:1107-1114
    57. Wang, J. and Dreyfuss, G. 2001. A cell system with targeted disruption of the SMN gene: Functional conservation of the SMN protein and dependence of Gemin2 on SMN. J. Biol. Chem. 276: 9599-9605
    58. Terns, M.P. and Terns, R.M. 2001. Macromolecular complexes: SMN-the master assembler. Curr. Biol. 11: R862-R864
    59. Meister, G, Buhler, D., Pillai, R., Lottspeich, F, and Fischer, U. 2001. A multiprotein complex mediates the ATP-dependent assembly of spliceosomal U snRNPs. Nat. Cell Biol. 3: 945-949
    60. Coovert, D.D., Le, T.T., McAndrew, P.E., Strasswimmer, J., Crawford, T.O., Mendell, J.R., Coulson, S.E., Androphy, E.J., Prior, T.W., and Burghes, A.H. 1997. The survival motor neuron protein in spinal muscular atrophy. Hum. Mol. Genet. 6: 1205-1214
    61. Lefebvre, S., Burlet, P., Liu, Q., Bertrandy, S., Clermont, O., Munnich, A., Dreyfuss, G, and Melki, J. 1997. Correlation between severity and SMN protein level in spinal muscular atrophy. Nat. Genet. 16: 265-269
    62. Jablonka, S., Schrank, B., Kralewski, M., Rossoll, W., and Sendtner, M. 2000. Reduced survival motor neuron (Smn) gene dose in mice leads to motor neuron degeneration: An animal model for spinal muscular atrophy type III. Hum. Mol. Genet. 9:341-346
    63. Feldkotter, M., Schwarzer, V, Wirth, R., Wienker, T.F., and Wirth, B. 2002. Quantitative analyses of SMN1 and SMN2 based on real-time light cycler PCR: Fast and highly reliable carrier testing and prediction of severity of spinal muscular atrophy. Am. J. Hum. Genet. 70: 358-368
    64. Schrank, B., Gotz, R., Gunnersen, J.M., Ure, J.M., Toyka, K.V., Smith, A.G, and Sendtner, M. 1997. Inactivation of the survival motor neuron gene, a candidate gene for human spinal muscular atrophy, leads to massive cell death in early mouse embryos. Proc. Natl. Acad. Sci. 94: 9920-9925
    65. Jablonka, S., Holtmann, B., Meister, G, Bandilla, M, Rossoll, W., Fischer, U., and Sendtner, M. 2002. Gene targeting of Gemin2 in mice reveals a correlation between defects in the biogenesis of U snRNPs and motoneuron cell death. Proc. Natl. Acad. Sci. 99:10126-10131
    66. Hsieh-Li, H.M., Chang, J.G, Jong, Y.J., Wu, M.H., Wang, N.M., Tsai, C.H., and Li, H. 2000. A mouse model for spinal muscular atrophy. Nat. Genet. 24: 66-70
    67. Monani, U.R., Sendtner, M., Coovert, D.D., Parsons, D.W., Andreassi, C, Le, T.T., Jablonka, S., Schrank, B., Rossol, W, Prior, T.W. et al. 2000. The human centromeric survival motor neuron gene (SMN2) rescues embryonic lethality in Smn-/- mice and results in a mouse with spinal muscular atrophy. Hum. Mol. Genet. 9: 333-339
    68. Burlet, P., Huber, C, Bertrandy, S., Ludosky, M.A., Zwaenepoel, I., Clermont, O., Roume, J., Delezoide, A.L., Cartaud, J., Munnich, A. et al. 1998. The distribution of SMN protein complex in human fetal tissues and its alteration in spinal muscular atrophy. Hum. Mol. Genet. 7:1927-1933
    69. Luo, H.R., Moreau, G.A., Levin, N., and Moore, M.J. 1999. The human Prp8 protein is a component of both U2- and U12-dependent spliceosomes. RNA5: 893-908
    70. Vervoort, R., Lennon, A., Bird, A.C., Tulloch, B., Axton, R., Miano, M.G, Meindl, A., Meitinger, T, Ciccodicola, A., and Wright, A.F. 2000. Mutational hot spot within a new RPGR exon in X-linked retinitis pigmentosa. Nat. Genet. 25:462-466
    71. Chen, E.J., Frand, A.R., Chitouras, E., and Kaiser, C.A. 1998. A link between secretion and 前体 mRNA processing defects in Saccharomyces cerevisiae and the identification of a novel splicing gene, RSE1. Mol. Cell. Biol. 18:7139-7146
    72. Burns, C.G, Ohi, R., Mehta, S., O'Toole, E.T., Winey, M., Clark, T.A., Sugnet, C.W., Ares, M., Jr., and Gould, K.L. 2002. Removal of a single α-tubulin gene intron suppresses cell cycle arrest phenotypes of splicing factor mutations in Saccharomyces cerevisiae. Mol. Cell. Biol. 22: 801-815
    73. Bessant, D.A., Ali, R.R., and Bhattacharya, S.S. 2001. Molecular genetics and prospects for therapy of the inherited retinal dystrophies. Curr. Opin. Genet. Dev. 11: 307-316
    74. Korenbrot, J.I. and Fernald, R.D. 1989. Circadian rhythm and light regulate opsin mRNA in rod photoreceptors. Nature 337: 454-457
    75. Pellizzoni, L, Yong, J., and Dreyfuss, G 2002. Essential role for the SMN complex in the specificity of snRNP assembly. Science 298:1775-1779
    76. Jensen, K.B., Dredge, B.K., Stefani, G, Zhong, R., Buckanovich, R.J., Okano, H.J., Yang, Y.Y., and Darnell, R.B. 2000. Nova-1 regulates neuron-specific alternative splicing and is essential for neuronal viability. Neuron 25: 359-371
    77. Wang, H.Y., Xu, X., Ding, J.H., Bermingham, J.R., Jr., and Fu, X.D. 2001. SC35 plays a role in T cell development and alternative splicing of CD45. Mol. Cell 7: 331-342
    78. Wu, J.I., Reed, R.B., Grabowski, P.J., and Artzt, K. 2002. Function of quaking in myelination: Regulation of alternative splicing. Proc. Natl. Acad. Sci. 99:4233-4238
    79. Harper, P.S. 2001. Myotonic dystrophy. W.B. Saunders, London.
    80. Liquori, C.L., Ricker, K., Moseley, M.L., Jacobsen, J.F., Kress, W, Naylor, S.L., Day, J.W., and Ranum, LP. 2001. Myotonic dystrophy type 2 caused by a CCTG expansion in intron 1 of ZNF9. Science 293: 864-867
    81. Taneja, K.L., McCurrach, M., Schalling, M., Housman, D., and Singer, R.H. 1995. Foci of trmucleotide repeat transcripts in nuclei of myotonic dystrophy cells and tissues. J. Cell Biol. 128: 995-1002
    82. Davis, B.M., McCurrach, M.E., Taneja, K.L., Singer, R.H., and Housman, D.E. 1997. Expansion of a CUG trmucleotide repeat in the 3' untranslated region of myotonic dystrophy protein kinase transcripts results in nuclear retention of transcripts. Proc. Natl. Acad. Sci. 94: 7388-7393
    83. Mankodi, A., Logigian, E., Callahan, L, McClain, C, White, R., Henderson, D., Krym, M., and Thornton, CA. 2000. Myotonic dystrophy in transgenic mice expressing an expanded CUG repeat. Science 289:1769-1773
    84. Wang, J., Pegoraro, E., Menegazzo, E., Gennarelli, M., Hoop, R.C., Angelini, C, and Hoffman, E.P. 1995. Myotonic dystrophy: Evidence for a possible dominant-negative RNA mutation. Hum. Mol. Genet. 4: 599-606
    85. Philips, A.V., Timchenko, L.T, and Cooper, T.A. 1998. Disruption of splicing regulated by a CUG-binding protein in myotonic dystrophy. Science 280: 737-741
    86. Savkur, R.S., Philips, A.V., and Cooper, T.A. 2001. Aberrant regulation of insulin receptor alternative splicing is associated with insulin resistance in myotonic dystrophy. Nat. Genet. 29: 40-47
    87. Seznec, H., Agbulut, O., Sergeant, N., Savouret, C, Ghestem, A., Tabti, N., Wilier, J.C., Ourth, L., Duros, C, Brisson, E. et al. 2001. Mice transgenic for the human myotonic dystrophy region with expanded CTG repeats display muscular and brain abnormalities. Hum. Mol. Genet. 10: 2717-2226
    88. Buj-Bello, A., Furling, D., Tronchere, H., Laporte, J., Lerouge, T, Butler-Browne, GS., and Mandel, J.L. 2002. Muscle-specific alternative splicing of myotubularin-related 1 gene is impaired in DM1 muscle cells. Hum. Mol. Genet. 11: 2297-2307
    89. Charlet-B, N., Savkur, R.S., Singh, G, Philips, A.V., Grice, E.A., and Cooper, T.A. 2002. Loss of the muscle-specific chloride channel in type 1 myotonic dystrophy due to misregulated alternative splicing. Mol. Cell 10:45-53
    90. Mankodi, A., Takahashi, M.P., Jiang, H., Beck, C.L., Bowers, W.J., Moxley, R.T., Cannon, S.C., and Thornton, C.A. 2002. Expanded CUG repeats trigger aberrant splicing of ClC-1 chloride channel pre-mRNA and hyperexcitability of skeletal muscle in myotonic dystrophy. Mol. Cell 10:35-44
    91. T. H. Ho, R. S. Savkur, M. G. Poulos, M. A. Mancini, M. S. Swanson, and T. A. CooperColocalization of muscleblind with RNA foci is separable from mis-regulation of alternative splicing in myotonic dystrophyJ. Cell Sci., July 1, 2005; 118(13): 2923 - 2933. 94. Lu, X., Timchenko, N.A., and Timchenko, L.T. 1999. Cardiac elav-type RNA-binding protein (ETR-3) binds to RNA CUG repeats expanded in myotonic dystrophy. Hum. Mol. Genet. 8: 53-60
    92. Miller, J.W., Urbinati, C.R., Teng-Umnuay, P., Stenberg, M.G, Byrne, B.J., Thornton, CA., and Swanson, M.S. 2000. Recruitment of human muscleblind proteins to (CUG)n expansions associated with myotonic dystrophy. EMBO J. 19: 4439-4448
    93. Tian, B., White, R.J., Xia, T, Welle, S., Turner, D.H., Mathews, M.B., and Thornton, CA. 2000. Expanded CUG repeat RNAs form hairpins that activate the double-stranded RNA-dependent protein kinase PKR. RNA6:79-87
    94. Napieraa, M. and Krzyosiak, W.J. 1997. CUG repeats present in myotonin kinase RNA form metastable 'slippery' hairpins. J. Biol. Chem. 272: 31079-31085
    95. Michalowski, S., Miller, J.W., Urbinati, C.R., Paliouras, M., Swanson, M.S., and Griffith, J. 1999. Visualization of double-stranded RNAs from the myotonic dystrophy protein kinase gene and interactions with CUG-binding protein. Nucleic Acids Res. 27: 3534-3542
    96. Fardaei, M., Larkin, K., Brook, J.D., and Hamshere, M.G 2001. In vivo co-localisation of MBNL protein with DMPK expanded-repeat transcripts. Nucleic Acids Res. 29:2766-2771
    97. Ladd, A.N., Charlet-B, N., and Cooper, T.A. 2001. The CELF family of RNA binding proteins is implicated in cell-specific and developmentally regulated alternative splicing. Mol. Cell. Biol. 21:1285-1296
    
    98. Good, P.J., Chen, Q., Warner, S.J., and Herring, D.C. 2000. A family of human RNA-binding proteins related to the Drosophila Bruno translational regulator. J. Biol. Chem. 275: 28583-28592
    
    99. Timchenko, N.A., Cai, Z.J., Welm, A.L., Reddy, S., Ashizawa, T, and Timchenko, L.T. 2001. RNA CUG repeats sequester CUGBP1 and alter protein levels and activity of CUGBP1. J. Biol. Chem. 276: 7820-7826
    
    100.Roberts, R., Timchenko, N.A, Miller, J.W., Reddy, S., Caskey, C.T, Swanson, M.S., and Timchenko, L.T. 1997. Altered phosphorylation and intracellular distribution of a (CUG)n triplet repeat RNA-binding protein in patients with myotonic dystrophy and in myotonin protein kinase knockout mice. Proc. Natl. Acad. Sci. 94: 13221-13226
    
    101.Yamaguchi, E, Saya, H., Bruner, J.M., and Morrison, R.S. 1994. Differential expression of two fibroblast growth factor-receptor genes is associated with malignant progression in human astrocytomas. Proc. Natl. Acad. Sci. 91: 484-488
    
    102.Jin, W., Huang, E.S., Bi, W., and Cote, G.J. 1999. Redundant intronic repressors function to inhibit fibroblast growth factor receptor-1 α-exon recognition in glioblastoma cells. J. Biol. Chem. 274: 28035-28041
    
    103.Jin, W., McCutcheon, I.E., Fuller, G.N, Huang, E.S., and Cote, G.J. 2000. Fibroblast growth factor receptor-1 α-exon exclusion and polypyrimidine tract-binding protein in glioblastoma multiforme tumors. Cancer Res. 60:1221-1224
    
    104.J. P. VenablesAberrant and Alternative Splicing in CancerCancer Res., November 1,2004; 64(21): 7647 - 7654.
    
    105.Nissim-Rafinia, M., Chiba-Falek, O., Sharon, G, Boss, A., and Kerem, B. 2000. Cellular and viral splicing factors can modify the splicing pattern of CFTR transcripts carrying splicing mutations. Hum. Mol. Genet. 9:1771-1778
    106.Kalbfuss, B., Mabon, S.A, and Misteli, T. 2001. Correction of alternative splicing of tau in frontotemporal dementia and Parkinsonism linked to chromosome 17. J. Biol. Chem. 276:42986-49293
    107.Mercatante, D.R. and Kole, R. 2002. Control of alternative splicing by antisense oligonucleotides as a potential chemotherapy: Effects on gene expression. Biochim. Biophys.Acta 1587:126-132
    108.Pilch, B., Allemand, E., Facompre, M., Bailly, C, Riou, J.F., Soret, J., and Tazi, J. 2001. Specific inhibition of serine- and arginine-rich splicing factors phosphorylation, spliceosome assembly, and splicing by the antitumor drug NB-506. Cancer Res. 61: 6876-6884
    109.Varani, L., Spillantini, M.G, Goedert, M., and Varani, G 2000. Structural basis for recognition of the RNA major groove in the tau exon 10 splicing regulatory element by aminoglycoside antibiotics. Nucleic Acids Res. 28: 710-719
    110.Andreassi, C, Jarecki, J., Zhou, J., Coovert, D.D., Monani, U.R., Chen, X., Whitney, M., Pollok, B., Zhang, M., Androphy, E. et al. 2001. Aclarubicin treatment restores SMN levels to cells derived from type I spinal muscular atrophy patients. Hum. Mol. Genet. 10: 2841-2819
    111.Liu, X., Jiang, Q., Mansfield, S.G, Puttaraju, M., Zhang, Y, Zhou, W., Cohn, J.A., Garcia-Blanco, M.A., Mitchell, L.G, and Engelhardt, J.F. 2002. Partial correction of endogenous DeltaF508 CFTR in human cystic fibrosis airway epithelia by spliceosome-mediated RNA trans-splicing. Nat. Biotechnol. 20: 47-52

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700