铝胁迫下复合有机酸的解毒机制及H~+-ATPase对黑麦根分泌有机酸的调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黑麦根系在铝胁迫下能分泌柠檬酸和苹果酸这两种有机酸。本文以水培方法,研究了复合有机酸(柠檬酸-苹果酸)对铝胁迫下5日龄小麦(晋麦47)幼根细胞膜透性、过氧化物酶、过氧化氢酶和H~+-ATPase活性和根伸长的影响,旨在探讨根系分泌的复合有机酸对铝的解毒机制。研究结果显示:复合有机酸能使50μmol·L~(-1)铝处理的小麦幼根电解质渗漏率下降,根尖POD、CAT、H~+-ATPase活性提高,幼根伸长量增加,并且复合有机酸的效果随着浓度(25~200μmol·L~(-1))的增加而增强。在50或100μmol·L~(-1)苹果酸的基础上,柠檬酸—苹果酸比值从1:2增加到1:1后复合有机酸的解毒效果更显著,而在相同柠檬酸浓度下苹果酸浓度增加一倍对小麦铝毒害无显著影响。这些结果表明,黑麦根系分泌柠檬酸和苹果酸可以减轻铝对作物细胞膜、根伸长的毒害,铝诱导黑麦根系分泌的复合有机酸是其抵御铝毒的有效机制。
     另一方面,为探讨铝胁迫下H~+-ATPase对黑麦根系分泌复合有机酸的调控作用,本文以5日苗龄的黑麦(King)、小麦(晋麦47)为材料,研究了激素(IAA、ABA)、阴离子通道抑制剂(NIF、9-AC、DIDS)及质膜ATPase抑制剂(SV)对根尖H~+-ATPase活性及根系分泌有机酸的影响。研究结果显示,10、30、50μmol·L~(-1)Al~(3+)处理24h后耐铝的黑麦根尖H~+-ATPase活性均高于铝敏感的小麦。在铝胁迫下H~+-ATPase受低浓度的IAA(1μmol·L~(-1))处理所激活,而根系分泌的有机酸随着H~+-ATPase的激活而增加。相反,当H~+-ATPase的活性因ABA(1、25μmol·L~(-1))、高浓度IAA(25μmol·L~(-1))处理而降低后,有机酸的分泌受到显著的抑制。1μmol·L~(-1)IAA对黑麦根尖H~+-ATPase活性起促进作用,而1μmol·L~(-1)ABA抑制H~+-ATPase活性。这些结果说明,根尖H~+-ATPase可能参与铝诱导黑麦根系分泌有机酸的调控。
     另一方面,在1μmol·L~(-1)IAA溶液中,10μmol·L~(-1)阴离子通道抑制剂NIF、9-AC、DIDS对黑麦根尖H~+-ATPase活性及铝诱导根系分泌有机酸均有抑制效应。并且,NIF、9-AC、DIDS处理加强1μmol·L~(-1)ABA对根尖H~+-ATPase活性和铝诱导黑麦根系分泌有机酸的抑制。这些结果说明,H~+-ATPase对黑麦根系分泌有机酸分泌的影响可能通过阴离子通道介导。
     此外,质膜H~+-ATPase专性抑制剂SV对黑麦根尖H~+-ATPase活性及铝诱导有机酸的分泌有显著抑制作用,这暗示着黑麦根尖质膜H~+-ATPase是根尖细胞中调节有机酸分泌的重要因子。
The secretion of citrate and malate from rye roots could be induced by Al stress. In order to elucidate the Al detoxification mechanisms by compound organic acids (citrate and malate) in rye, five-day-old Al-sensitive wheat( Jin mai 47) roots were objected to study the effects of these organic acids on root elongation, root cell membrane osmosis, activities of catalase (CAT), peroxidase (POD) and H~+-ATPase of root apices by water-cultivated method. It showed that Al induced increasing in electrolyte of roots was suppressed by the addition of both citrate and malate, while an increase in both root elongation and activities of CAT, POD and H~+-ATPase were found in the treatments with both citrate and malate under 50μmol·L~(-1) Al stress. These effects of compound organic acids were increased with the increasing of their dose (25~200μmol·L~(-1)) . Al-detoxification effect of compound organic
     acids was more significant as the increasing rate of citrate/malate from 1:2 to 1:1 in the certain concentration of malate (50, 100μmol·L~(-1)). However, there had no distinct Al-detoxifcation effect of compound organic acids on wheat with doubled the concentration of malate in the certain concentration of citrate. These results indicated that Al-induced secretion of both citrate and malate was an effective mechanism for rye to deal with Al toxicity and Al-induced secretion of compound organic acids was an Al resistant mechanism for rye.
     On the other hand, in order to investigate the regulation of H~+-ATPase on Al-induced secretion of organic acids from rye roots, five-day-old rye(King) and wheat(Jin mai 47) roots were objected to study the relationship between H~+-ATPase and the secretion of organic acids by treating with abscisic acid (ABA) and indoleacetic acid (IAA), anion inhibitors 4,4'-diisothio-cyanostilbene-2,2'-disuifonic acid (DIDS), niflumic acid (NIF), anthracene-9-carboxylic acid (9-AC) and plasma membrane ATPase inhibitor (SV). These results showed that H~+-ATPase activity of rye root apices was higher than that in wheat after exposure of roots to 10、30、50μmol·L~(-1) AI solution for 24 h. Under Al stress, H~+-ATPase activity was stimulated by low concentration IAA (1μmol·L~(-1)) treated, while the secretion of organic acids was increased. However, H~+-ATPase activity was significantly inhibited by ABA (1、25μmol·L~(-1)) and high concentration IAA (25μmol·L~(-1)), while the amount of Al-induced organic acids was decreasing. Oneμmol·L~(-1) IAA and 1μmol·L~(-1)ABA respectively exerted stimulatory and inhibitory effects on the H~+-ATPase activities and secretion of organic acids. These results suggested that H~+-ATPase of root apices would involve in the regulation of Al-induced secretion of organic acids from rye roots.
     In addition, H~+-ATPase activity and the secretion of organic acids were inhibited by treatments with 10μmol·L~(-1) NIF, 9-AC, DIDS solution which contained 1μmol·L~(-1) IAA. Moreover, the inhibitory effect of 1μmol·L~(-1)ABA on the activity of root apices H~+-ATPase and Al-induced secretion of organic acids from rye roots was strengthened by NIF, 9-AC and DIDS. These results implied that H~+-ATPase seemed to involve in activating anion channels to allow organic acids efflux.
     Furthermore, the secretion of organic acids and H~+-ATPase activity were inhibited by SV, which is a plasma membrane ATPase inhibitor. It suggested that plasma membrane H~+-ATPase would be an important regulated factor of cells in Al-induced secretion of organic acids.
引文
[1] 熊毅,李庆魁.中国土壤.北京:科学出版社,1987:39.
    [2] Taylor GJ. Current review of the aluminum stress response: The physiological basis of tolerance. Current Topics Plant Biochemistry Physiology,1991,10:57-93.
    [3] Kochian LV. Cellular mechanisms of aluminum toxicity and resistance in plants. Annual Review Plant Physiology Plant Molecular Biology,1995,46:237-260.
    [4] 胡红青,黄巧云,李学恒.不同铝浓度对小麦根系分泌氨基酸和糖类的影响.土壤通报,1995,26(1):15-17.
    [5] 黄巧云,李学垣,徐风琳.铝对小麦幼苗生长和根的某些生理特性的影响.植物生理学通讯,1994,30(2):97-100.
    [6] 张芬琴,于金兰.铝处理对苜蓿种子萌发及其幼苗生理生化特性的影响.草业科学,1999,8(3):61-65.
    [7] 萧凤回,沈振国,冯亚剑,等.钙和6-BA对绿豆幼苗耐铝性的影响.南京农业大学学报,1999,22(1):6-10.
    [8] Lindberg S. Aluminum effects on trans membrane potential in cells of fibrous of fibrous roots of sugar-beet. Physiology Plant,1991,83:54-62.
    [9] 张芬琴、沈振国.Al~(3+)对小麦幼苗根系生长和膜保护酶活性的影响及Ca~(2+)的缓解效应.西南农业学报,2000,13(3):22-27.
    [10] Subrahmanyam, Desiraju. Effect of aluminum on growth, lipid peroxidation, superoxide dismutase and peroxidase activities in Rice bean and French bean seedlings. Indian Journal of Plant Physiology, 1998, 3(3): 240-242.
    [11] 何虎翼,何龙飞,黎晓峰等.铝胁迫对黑麦幼苗活性氧系统的影响.麦类作物学报,2005,25(6):91-95.
    [12] 李其星.钙对黑麦铝毒的解毒机制研究.广西大学硕士论文,2006.
    [13] 龚春风,徐根娣,刘鹏.铝对大豆过氧化物酶同工酶谱的影响[J].浙江师范大学学报(自然科学版),2004,27(4):386-391.
    [14] 邱全胜.植物质膜H~+-ATPase的结构与功能.植物学通报,1999,16(2):122-126
    [15] Matsumoto H, Yamaya T, KasaiM. Changes of some properties of the plasma membrane-enriched fraction of barley roots related to aluminum stress: membrane-associated ATPase, aluminum and calcium. Soil Science Plant Nutrition, 1992, 38(3): 411-419.
    [16] Matsumoto H, Yamaya T. Inhibition of potassium uptake and regulation of membrane associated Mg~(2+)-ATPase activity of pea roots by aluminum. Soil Science Plant Nutrition,1986, 32: 179-488.
    [17] Liu HT, Hao LN. Effects of Al~(3+) on Ca~(2+)-ATPase activity on chloroplasts of rice and calmodulin. ActaBot Sinica, 1990, 32(7): 526-532
    [18] Siegel N, Haug A. Aluminum interaction with calmodulin: Evidence for alered structure and function from optical and enzymatic studies. Plant Physiology,1983, 744: 36-45.
    [19] 赵福庚,何龙飞,罗庆云.植物逆境生理生态学.化学工业出版社,2004年6月.
    [20] Kitagawa T, Morishita T, TachibanaY, Namai H, Ohta Y. Differential aluminum resistance of wheat varieties and secretion of organic acids. Japen Journal Soil Science Plant Nutrition, 1986, 57: 352-358.
    [21] Ryan PR, Delhaize E, Randall PJ. Characterisation of Al-stimulated efflux of malate from the apices of Al-tolerant wheat roots. Planta, 1995a, 196: 103-110.
    [22] Zheng SJ, Ma JF, Matsumoto H. High aluminumresistance in buckwheat. I. Al-induced specific secretion of oxalic acid from root tips. Plant Physiology, 1998b, 117: 745-751.
    [23] Ma JF. Role of organic acid in detoxification ofaluminum in higher plants. Plant Cell Physiology, 2000, 41(4): 383-390.
    [24] Delhaize E, Ryan ER., Randall P. J. Aluminum tolerance in wheat( Triticale aestivum L) Ⅱ. Aluminum-stimulated excretion of malic acid from root apices. Plant Physiology, 1993, 103: 695-702.
    [25] Jones DL. Organic acid in the rhizosphere-critical review. Plant Soil, 1998, 205: 25-44.
    [26] Li XF, Ma JF, Matsumoto H. Pattern of aluminum induced secretion of organic acid differs between rye and wheat. Plant Physiology, 2000, 123: 1537-1544.
    [27] Li DH, He LY, Liu WD. Organic acid secretion from roots in the Al-tolerant and Al-sensitive maize inbred lines. Plant Physiology Molecular Biology, 2003, 29(2): 114-120 (in Chinese).
    [28] Zhang WH, Ryan PR, Tyerman SD. Malate-permeable channels and cation channels activated aluminum in the apical cells of wheat roots. Plant Physiology, 2001,125,1459-1472.
    [29] Kollmeier M, Dietrich P, Bauer CS, Horst WJ, Hedrich R. Aluminum activates a citrate-permeable anion channel in the aluminum-sensitive zone of the maize root apex. A comparison between an aluminum-sensitive and an aluminum-resistant cultivar. Plant Physiology, 2001, 126: 397-410.
    [30] Delhaize E, Ryan PR. Aluminum toxicity and tolerance in plants. Plant Physiology, 1995,107: 315-321.
    [31] Ryan PR, Skerret M, Findlay GP et al. Aluminum activates an anion channel in the apical cell of wheat roots. Proceedings of the National Academy of Sciences,1997, 94:6547-6552.
    [32] Ryan PR, Dong B, Watt M et al Strategies to isolate transporters that facilitate organic anion effiux from plant roots. Plant Soil, 2003, 248: 61-69.
    [33] Sasaki T, Yamamoto Y, Ezaki B et al. A wheat gene encoding an aluminum-activated malate tranporter. Plant Journal, 2004, 37: 645-653.
    [34] Pineros M, Kochian LV. A patch clamp study on the physiology of aluminum toxicity and aluminum tolerance in maize: identification and characterization of Al~(3+)-induced anion channels. Plant Physiology, 2001,125: 292-305.
    [35] 陈全,张旭家.中国生物膜研究新进展,记“21世纪生物膜研究”香山会议和第八次全国暨2003海内外生物膜学术研讨会.科学通报.2003,48(9):988-990.
    [36] 李德华,贺立源,刘武定.土壤非逆境胁迫与根系有机酸分泌.武汉植物学研究.2001,19(6):497-507.
    [37] Schroeder JI. Anion channels as central mechanisms for signal transduction in guard cells and putative functions in roots for plant-soil interactions. Plant Molecular Biology, 1995, 28:353-361.
    [38] Ahn SJ, Sivaguru M, Osawa H el al. Aluminum inhibits the H~+-ATPase by permanently altering the plasma membrane surface potentials in squash roots. Plant Physiology, 2001, 126: 1381-1390.
    [39] Yan F, Zhu YY, Muller C et al. Adaptation of H~+-pumping and plasma membrane H~+-ATPase activity in proteoid roots of white lupin under phosphate deficiency. Plant Physiology,2002, 129: 50-63.
    [40] Ohno T, Koyama H and Hara T. Characterization of citrate transport through the plasma membrane in a carrot mutant cell line with enhanced citrate excretion. Plant Cell Physiology,2003, 44: 156-162.
    [41] 毛桂莲,许兴,徐兆桢.植物质膜H~+-ATPase及其在胁迫中的反应.宁夏农学院学报,2003,24(4):81-86.
    [42] Osawa H, Matsumoto H. Possible involvement of protein phosphorylation in aluminum-responsive malate effiux from wheat root apex.. Plant Physiology, 2001.126:411-420.
    [43] 张骁,上官周平.保卫细胞的ABA信号转导.植物生理学报,2001,27(5):.361-368.
    [44] Li J, Wang XQ, Wason MB et al. Regulation of Abscisic acid-induced stomatal closure anion channels by guard cell AAPK kinase. Science , 2000, 287: 300-303.
    [45] Kasai M, Sasaki M, Tanakamaru S et al. Possible involvement of abscisic acid in increases in activities of two vacular H~+-pumps in barley roots under aluminum stress. Plant Cell Physiology, 1993, 34: 1335-1338.
    [46] Ma JF, Zhang W, Zhao Z. Regulatory mechanism of Al-induced of organic acids anions involvement of ABA in the Al-induced secrection of oxalate in buckwheat. Plant nutrition-food security and sustainability of agro-ecosystems. Horst W. J.(Eds) Kluwer Academic Publishers. Printed in Netherlands, 2001: 486-487.
    [47] Shen H, Ligaba A, Yamaguchi M, Osawa H, Shibata K, Yan XL, Matsumoto H. Effect of K-252a and abscisic acid on the effiux of citrate from soybean roots. Journal of Experimental Botany, 2004, 55(397): 663-671.
    [48] Beffagna N., Romani G., Gatti L., Changes in chloride fluxes and cytosolic pH induced by abscisic acid in Elodea densea leaves. Botany Acta, 1994, 108: 74-79.
    [49] Schwartz a., Ilan N., Schwartz M. et al. Anion-channel blockers inhibit S-type anion channels and abscisic acid response in guard cells, Plant Physiology, 1995,109:651-658
    [50] Schroeder JI, Schmidt C, Sheaffer J. Identification of high-affinity slow anion channel blockers and evidence for stomatal regulation by slow anion channels in guard cells. Plant Cell, 1993, 5: 1831-1841.
    [51] Helene Barbier-Brygoo, Jean-Marie Frachisse, Jean Colcombet, Sebastien Thomine. Anion channels and hormone signaling in plant cells. Plant Physiology Biochemistry, 1999, 37(5): 381-392.
    [52] Marten G L, and Hedrich R. Plant growth hormones control voltage-dependent activity of anionc hannelsin plasmam embrane of guard cells.Nature, 1991, 353: 758-762.
    [53] Zimmermann S, Thomine S, Guern J, and Barbier- Brygoo H. An anion current at the ATP-dependent voltage regulation and is modulated by auxin. Plant Journal ,1994, 6: 707-716.
    [54] Li G J, Zhou X. Salicylic acid and abiotic stress resistance in plants. China Bull Bot, 2001, 18:295-302 (in Chinese).
    [55] Yang ZM, Wang J. Biochemical and molecular mechanism for the aluminum tolerance in plants. J. Plant Physiology Molecular Biology, 2003, 29(5): 361-366 (in Chinese).
    [56] Zhang S, Klessig DF. Salicylic acid activates a 48-kD MAP kinase in tobacco. Plant Cell, 1997, 9: 809-824.
    [57] Ma JF, Ryan PR, Delhaize E. Aluminum tolerance in plants and the complexing role of organic acids. Trends Plant Science, 2001, 6: 273-278.
    [58] Hue NV, Craddock GR, Adams F. Effect of organic acid on aluminum toxicity in subsoils [J]. Soil Science Society of America Journal, 1996, 50: 28-34.
    [59] 陈梅,陈亚华,沈振国等 外源有机酸对小麦幼苗铝毒的缓解作用.植物生理与分子生物学学报,2003,29(4)::281-288.
    [60] 黄巧云,李学垣,徐风琳.铝对小麦幼苗生长和根的某些生理特性的影响.植物生理学通讯,1994,30(2):97-100.
    [61] 李阳瑞.甘蔗组织中过氧化物酶活性及其与工艺成熟的关系初探.广西农学院学报,1990,9(1):13-18.
    [62] 赵会杰,刘华山,林学梧,等.小麦胞质不育系花粉败育与活性氧代谢.作物学报,1996,22(3):365-367.
    [63] 王建华,刘鸿先,徐同.超氧化物歧化酶(SOD)在植物逆境和衰老生理中的作用.植物生理学通讯,1989,(1):1-7.
    [64] Lugany M, assot N, Wissemeier Ah, et al. Aluminum tolerance in maize cultivars as assessed by callose production and root elongation.. Z Pflanzenerahr Bodenk, 1994, 157: 447-451.
    [65] Sasaki M, Yamamoto Y, Matsumoto H. Lignin deposition induced by aluminum in wheat(Triticum aestivum) roots. Physiology Plant, 1996, 96:193-198
    [66] Howeler RH. Identigying plants adaptable to low pH conditions. In RJ Wright, VC Baligar, RP Murrmann, eds, Plant-Soil Interactions at Low pH. Kluwer Academic Publishers, Dorrecht, The Netherlands,1991, 885-904.
    [67] Miyasaka SC, Buta J G, Howell R K, et al. Mechanism of aluminum tolerance in snspbeans root exudation of citric acid. Plant Physiology, 1991, 96: 737-743.
    [68] Pellet DM, Grunes DL, Kochian LV. Organic acid exudations an aluminum-tolerance mechanism in maize (Zea mays L.). Planta, 1995, 196:788-795.
    [69] MA JF, Zheng SJ, Matsumoto H, et al. Detoxifying aluminum with buckwheat. Nature, 1997, 390: 569-570.
    [70] Ma Z, Miyasaka S C. Oxalate exudation by taro in response to Al. Plant Physiology, 1998, 18: 961-865.
    [71] Pineros MA, Magalhaes JA, Alvesv M C, et al. The physiology and biophysics of an aluminum tolerance mechanism based on root citrate exudation in maize. Plant Physiology, 2002, 129: 1194-1206.
    [72] Yang Z M, Nian H, Sivaguru M et al. Characterization of aluminum-induced citrate secretion in aluminum-tolerant soybean (Glycine max L.). Plant. Physiology Plant, 2001, 113:64-71.
    [73] Yang ZM, Sivaguru M, Horst W J, et al. Aluminium tolerance is achieved by exudation of citric acid from roots of soybean (Glycine max L.). Physiology Planta, 2000, 110: 72-77.
    [74] 李耀燕.黑麦品种间耐铝差异性机制的研究.广西大学硕士论文,2006,6.
    [75] Hue NV, Craddock GR, Adams F. Effect of organic acid on aluminum toxicity in subsoils [J]. Soil Science Society America Journal, 1996, 50: 28-34.
    [76] 何龙飞.小麦铝毒害和钙缓解作用的机理.南京农业大学博士论文,1999,25.
    [77] 万美亮,邝炎华,陈建勋.缺磷胁迫对甘蔗膜脂过氧化及保护酶系统活性的影响.华南农业大学学报,1999,20(2):1-6.
    [78] 何龙飞,沈振国,刘友良.铝胁迫下钙对小麦根系细胞质膜ATP和膜脂组成的效应.中国农业科学,2003,36(10):1139-1142
    [79] Ryan P R, Delhaize E, Jones D L. Function and mechanism of organic anion exudation from plant roots. Annual Review Plant Physiology Plant Molecular Biology, 2001, 52: 527-560.
    [80] Ahn S J, Rengel Z, Matsumoto H. Aliminum-induced plasma membrane surface potential and H~+-ATPase activity in near-isogenic wheat lines differing in tolerance to aluminum. New Phytologist, 2004, 162: 71-79.
    [81] Niu X, Narasimhan M L, Salzman R A et al. NaCl regulation of plasma membrane H~+-ATPase gene expression in a glycophyte and halophyte. Plant Physiology, 1993, 103: 713-718.
    [82] Niu X, Damsz B, Kononowicz A K et al.. NaCl-induced alterations in both cell structure and tissue-specific plasma membrane H~+-ATPase gene expression. Plant Physiology, 1996, 111: 679-686.
    [83] Yan F, Zhu Y, Muller C et al. Adaptation of H~+-pumping and PM H~+-ATPase activity in proteoid roots of white lupin under phosphate deficiency. Plant Physiology, 2002, 129: 50-63.
    [84] Jemejc K, Legisa M. Activation of plasma membrane H~+-ATPase by ammonium ions in Aspergillus niger. Appl Microbiol Biotechnol, 2001, 57: 368-373.
    [85] 凌桂芝.铝诱导柱花草和黑麦根系分泌有机酸及其调控机理的研究.广西大学硕士论文,2004.5.
    [86] Zhou SS, Gao Z, Dong L et al. Anion channels influence ECC by modulating L2 type Ca~(2+) channel in ventricular myocytes. Journal Applied Physiology, 2002 , 93: 1660-1668.
    [87] Osawa H, Matsumoto H. Aluminum triggers malate-independent potassium release via ion channels from the root apex in wheat. Planta, 2002, 215: 405-412.
    [88] Okihara K, Kiyota S and Sakano K. Furosemids: a specific inhibitor of Pi transport across the plasma membrane of plant cells. Plant Cell Physiology,1995, 36(1): 53-58,
    [89] Julian IS and Keller BU. Two types of anion channel currents in guard cells with distinct voltage regulation. Proceedings of the National Academy of Science, 1995, 89: 5025-5029.
    [90] Horst W J, Asher CF etc., Short-term responses of soybean roots to aluminum. Plant Physiology, 1992, 140: 174-178.
    [91] Tyerman SD. Anion channel in plants. Annual Review Plant Physiology Plant Molecular Biology,1992, 43: 351-373.
    [92] Hedrich R, Busch H and Raschke K. Ca~(2+) and nucleotide dependent regulation of volatage dependent anion channels in the plasma membrane of guard cells. EMBO Journal,1990, 9, 3889-3892.
    [93] Chiba. Characterization of aluminum-induced citrate secretion in Cassia tora L. Master's thesis. 1999.
    [94] Martnez-Estevez M, Loyola-Vargas VM, Hernandez-Sotomayor SMT. Aluminum increase phosphorylation of particular proteins in cellular suspension cultures of coffee(Coffea Arabica). Plant Physiology, 2001, 158: 1375-1379.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700