生物反应器填埋场中重金属Cu和Zn的迁移转化机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
垃圾填埋场是一个长期而重大的重金属二次污染源,为了保护填埋场周边土壤、地表水和地下水的环境质量,亟需对垃圾填埋场内重金属的环境行为进行准确的评估,并据此提出相应的污染防治对策。本研究以生活垃圾中含量最高的重金属Cu和Zn为目标物,首先从重金属总量的角度,基于生活垃圾组分的地域性和季节性变化因素,系统地解析了生活垃圾中重金属源分布特征,并针对重金属总量在环境行为评估的信息不足之劣势,将重金属形态分析方法引入了非均质的填埋垃圾,初步较精确地探讨了垃圾填埋过程中Cu和Zn的可能的迁移行为;基于以上结果,以生物反应器填埋场为主体,构建了三种不同工艺的模拟填埋场,聚焦于填埋垃圾及渗滤液这一整体系统,深入系统地研究了Cu和Zn在生物反应器填埋场稳定化过程中的释放行为,提出了不同运行方式模拟填埋场中Cu和Zn总量的长期环境渗沥模型及各形态迁移转化模型,揭示了生物反应器填埋场中重金属原位固定的SRB调控现象。主要结论为:
     (1)生活垃圾中Cu和Zn均不同程度地超过了土壤二级环境质量标准,具有较高的重金属污染潜力,尤其春夏两季,较好的垃圾分类收集能明显降低其中重金属来源。塑料、厨余、灰渣和纸张四类垃圾组分对生活垃圾的重金属Cu、Zn总量贡献最大,生活垃圾的重金属污染源头控制有赖于对该四类组分的削减。
     (2)修正BCR连续提取方法对0-7a的不同填埋龄的生活垃圾中Cu和Zn的形态分析具有极高的重现性和回收率,在应用于非均质的填埋垃圾体系时能更为准确地反映垃圾填埋场中不同稳定化程度下重金属对应的环境行为。不同的填埋垃圾样品预处理方法对形态分析结果的影响因素主要为填埋垃圾的NH_4~+-N、VFA、硫化物等原始环境条件的变更所致,湿样是填埋垃圾样品形态分析最理想的预处理方式。
     (3)由于渗滤液的迁移,不同运行方式的模拟填埋场的下层垃圾中Cu和Zn含量均明显高于上层垃圾,其中Zn较Cu具有更强的迁移性。填埋垃圾的稳定化差异及由此而引起的重金属的不同释放机理导致Cu和Zn含量呈现阶段性增减变化,变化幅度为CL(普通卫生填埋场)>RL(直接回灌型生物反应器填埋场)>BL(序批式生物反应器填埋场)、Cu>Zn,产酸阶段填埋垃圾中Cu和Zn具有最高的环境污染风险,随模拟填埋场的稳定化程度增加,填埋垃圾中Cu和Zn释放行为逐步减缓并趋于稳定。
     (4)渗滤液中Cu(Ⅱ)和Zn(Ⅱ)的浓度变化与填埋垃圾中Cu和Zn的释放行为形成强烈响应,不同运行工艺的模拟填埋场渗滤液中重金属浓度差异不明显。普通卫生填埋场的重金属释放量符合的正指数递增模型,而生物反应器填埋场的释放量则遵循不同阶数的负指数衰减模型,渗滤液的回灌操作较普通卫生填埋能明显降低填埋场对外环境的重金属输出,而两相分离的产甲烷反应器的引入更能促进重金属在生物反应器填埋场内的行为稳定。
     (5)渗滤液的回灌能促使Cu和Zn形态从不稳定态(酸可溶解态和可还原态)往稳定态(可氧化态和残渣态)迁移从而可减缓其释放行为,Zn比Cu具有更强的环境迁移和污染潜力。不同时期不同深度填埋层内Cu和Zn形态的差异明显,填埋垃圾的好氧环境的暴露能促使Cu和Zn从稳定态向不稳定态迁移。
     (6)Cu和Zn的各级形态与环境因素的回归模型表明填埋场环境中氨氮、HA、FA、DOC、硫化物、硫酸盐等环境因素对Cu和Zn的各级形态影响较大,其中硫化物对Cu和Zn在填埋环境中的迁移影响最大,分别与Cu和Zn的不稳定态(酸可溶解态和可还原态)呈显著负相关,与稳定态(可氧化态和残渣态)呈显著正相关。Visual MINTEQ模拟计算结果表明,渗滤液中Cu(Ⅱ)大部分为腐殖质络合态,并逐渐由与松结合态富里酸络合态(FA_1-Cu)向稳结合态富里酸络合态(FA_2-Cu)转变;Zn(Ⅱ)则主要表现为与S~(2-)的络合,其络合程度随模拟填埋场内还原性环境形成而加剧,生物反应器填埋场的渗滤液长期回灌能促使Cu和Zn逐步形成络合沉淀而使其在填埋垃圾内的迁移行为减缓。不同方式填埋场渗滤液的重金属环境风险并不在于其瞬时浓度及形态,在于长期渗滤而引起的量累积。
     (7)生物反应器填埋场中较高的SRB代谢活性及其逐步累积的代谢产物硫化物是填埋垃圾中的Cu~(2+)和Zn~(2+)形成硫化物沉淀而发生重金属原位固定现象主要原因,生物反应器填埋场中重金属存在原位固定的硫酸盐还原菌调控机理,初步从形态判断填埋垃圾中的优势硫酸盐还原菌属普通脱硫弧菌属(Desulfovibriovulgaris sp.),其对Cu~(2+)和Zn~(2+)的生物沉降能力约1-10ppm。
Landfill site is a long-term and serious secondary pollution because of heavy metal.With respect to protect the environmental quality of the soil, the surface water, and theground water near landfill site, there is a need to evaluate the environmental behaviorof heavy metal in landfill and carry out conservation strategy accordingly. In thisstudy, Cu and Zn were chosen to evaluate the heavy metal behavior in landfill duringdecomposition. Firstly, considering the regional and seasonal variation of MSWcomponents, the characteristic of Cu and Zn distribution in MSW wascomprehensively studied. Based on the insufficient information of heavy metal totalcontent, sequential extraction procedure was also adapted to the heterogeneous MSWto assess the possible migration of Cu and Zn in it more pertinently. Subsequently,three simulated MSW reactor landfill with different operation modes were constructedbasing on the bioreactor landfill. Focusing on the inseparable system includingleachate and landfill refuse, the releasing behavior of Cu and Zn in bioreactor landfillduring decomposition was studied. The long-term leaching behavior of Cu and Zncontent from landfill with different operation modes were modeled. Moreover, themigration of Cu and Zn fractionations in MSW basing on modified BCR sequentialextraction procedure were also modeled. Finally, the phenomenon of in-situbio-immobilization of heavy metal in refuse from bioreactor landfill was presented..The main conclusion of this study was list below.
     (1)The Cu and Zn contents in MSW exceeded the set standard for "environmentalquality standard for soil" of China with different degree. The MSW has high potentialof heavy metal pollution, especially in spring and summer. The heavy metal source inMSW can be cut by orderly classification. Components including plastic, foodresidual, dust, and paper are the four main contributions for total heavy metal contentin MSW. The controlling of heavy metal pollution source in MSW depends on the cutof the four above MSW components.
     (2)When it used to MSW with different landfill age among 0-7 yr, the modifiedBCR sequential extraction procedure has high recovery and reproducibility. It is moreexactly to evaluate the environmental behavior of heavy metal in MSW, a veryheterogeneous matrix, at different degradation stage accordingly. Effect of samplepretreatment on speciation of Cu and Zn in different MSW samples illustrated that theshift of sample characteristics such as ammonia nitrogen (NH_4~+-N), volatile fatty acid(VFA), sulfide were the main reasons. The fresh sample is the ideal pretreatmentmanner of sequential extraction for MSW, and air drying is the other better choice.
     (3)The contents of Cu and Zn in MSW from bottom layers are always higher thanthat from upper layers due to the migration of leachate. Zn has higher mobility thanCu in MSW. The different releasing behavior of Cu and Zn caused by the differenceon MSW decomposition led to the staggered variation of Cu and Zn contents in MSWaccordingly. The variation degree ranking were CL>RL>BL and Cu>Zn. The Cuand Zn contents in MSW at acidification phase have the highest environmental risk.Cu and Zn in MSW showed behaviors of staggered migration and retention gradually,which corresponded with the degradation process of landfill obviously.
     (4) The variation on Cu~(2+) and Zn~(2+) concentrations in leachate reflected thereleasing behavior of Cu and Zn in landfill refuse at different stage accordingly. Therewere no significant differences on the concentration of heavy metal in leachate fromlandfills with different operation modes. The leaching amounts of heavy metals fromthe conventional reactor landfill fit for the positive exponential increase model, whilethat of bioreactor landfills fit for negative exponential decrease models. The operationof leachate recirculation can obviously reduce the heavy metal leaching amount fromlandfill into environment than conventional operation, and the introduction ofsequential phase acidification reactor can promote the immobilization of heavy metalin landfill refuse.
     (5)The leachate recirculation promoted the speciation of Cu and Zn shift fromunsteady fractions (acid soluble fraction and reducible fraction) to steady fractions(oxidable fraction and residual fraction), and attenuated their migration. Zn has higherpotential of migration and pollution than Cu in MSW. There are significant differences on Cu and Zn speciation in MSW from different landfill layers. Theaerobic exposure can promote the migration of Cu and Zn speciation from steadyfractions to unsteady fractions.
     (6)The regression models of Cu and Zn speciation indicated that characteristics, i.e.ammonia nitrogen, HA, FA, DOC, sulfide, sulfate, are the main factors of heavy metalspeciation variation.Especially, sulfide has significant positive correction and negativecorrection with unsteady fractions (acid soluble fraction and reducible fraction)andsteady fractions (oxidable fraction and residual fraction)of Cu and Zn in MSW,respectively. Simulation computation results from Visual MINTEQ showed that Cu~(2+)was mainly associated with humus and migrated from lose association (FA_1-Cu) totight association (FA_2-Cu), while Zn~(2+) was mainly presented with complexation withS~(2-) which was strengthened as the reducing environmental surrounding in landfillgradually. The long-term leachate recirculation in bioreactor landfill can promote theprecipitation of Cu and Zn as complexation and attenuate their migration. Theenvironmental risk of leachate from landfill with different operation modes depend ontheir accumulation amount rather than their sudden concentrations and fraction.
     (7)The high SRB metabolism activity and the accumulation of metabolite (sulfide)were the main reasons of in-situ precipitation phenomenon of Cu~(2+) and Zn~(2+) inlandfill refuse in bioreactor landfill. Heavy metals in bioreactor landfill havemechanism of in-situ immobilization controlling by SRB metabolism. Thepredominant SRB in landfill refuse belongs to Desulfovibrio vulgaris sp. with theCu~(2+) and Zn~(2+) bio-precipitation of 1-10 ppm approximately.
引文
[1] 国家环境保护总局污染控制司.城市固体废物管理与处理处置技术[M].北京:中国石化出版社,2000.
    [2] Flyhammar P. Estimation of heavy metal transformations in municipal solid waste [J]. Science of the Total Environment, 1997, 198 (2): 123-133.
    [3] Christensen TH, Kjeldsen P, Bjerg PL, Jensen DL, Christensen JB, Baun A, Albrechtsen H-J, Heron G. Biogeochemistry of landfill leachate plumes [J]. Applied Geochemistry, 2001, 16(7-8): 659-718.
    [4] φygard JK, M(?)ge A, Gjengedal E. Estimation of the mass-balance of selected metals in four sanitary landfills in Western Norway, with emphasis on the heavy metal content of the deposited waste and the leachate [J]. Water Research, 2004, 38(12): 2851-2858.
    [5] Abu-Rukah Y, Abu-Aljarayesh I. Thermodynamic assessment in heavy metal migration at El-Akader landfill site, North Jordan [J]. Waste Management, 2002, 22(7): 727-738.
    [6] Flyhammar P, Tamaddon F, Bengtsson L. Heavy metals in a municipal solid waste deposition cell [J]. Waste Management & Research, 1998, 16(5): 403-410.
    [7] Kumar YP, King P, Prasad VSRK. Comparison for adsorption modelling of copper and zinc from aqueous solution by Ulva fasciata sp [J]. Journal of Hazardous Materials, 2006, 137(2): 1246-1251.
    [8] 邵立明,何品晶,瞿贤.生物反应器填埋场初期的重金属释放行为[J].中国环境科学,2007,27(1):71-75.
    [9] 任福民,汝宜红.旅客列车垃圾中重金属元素含量调查及防治对策.北方交通大学学报,1999,23(3):28-31.
    [10] Long Y-Y, Hu L-F, Fang C-R, Wu Y-Y, Shen D-S. An evaluation of the modified BCR sequential extraction procedure to assess the potential mobility of copper and zinc in MSW [J]. Microchemical Journal, 2009, 91(1): 1-5.
    [11] Zheljazkov VD, Warman PR. Phytoavailability and fractionation of copper, manganese, and zinc in soil following application of two composts to four crops [J]. Environmental Pollution, 2004, 131: 187-195.
    [12] Dimambro ME, Lillywhite RD, Rahn CR. The physical, chemical and microbial characteristics of biodegradable municipal waste derived composts [J]. Compost Science & Utilization, 2007, 15: 243-252.
    [13] Pichtel J, Anderson M. Trace metal bioavailability in municipal solid waste and sewage sludge composts [J]. Bioresource Technology, 1997, 60: 223-229.
    [14] Sharma VK, Canditelli M, Fortuna F, Cornacchia G. Processing of urban and agro-industrial residues by aerobic composting: review [J]. Energy Conversation & Management, 1997, 38: 453-478.
    [15] Soumar(?) M, Tack FMG, Verloo MG. Characterisation of Malian and Belgian solid waste composts with respect to fertility and suitability for land application [J]. Waste Management, 2003, 23: 517-522.
    [16] Amlinger F, Pollak M, Favoino E. Heavy metals and organic compounds from wastes used as organic fertilizers [Z]. ENV.A.2./ETU/2001/0024. Final Report to DG Environment, Brussels. 2004.
    [17] 柴晓兰,赵跃民,王春彦.电子废弃物机械回收的研究现状与发展[J].污染防治技术,2003,16(3):47-67.
    [18] 李长荣,唐建军,洪新.废弃家电的环境危害及其黑色金属的再生资源化[J].环境污染与防治,2003,25(2):109-124.
    [19] Hicks C, Dietmar R, Eugster M. The recycling and disposal of electrical and electronic waste in China: legislative and market responses [J]. Environmental Impact Assessment Review, 2005, 25: 459-471.
    [20] Slack RJ, Gronow JR, Voulvoulis N. Household hazardous waste in municipal landfills: contaminants in leachate [J]. Science of The Total Environment, 2005, 337(1-3): 119-137.
    [21] Suna Erses A, Fazal MA, Onay TT, Craig WH. Determination of solid waste sorption capacity for selected heavy metals in landfills [J]. Journal of Hazardous Materials, 2005, 121(1-3): 223-232.
    [22] 张剑波,冯金敏.离子吸附技术在废水处理中的应用和发展[J].环境污染治理技术与设备,2000,1(1):46-51.
    [23] 唐志华,付汉清,李星彩.废旧电池中重金属对人体的危害[J].广东微量元素科学,2004,11(2):14-17.
    [24] 刘丽萍,杨雪芬.微波灰化和ICP-AES法测定染料重金属[J].印染,2003,10:39-40.
    [25] 刘荣乐,李书田,王秀斌.我国商品有机肥料和有机废弃物中重金属的含量状况与分析[J].农业环境科学学报,2005,24(2):392-397.
    [26] 郑曼英,叶晓玫,曾智,陈健芝,巫培山.垃圾各组分中重金属对环境二次污染的贡献值[J].环境卫生工程,2003,11(1):31-32.
    [27] 蒋展鹏.环境工程学[M].北京:高等教育出版社 1990.402-405.
    [28] Commission E. Commission Decision 2000/532/EC replacing Decision 94/3/EC establishing a list of wastes pursuant to Article 1(a) of Council Directive 75/442/EEC on waste and Council Decision 94/904/EC establishing a list of hazardous waste pursuant to Article 1(4) of Council Directive 91/689/EEC on hazardous waste [Z]. Official Journal of the European Communities 2000; L 226 (as amended by Commission Decisions 2001/118/EC (OJ L 47, 1-31)(2001/119/EC (OJ L 47, 32) and 2001/573/EC (OJ L 203, 18-19))): 3-24.
    [29] Reinhart DR. A review of recent studies on the sources of hazardous compounds emitted from solid waste landfills: a US experience [J]. Waste Management Research, 1993, 11: 257-268.
    [30] 林建伟,王里奥,赵建夫,张军,袁辉.三峡库区生活垃圾的重金属污染程度评价[J].长江流域资源与环境,2005,14(1):104-108.
    [31] 夏立江,温小乐.生活垃圾堆填区周边土壤的性状变化及其污染状况[J].土壤与环境,2001,10(1):17-19.
    [32] Chen M, Ma LQ, Singh SP. Field demonstration of in situ immobilization of soil Pb using P amendments [J]. Advance in Environmental Research, 2003, 8(1): 93-102.
    [33] 沈东升,何若,刘宏远.生活垃圾填埋生物处理技术[M].北京:化学工业出版,2003.196-200.
    [34] Baldoni G, Cortellini L, Maroncelli C, Toderi G. Utilizzazione di fanghi di depurazione e di compost su colture erbacee: risultati di un quadriermio di prove in area padana[A]. In: Provincia di Forli-Cesena, editor, Compost: dai rifiuti una risorsa per l'agricoltura. Cesena, Italy: Stampa Lito Tuttastampa. 1994.117-27.
    [35] Pinamonti F, Stringari G, Gasperi F, Zorzi G. The use of compost: its effects on heavy metal levels in soil and plants [J]. Resources, Conservation and Recycling, 1997, 21(2): 129-143.
    [36] 颜丽辉,吴银彪.城市生活垃圾处理带来的二次污染问题[J].中国环保产业,2003,4:16-17.
    [37] Bevacqua RF, Mellano VJ. Sewage sludge compost's cumulative effects on crop growth and soil properties [J]. Compost Science and Utilization, 1993, 1(3): 34-37.
    [38] Kjeldsen P, Barlaz MA, Rooker AP, Baun A, Ledin A, Christensen TH. Present and Long-Term Composition of MSW Landfill Leachate: A Review [J]. Critical Reviews in Environmental Science and Technology, 2002, 32 (4): 297-336.
    [39] 方程冉,沈东升,何若.进口废电器拆解残余固体进入生活垃圾填埋场后渗滤液的特性研究[J].浙江大学学报,2002,28(2):203-207.
    [40] Kruempelbeck I, Ehrig H-J. Long-term behaviour of municipal solid waste landfills in Germany [A]. In: Christensen TH, Cossu R, Stegmann R, editors. Sardinia 99, Seventh International Waste Management and Landfill Symposium, 4-8 October Proceeding 1999; vol 1, S Margherita di Pula. Cagliari, Italy 7 CISA. 1999. 27-36.
    [41] Jensen DL, Christensen TH. Colloidal and dissolved metals in leachates from four Danish landfills [J]. Water Research, 1999, 33(9): 2139-2147.
    [42] Christensen JB, Botma JJ, Christensen TH. Complexation of Cu and Pb by DOC in polluted groundwater: a comparison of experimental data and predictions by computer speciation models (WHAM and M1NTEQA2) [J]. Water Research, 1999, 33(15): 3231-3238.
    [43] Jonsson S, Ejlertsson J, Ledin A, Mersiowsky I, Svensson BH. Mono- and diesters from o-phthalic acid in leachates from different European landfills [J]. Water Research, 2003, 37: 609-617.
    [44] Reinhard M, Goodman NL, Barker IF. Occurrence and distribution of organic chemicals in two landfill leachate plumes [J]. Environmental Science & Technology, 1984, 18: 953-961.
    [45] Mikac N, Cosovic B, Ahel M, Andreis S, Toncic Z. Assessment of groundwater contamination in the vicinity of a municipal solid waste landfill (Zagreb, Croatia) [J]. Water Science and Technology, 1998, 37: 37-44.
    [46] Parker T, Dottridge J, Kelly S. Investigation of the composition and emissions of trace components in landfill gas [J]. R&D Technical Report P1-438/TR, Environment Agency, Bristol, 2002, 145.
    [47] http://www.people.com.cn/GB/huanbao/1073/2782753.html.
    [48] 陈洁,逢辰生,张瑞久.德国城市固体废物管理与综合处理分析[J].节能与环保,2008,8:19-21.
    [49] 中国固废网.2008年中国城市生活垃圾行业投资分析报告[EB/OL].http://www.solidwaste.com.cn/jidong/2008report/index_2.html#3 2008.
    [50] 中华人民共和国国务院.国务院办公厅关于限制生产销售使用塑料购物袋的通知[Z].2008;国办发[2007]72号.
    [51] 中华人民共和国建设部.城市生活垃圾管理办法[Z].2007,建设部令第157号.
    [52] 中华人民共和国环保部.2007年中国环境状况公报[Z].2008.
    [53] 中华人民共和国环境保护总局.2006年中国环境状况公报[Z].2007.
    [54] 中华人民共和国环境保护总局.2005年中国环境状况公报[Z].2006.
    [55] 王里奥,岳建华,黄川,刘元元.三峡库区堆存生活垃圾重金属含量特征[J].环境科学学报,2006,26(2):246-251.
    [56] 任福民,汝宜红,许兆义,李仙粉,刘跃勇.北京市生活垃圾中重金属元素的污染特性调查及对策[J].中国安全科学学报,2003,13(1):49-52.
    [57] 肖正,何品晶,邵立明,李国建,俞觊觎,陈增丰,徐月恩.填埋场内重金属总量及其形态分布对迁移性的影响[J].环境化学,2005,24(3):265-269.
    [58] He P-J, Xiao Z, Shao L-M, Yu J-Y, Lee D-J. In situ distributions and characteristics of heavy metals in full-scale landfill layers [J]. Journal of Hazardous Materials, 2006, 137(3): 1385-1394.
    [59] Belevi H, Baccini P. Long-term behavior of municipal solid waste landfills [J]. Waste Management & Research, 1989, 7(1): 43-56.
    [60] Bozkurt S, Moreno L, Neretnieks I. Long-term fate of organics in waste deposits and its effect on metal release [J]. Science of The Total Environment, 1999, 228(2-3): 135-152.
    [61] φygard JK, Gjengedal E, Mobbs HJ. Trace element exposure in the environment from MSW landfill leachate sediments measured by a sequential extraction technique [J]. Journal of Hazardous Materials, 2008, 153(1-2): 751-758.
    [62] 张永涛,张增强,唐次来,王娟.杨凌城市生活垃圾重金属污染现状评价[J].西北农林科技大学学报(自然科学版),2007,35(1):161-165.
    [63] 邓焕广,张菊,陈振楼,王东启.上海市老港垃圾填埋场潮滩重金属污染及评价研究[J].土壤通报,2007,38(2):347-351.
    [64] Campanella L, D'Orazio D, Petronio BM, Pietrantonio E. Proposal for a metal speciation study in sediments [J]. Analytica Chimica Acta, 1995, 309(1-3): 387-393.
    [65] Rauret G; Rubio R, L(?)pez-S(?)nchez JF, Casassas E. Determination and speciation of copper and lead in sediments of a Mediterranean river (River Tenes, Catalonia, Spain) [J]. Water Research, 1988, 22: 449-455.
    [66] Szefer P, Glasby GP, Kunzendorf H, Gorlich EA, Latka K, Ikuta K, Ali A. The distribution of rare earth and other elements and the mineralogy of the iron oxyhydroxide phase in marine ferromanganese concretions from within Slupsk Furrow in the southern Baltic [J].Applied Geochemistry,1998,13(3):305-312.
    [67]Usero J,Gamero M,Morillo J,Gracia I.Comparative study of three sequential extraction procedures for metals in marine sediments [J].Environment International,1998,24(4):487-496.
    [68]Tessier A,Campbell PGC,Bisson M.Sequential extraction procedure for the speciation of particulate trace metals [J].Analytical Chemistry,1979,51:844-851.
    [69]Kersten M,Forstner U.Chemical fractionation of heavy metals in anoxic estuarine and coastal sediments [J].Water Science and Technology,1986,18:121-130.
    [70]Ure AM,Quevauviller P,Muntau H,Griepink B.Speciation of heavy metals in solids and sediments.An account of the improvement and harmonization of extraction techniques undertaken under the auspices of the BCR of the Commission of the European Communities [J].International Journal of Environmental Analytical Chemistry,1993,51:135-151.
    [71]Mossop KF,Davidson CM.Comparison of original and modified BCR sequential extraction procedures for the fractionation of copper,iron,lead,manganese and zinc in soils and sediments [J].Analytica Chimica Acta,2003,478(1):111-118.
    [72]Zemberyova M,Bartekova J,Hagarova I.The utilization of modified BCR three-step sequential extraction procedure for the fractionation of Cd,Cr,Cu,Ni,Pb and Zn in soil reference materials of different origins [J].Talanta,2006,70(5):973-978.
    [73]Rauret G,Lopez-Sanchez JF,Sahuquillo A,Barahona E,Lachica M,Ure AM,Davidson CM,Gomez A,Luck D,Bacon J,Yli-Halla M,Muntau H,Quevauviller P.Application of a modified BCR sequential extraction (three-step) procedure for the determination of extractable trace metal contents in a sewage sludge amended soil reference material (CRM 483),complemented by a three-year stability study of acetic acid and EDTA extractable metal content [J].Journal of Environmental Monitoring,2000,2(3):228-233.
    [74]Kubova J,Matus P,Bujdos M,' Hagarova I,Medved J.Utilization of optimized BCR three-step sequential and dilute HC1 single extraction procedures for soil-plant metal transfer predictions in contaminated lands [J].Talanta,2008,75(4):1110-1122.
    [75]Sutherland RA,Tack FMG Fractionation of Cu,Pb and Zn in certified reference soils SRM 2710 and SRM 2711 using the optimized BCR sequential extraction procedure [J].Advances in Environmental Research,2003,8(1):37-50.
    [76]Sahuquillo A,Lopez-Sanchez JF,Rubio R,Rauret G,Thomas RP,Davidson CM,Ure AM.Use of a certified reference material for extractable trace metals to assess sources of uncertainty in the BCR three-stage sequential extraction procedure [J].Analytica Chimica Acta,1999,382(3):317-327.
    [77] Flyhammar P, Hakansson K. The release of heavy metals in stabilised MSW by oxidation [J]. Science of The Total Environment, 1999, 243-244: 291-303.
    [78] Flyhammar P. Use of sequential extraction on anaerobically degraded municipal solid waste [J]. Science of The Total Environment, 1998, 212(2-3): 203-215.
    [79] 张辉,马东升.城市生活垃圾向土壤释放重金属研究[J].环境化学,2001,20(1):43-47.
    [80] 张益,赵由才.生活垃圾焚烧技术[M].北京,化学工业出版社,2001.22-24.
    [81] 张益,陶华.垃圾处理处置技术及工程实例[M].北京:化学工业出版,2002.5-7.
    [82] Smith SR, Hall JE. Some economic and quality aspects of composting sewage sludge [A]. In: Colin F, Newman PJ, Poulanne YJ, editors. Recent developments in sewage sludge processing 1991. Barking: Elsevier Applied Science Publishers Ltd, 1991. 46-62.
    [83] Garc(?)a C, Hern(?)ndez T, Costa E The influence of composting and maturation processes on the heavy-metal extractability from some organic wastes [J]. Biological Wastes, 1990, 31: 291-301.
    [84] Ciavatta C, Govi M, Simoni A, Sequi P. Evaluation of heavymetals during stabilization of organic matter in compost produced with municipal wastes [J]. Bioresource Technology, 1993, 43: 147-153.
    [85] CA. Large-scale composting: a practical manual for the UK [Z]. Wellingborough: The Composting Association 2001.
    [86] Gigliotti G, Businelli D, Giusquiani PL. Trace metals uptake and distribution in corn plants grown on a 6-year urbanwaste compost amended soil [J]. Agriculture, Ecosystems & Environment, 1996, 58: 199-206.
    [87] Baldwin KR, Shelton JE. Availability of heavy metals in compost-amended soil [J]. Bioresource Technology, 1999, 69(1): 1-14.
    [88] Jord(?)o C, Nascentes CC, Cecon PR, Fontes RLF, Pereira JL. Heavy metal availability in soil amended with composted urban solids [J]. Environmental Monitoring and Assessment, 2006, 112: 309-326.
    [89] Bardos P. Composting of mechanically segregated fractions of municipal solid waste- a review [Z]. Falfield, Bristol: Sita Environmental Trust 2004.
    [90] Veeken A, Hamelers B. Sources of Cd, Cu, Pb, and Zn in biowaste [J]. Science of The Total Environment, 2002, 300: 87-98.
    [91] Morvan B. Composting municipal solid waste or biowaste? The same quality of compost is possible [A]. In: Lowe P, Horan N, editors. The Proceedings of the 9th European Biosolids and Biowastes Conference 2004; 15-17 November. Wakefield. Leeds: Aqua Enviro Technology Transfer. 2004.
    [92] Garc(?)a-Gil JC, Paza C, Soler-Rovira P, Polo A. Long-term effects of municipal solid waste compost appIication on soil enzyme activities and microbial biomass [J]. Soil Biology and Biochemistry, 2000, 32: 1907-1913.
    [93] Crecchio C, Curci M, Pizzigallo MDR, Ricciuti P, Ruggiero P. Effects of municipal solid waste compost amendments on soil enzyme activities and bacterial genetic diversity [J].Soil Biology and Biochemistry,2004,36:1595-1605.
    [94]Nikitas C,Pocock R,Toleman I,Gilbert EJ.The state of composting and biological waste treatment in the UK 2005/06 [Z].Wellingborough,UK:The Composting Association,2008.
    [95]Archer E,Baddeley A,Klein A,Schwager J,Whiting K.Mechanical-biological-treatment:a guide for decision makers-processes,policies and markets.Juniper Consultancy Services Ltd,Sheppards Mill,Uley,UK [EB/OL].http://www.juniper.co.uk/Publications/mbt_report.html.2005.
    [96]ComEC.Thematic strategy for soil protection [A].In:Brussels:Commission of the European Communities 2006;COM(2006)231 final,22 September.2006.
    [97]CA.Personal communication [Z].Wellingborough:The Composting Association,2006.
    [98]He X-T,Logan TJ,Traina S J.Physical and chemical characteristics of selected U.S.municipal solid waste composts [J].Journal of Environment Quality,1995,24:543-552.
    [99]Smith SR.A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludge [J].Environment International,2009,35(1):142-156.
    [100]Pascual J A,Ayuso M,Garcia C,Hernandez T.Characterization of urban wastes according to fertility and phytotoxicity parameters [J].Waste Management Research,1997,15:103-112.
    [101]Liu YY,Imai T,Ukita M,Sekine M,Higuchi T.Distribution of iron,manganese,copper and zinc in various composts and amended soils [J].Environmental Technology,2003,24:1517-1725.
    [102]De Haan S.Results of municipal waste compost research over more than fifty years at the Institute for Soil Fertility at Haren/Groningen,the Netherlands [J].Netherlands Journal of Agricultral Science,1981,29:49-61.
    [103]Suna Erses A,Onay TT,Yenigun O.Comparison of aerobic and anaerobic degradation of municipal solid waste in bioreactor landfills [J].Bioresource Technology,2008,99(13):5418-5426.
    [104]Benson CH,Barlaz MA,Lane DT,Rawe JM.Practice review of five bioreactor/recirculation landfills [J].Waste Management,2007,27(1):13-29.
    [105]Ham R.Overview and implications of United-States sanitary landfill practice [J].Journal of the Air and Waste Management Association,1993,43(2):187-190.
    [106]Barlaz M,Rooker A,Kjeldsen P,Gabr M,Borden R.A critical evaluation of factors required to terminate the post-closure monitoring period at solid waste landfills [J].Environmental Science & Technology,2002,36(16):3457-3464.
    [107]Pohland F.Sanitary Landfill Stabilization with Leachate Recycle and Residual Treatment [Z].Report for EPA Grant No.R-801397,USEPA National Environmental Research Center,Cincinnati,OH.1975.
    [108]Barlaz M,Ham R,Schaefer D.Methane production from municipal refuse:a review of enhancement techniques and microbial dynamics [J].Critical Reviews in Environmental Control,1990,19(6):557-584.
    [109]Shearer B.Enhanced Biodegradation in Landfills [D].2001.
    [110]Karnchanawong S,Limpiteeprakan P.Evaluation of heavy metal leaching from spent household batteries disposed in municipal solid waste [J].Waste Management,2009,29(2):550-558.
    [111]Baumann T,Fruhstorfer P,Klein T,Niessner R.Colloid and heavy metal transport at landfill sites in direct contact with groundwater [J].Water Research,2006,40(14):2776-2786.
    [112]Bellir K,Bencheikh-Lehocine M,Meniai AH,Gherbi N.Study of the retention of heavy metals by natural material used as liners in landfills [J].Desalination,2005,185(1-3):111-119.
    [113](?)ygard JK,Gjengedal E,M(?)ge A.Mass-balance estimation of heavy metals and selected anions at a landfill receiving MSWI bottom ash and mixed construction wastes [J].Journal of Hazardous Materials,2005,123(1-3):70-75.
    [114]Qu W,Kelderman P.Heavy metal contents in the Delft canal sediments and suspended solids of the River Rhine:multivariate analysis for source tracing [J].Chemosphere,2001,45(6-7):919-925.
    [115]Qu X,He P-J,Shao L-M,Lee D-J.Heavy metals mobility in full-scale bioreactor landfill:Initial stage [J].Chemosphere,2008,70(5):769-777.
    [116]Zhang H,He P-J,Shao L-M.Fate of heavy metals during municipal solid waste incineration in Shanghai [J].Journal of Hazardous Materials,2008,156(1-3):365-373.
    [117]Chai X,Takayuki S,Cao X,Guo Q,Zhao Y.Characteristics and mobility of heavy metals in an MSW landfill:Implications in risk assessment and reclamation [J].Journal of Hazardous Materials,2007,144(1-2):485-491.
    [118]Inane B,Inoue Y,Yamada M,Ono Y,Nagamori M.Heavy metal leaching from aerobic and anaerobic landfill bioreactors of co-disposed municipal solid waste incineration bottom ash and shredded low-organic residues [J].Journal of Hazardous Materials,2007,141(3):793-802.
    [119]Christensen AG,Fischer EV,Nielsen HN,Nygaard T,(?)stergaard H,Lenschow SR,S(?)rensen H,Fuglsang IA,Larsen TH.Passive soil vapor extraction of chlorinated solvents using boreholes [A].In:Physical and Thermal Technologies,Remediation of chlorinated and recalcitrant compounds,The second International Conference on Remediation of Chlorinated and Recalcitrant Compounds,Monterey,California 2000;May 22-25,2000,Wickramanayake,GB.and Gavaskar,A.R.,Eds.,Batelle Press,Columbus,OH:83.2000.
    [120]Reinhart DR,Grosh CJ.Analysis of Florida MSW landfill leachate quality,Florida Center for Solid and Hazardous Management [M].Gainesville,FL,1998.
    [121]Martensson AM,Aulin C,Wahlberg O,Argen S.Effect of humic substances on the mobility of toxic metals in mature landfills [J].Waste Management Research,1999,17(4):296-304.
    [122]Suna Erses A,Onay TT.In situ heavy metal attenuation in landfills under methanogenic conditions [J].Journal of Hazardous Materials,2003,99(2):159-175.
    [123]Gounaris V,Anderson PR,Holsen TM.Characteristics and environmental significance of colloids in landfill leachate [J].Environmental Science & Technology,1993,27:1381-1387.
    [124]Klein T,Niessner R.Characterization of heavy-metal-containing seepage water colloids by flow FFF,ultrafiltration,ELISA and AAS [J].Mikrochim Acta,1998,129(1-2):47-55.
    [125]Lun XZ,Christensen TH.Cadmium complexation by solid waste leachates [J].Water Research,1989,23:81-84.
    [126]Holm PE,Andersen S,Christensen TH.Speciation of dissolved cadmium:Interpretation of dialysis,ion exchange and computer (GEOCHEM) methods [J].Water Research,1995,29:803-809.
    [127]Knox K,Jones PH.Complexation characteristics of sanitary landfill leachates [J].Water Research,1979,13:839-846.
    [128]Burton SQ,Watson-Craik IA.Ammonia and nitrogen fluxes in landfill sites:applicability to sustainable landfilling [J].Waste Management Research,1998,16:41-53.
    [129]Hoffmann SR,Shafer MM,Armstrong DE.Strong Colloidal and Dissolved Organic Ligands Binding Copper and Zinc in Rivers [J].Environmental Science & Technology,2007,41 (20):6996-7002.
    [130]Ward ML,Bitton G,Townsend T.Heavy metal binding capacity (HMBC) of municipal solid waste landfill leachates [J].Chemosphere,2005,60(2):206-215.
    [131]de la Rosa G,Peralta-Videa JR,Gardea-Torresdey JL.Utilization of ICP/OES for the determination of trace metal binding to different humic fractions [J].Journal of Hazardous Materials,2003,97(1-3):207-218.
    [132]Milne CJ,GKinniburgh D,Riemsdijk WHV,Tipping E.Generic NICA-Donnan Model Parameters for Metal-Ion Binding by Humic Substances [J].Environmental Science & Technology,2003,37:958-971.
    [133]Chan J,Huang Z,Merrifield ME,Salgado MT,Stillman MJ.Studies of metal binding reactions in metallothioneins by spectroscopic,molecular biology,and molecular modeling techniques [J].Coordination Chemistry Reviews,2002,233-234:319-339.
    [134]Charlatcka R,Cambier P.Influence of reducing conditions on solubility of trace metals in contaminated soils [J].Water Air and Soil Pollution,2000,118:143-168.
    [135]Bozkurt S,Moreno L,Neretnieks I.Long-term processes in waste deposits [J].Science of The Total Environment,2000,250(1-3):101-121.
    [136]Calmano W,Hong J,Forstner U.Binding and mobilization of heavy metals in contaminated sediments affected by pH and redox potential [J].Water Science and Technology,1993,28(8-9):223-235.
    [137]Revans A,D.R,Gregory B,Meadows M,Harries C,Gronow J.Long-term fate of metals in landfill [A]: In: Sardinia '99, Seventh International Waste Management and Landfill Symposium, Volume I, Christensen, T. H., Cossu, R., and Stegmann, R., Eds., CISA. Cagliari, Italy 1999: 199.
    [138] Altmann RS, Bourg AM. Cadmium mobilisation under conditions simulating anaerobic to aerobic transition in a landfill leachate-polluted aquifer [J]. Water Air and Soil Pollution, 1997, 94: 385-392.
    [139] Prudent P, Domeizel M, Massiani C. Chemical sequential extraction as decision-making tool: application to municipal solid waste and its individual constituents [J]. Science of The Total Environment, 1996, 178(1-3): 55-61.
    [140] Baun DL, Christensen TH. Speciation of heavy metals in landfill leachate: a review [J]. Waste Management & Research, 2004, 22(1): 3-23.
    [141] Prechthai T, Parkpian P, Visvanathan C. Assessment of heavy metal contamination and its mobilization from municipal solid waste open dumping site [J]. Journal of Hazardous Materials, 2008, 156: 86-94.
    [142] 王云,魏复盛.土壤环境元素化学[M].北京:中国环境科学出版社.1995.65-67.
    [143] Ryan J-N, Elimelech M. Colloid mobilization and transport in groundwater [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1996, 107: 1-56.
    [144] Jensen DL, Ledin A, Christensen TH. Speciation of heavy metals in landfill-leachate polluted groundwater [J]. Water Research, 1999, 33(11): 2642-2650.
    [145] He P-J, Xiao Z, Shao L-M, Yu J-Y, Lee D-J. In-situ distributions and characteristics of heavy metals in full-scale landfill layers [J]. Journal of Hazardous Materials, 2006, 137, 3: 1385-1394.
    [146] Fernandez-Boy ME, Cabrera F, Moreno F. Analysis of inorganic anions in drainage water and soil solution by single-column ion chromatography [J]. Journal of Chromatography A, 1998, 823(1-2): 285-290.
    [147] Azabou S, Mechichi T, Sayadi S. Zinc precipitation by heavy-metal tolerant sulfate-reducing bacteria enriched on phosphogypsum as a sulfate source [J]. Minerals Engineering 2007, 20, 2: 173-178.
    [148] Sanz JL, Kochling T. Molecular biology techniques used in wastewater treatment: An overview [J]. Process Biochemistry, 2006, 42(2): 119-133.
    [149] Ito T, Okabe S, Satoh H, Watanabe Y. Successional Development of Sulfate-Reducing Bacterial Populations and Their Activities in a Wastewater Biofilm Growing under Microaerophilic Conditions [J]. Applied and Environmental Microbiology, 2002, 68(3): 1392-1402.
    [150] Nakagawa T, Hanada S, Maruyama A, Marumo K, Urabe T, Fukui M. Distribution and diversity of thermophilic sulfate-reducing bacteria within a Cu-Pb-Zn mine (Toyoha, Japan) [J]. FEMS Microbiology Ecology, 2002, 41(3): 199-209.
    [151] Tang Y, Shigematsu T, Ikbal, Morimura S, Kida K. The effects of micro-aeration on the phylogenetic diversity of microorganisms in a thermophilic anaerobic municipal solid-waste digester [J]. Water Research, 2004, 38(10): 2537-2550.
    [152] 鲁如坤.土壤农业化学分析方法[M].北京:中国农业科学出版社,1999.21-23.
    [153] He R, Shen D-s, Wang J-q, He Y-h, Zhu Y-m. Biological degradation of MSW in a methanogenic reactor using treated leachate recirculation [J]. Process Biochemistry, 2005, 40: 3660-3666.
    [154] McGrath D. Application of single and sequential extraction procedures to polluted and unpolluted soils [J]. Science of The Total Environment, 1996, 178(1-3): 37-44.
    [155] Clevenger TE. Use of sequential extraction to evaluate the heavy metals in mining wastes [J]. Water, Air, & Soil Pollution, 1990, 50: 241-254.
    [156] Weng L, Temminghoff EJM, Lofts S, Tipping E, Van Riemsdijk WH. Complexation with Dissolved Organic Matter and Solubility Control of Heavy Metals in a Sandy Soil [J]. Environmental Science & Technology, 2002, 36: 4804-4810.
    [157] Johnson CA, Kersten M, Ziegler F, Moor HC. Leaching behaviour and solubility -- Controlling solid phases of heavy metals in municipal solid waste incinerator ash [J]. Waste Management, 1996, 16(1-3): 129-134.
    [158] DiPietro JV, Collins MR, Guay M, Eighmy TT. Leachability of municipal solid waste incinerator residues [A]. In: Proceedings of the International Conference on Municipal Waste Combustion (US). 1989; EPA and Environment (Canada), Hollywood, FL: 2B. 21-43. 1989.
    [159] F(o|¨)rstner U, Colombi, C., Kistler, R [A]. In: E. Merian (Ed.), Metals and Their Compounds in the Environment. VCH Publishers Inc., NY, 1991. 333-355.
    [160] Rapin F, Tessier A, Campbell PGC, Carignan R. Potential Artifacts in the Determination of Metal Partitioning in Sediments by a Sequential Extraction Procedure [J]. Environmental Science & Technology, 1986, 20: 836-840.
    [161] Rauret G; L(?)pez-S(?)nchez JF, Sahuquillo A, Rubio R, Davidson C, Ure AM, Quevauviller P. Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials [J]. Journal of Environmental Monitoring, 1999, 1(1): 57-61.
    [162] Thomson EA, Luoma SN, Cain DJ, Johansson C. The effect of sample storage on the extraction of Cu, Zn, Fe, Mn and organic material from oxidized estuarine sediments [J]. Water, Air, and Soil Pollution, 1980, 14(1): 215-233.
    [163] Kasassi A, Rakimbei P, Karagiannidis A, Zabaniotou A, Tsiouvaras K, Nastis A, Tzafeiropoulou K. Soil contamination by heavy metals: Measurements from a closed unlined landfill [J]. Bioresource Technology, 2008, 99(18): 8578-8584.
    [164] Anand P, Isar J, Saran S, Saxena RK. Bioaccumulation of copper by Trichoderma viride [J]. Bioresource Technology, 2006, 97(8): 1018-1025.
    [165] Wong JPK, Wong YS, Tam NFY. Nickel biosorption by two chlorella species, C. Vulgaris (a commercial species) and C. Miniata (a local isolate) [J]. Bioresource Technology, 2000, 73(2): 133-137.
    [166] Hellweg S, Hofstetter TB, Hungerb(u|¨)hler K. Time-dependent life-cycle assessment of slag landfills with the help of scenario analysis: the example of Cd and Cu [J]. Journal of Cleaner Production, 2005, 13(3): 301-320.
    [167] Oxley T. The Detection of Catastrophic Discontinuities in the Acid-Phosphorus Relationship (A Complex Systems Model) [J]. Water, Air, and Soil Pollution, 2000, 117: 39-59.
    [168] Reinhart DR, McCreanor PT, Townsend T. The bioreactor landfill: Its status and future [J]. Waste Management Research, 2002, 20(2): 172-186.
    [169] Islam J, Singhal N, O'Sullivan M. Modeling Biogeochemical Processes in Leachate-Contaminated Soils: A Review [J]. Transport in Porous Media, 2001, 43(3): 407-440.
    [170] Dijkstra JJ, Meeussen JL, Comans RJ. Leaching of Heavy Metals from Contaminated Soils: An Experimental and Modeling Study [J]. Environmental Science & Technology, 2004, 38: 4390-4395.
    [171] Wong JWC, Xiang L, Gu XY, Zhou LX. Bioleaching of heavy metals from anaerobically digested sewage sludge using FeS_2 as an energy source [J]. Chemosphere, 2004, 55(1): 101-107.
    [172] Strekopytov SV, Uspenskaya TY, Vinogradova EL, Dubinin AV. Geochemistry of Early Diagenesis of Sediments of Kandalaksha Bay of the White Sea [J]. Geochemistry International, 2005, 43(2): 117-130.
    [173] Reinhart D, Townsend T. Landfill Bioreactor Design and Operation[M]. New York: Lewis Publishers, 1997.
    [174] 何若,沈东升,朱荫湄.生物反应器填埋场处理生活垃圾的研究进展[J].浙江大学学报(农业与生命科学版),2004,30(3):252-258.
    [175] 何若,沈东升,许恒韬,朱荫湄.生物反应器填埋场系统中有机垃圾降解特性研究[J].农业工程学报,2006,22(1):134-137.
    [176] 何若,沈东升,方程冉.生物反应器填埋场系统的特性研究[J].环境科学学报,2001,21(6):763-767.
    [177] 赵由才,柴晓利,牛冬杰.矿化垃圾基本特性研究[J].同济大学学报:自然科学版,2006,34(10):1360-1364.
    [178] Pinel-Raffaitin P, LeHecho I, Amouroux D, Potin-Gautier M. Distribution and Fate of Inorganic and Organic Arsenic Species in Landfill Leachates and Biogases [J]. Environmental Science & Technology, 2007, 41(13): 4536-4541.
    [179] Calace N, Liberatori A, Petronio BM, Pietroletti M. Characteristics of different molecular weight fractions of organic matter in landfill leachate and their role in soil sorption of heavy metals [J]. Environmental Pollution, 2001, 113(3): 331-339.
    [180] He P-j, Xue J-f, Shao L-m, Li G-j, Lee D-J. Dissolved organic matter (DOM) in recycled leachate of bioreactor landfill [J]. Water Research, 2006, 40(7): 1465-1473.
    [181] Ehrig H-J. Quality and quantity of sanitary landfill leachate [J]. Waste Management & Research, 1983, 1: 53-68.
    [182] Kjeldsen P, Christophersen M. Composition of leachate from old landfills in Denmark [J]. Waste Management and Research, 2001, 19: 249-256.
    [183] Kulik0wska D, Klimiuk E. The effect of landfill age on municipal leachate composition [J]. Bioresource Technology, 2008, 99(13): 5981-5985.
    [184] Stigihani WM. Chemical time bombs: definition, concepts, and examples [Z]. Executive Report 16, International Institute for applied system analysis, Laxenburg, Austria, 1991: 23.
    [185] 文启孝.土壤有机质研究法[M].北京:农业出版社.1984.
    [186] Dar SA, Yao L, van Dongen U, Kuenen JG, Muyzer G. Analysis of Diversity and Activity of Sulfate-Reducing Bacterial Communities in Sulfidogenic Bioreactors Using 16S rRNA and dsrB Genes as Molecular Markers [J]. Applied and Environmental Microbiology, 2007, 73(2): 594-604.
    [187] Santegoeds CM, Damgaard LR, Hesselink G, Zopfi J, Lens P, Muyzer G, de Beer D. Distribution of Sulfate-Reducing and Methanogenic Bacteria in Anaerobic Aggregates Determined by Microsensor and Molecular Analyses [J]. Applied and Environmental Microbiology, 1999, 65(10): 4618-4629.
    [188] Hungate RE. A roll-tube method for the cultivation of strict anaerobes [J]. Methods in Microbiology, 1969, 136: 194-198.
    [189] 何若,沈东升,朱荫湄.生物反应器填埋场系统渗滤液的脱氮性能[J].应用生态学报,2006,17(3):520-524.
    [190] 何若,沈东升,龙焰,朱荫湄.脱氮型生物反应器填埋场中生活垃圾的稳定化研究[J].浙江大学学报(农业与生命科学版),2006,32(1):21-26.
    [191] 何若,沈东升,戴海广,朱荫湄.生物反应器填埋场系统中城市生活垃圾原位脱氮研究[J].环境科学,2006,27(3):604-608.
    [192] 杨玉江,赵由才.生活垃圾填埋场垃圾腐殖质组成和变化规律的表征[J].环境科学学报,2007,27(1):92-95.
    [193] 杨玉江,赵由才.填埋垃圾腐殖质组成在填埋场稳定度表征中的应用[J].环境污染与防治,2007,29(2):108-109,114.
    [194] http://www.lwr.kth.se/english/OurSoftWare/vminteq/index.htm#download.
    [195] Christensen TH, Kjeldsen P, Albrechtsen HJ, Heron G, Nielsen PH, Bjerg PL, Holm PE. Attenuation of landfill leachate pollutants in aquifers [J]. Critical Reviews in Environmental Science and Technology, 1994, 24(2): 119-202.
    [196] Barton LL. Sulfate-reducing bacteria [M]. 1995, 336.
    [197] Moosa S, Nemati M, T. L. Harrison S. A kinetic study on anaerobic reduction of sulphate, Part Ⅰ: Effect of sulphate concentration [J]. Chemical Engineering Science, 2002, 57(14): 2773-2780.
    [198] 马晓航,贾小明.用硫酸盐还原菌处理重金属废水的研究[J].微生物学杂志,2003,23(1):36-39.
    [199] 陈风梅,李亚新.硫酸盐还原菌处理酸性矿山废水的技术及思考[J].工业用水与废水,2007,38(1):17-20.
    [200] Mizuno O, Li YY, Noike T. The behavior of sulfate-reducing bacteria in acidogenic phase of anaerobic digestion [J]. Water Research, 1998, 32(5): 1626-1634.
    [201] Menert A, Paalme V, Juhkam J, Vilu R. Characterization of sulfate-reducing bacteria in yeast industry waste by microcalorimetry and PCR amplification [J]. Thermochimica Acta, 2004, 420(1-2): 89-98.
    [202] Benedetto JS, de Almeida SK, Gomes HA, Vazoller RF, Ladeira ACQ. Monitoring of sulfate-reducing bacteria in acid water from uranium mines [J]. Minerals Engineering, 2005, 18(13-14): 1341-1343.
    [203] Barlaz MA, Reinhart D. Bioreactor landfills: progress continues [J]. Waste Management, 2004, 24(9): 859-860.
    [204] 刘宏远,沈东升,朱荫湄.两相型生物反应器填埋场系统对渗滤液水质的稳定化作用研究[J].农业环境科学学报,2004,23(1):107-109.
    [205] 万由令,李龙海,甘欣欣.厌氧处理废水过程中硫酸盐还原菌的生态特性[J].农机化研究,2004,5:106-109.
    [206] R.E.布坎南,N.E.吉本斯.伯杰细菌鉴定手册(第八版)[M].科学出版社1984.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700