甘肃大水特大型富赤铁矿硅质岩型金矿床成因研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甘肃大水金矿是近年来在西秦岭地区新发现的一个特大型金矿床,也是一个国内外十分罕见的新类型金矿。本文首次对该类金矿开展了较为全面系统的成矿学研究工作。
     金矿化主要赋存于三叠纪灰岩、白云质灰岩地层中,其次产于二叠系灰岩、侏罗系砾岩和燕山陆内造山阶段的中酸性脉岩杂岩墙与灰岩的接触带内。矿体形态复杂,呈不规则的脉状、囊状和漏斗状等,其产出严格受NWW-EW向、近SN向和NEE-NE向断裂或断裂交叉复合部位、接触带构造等控制。矿石矿物组合为金+赤铁矿+隐晶-微晶石英。金矿化与硅化、赤铁矿化密切有关。矿石结构构造主要有交代残余结构、隐晶-微晶结构、胶状结构、鲕(豆)状结构;纹层状-条带状构造、角砾状构造、细脉-网脉状构造、多孔状构造和块状构造等。矿石类型主要有赤铁矿化硅化花岗闪长岩型、赤铁矿化硅化碳酸盐岩型、似碧玉岩型、赤铁矿化硅化砂砾岩型、纹层状-条带状硅质岩型、水热角砾岩型、块状硅质岩型和水成沉积砾岩型。矿石的矿物组成和结构构造明显反映出成矿作用是在浅成—超浅成的开放空间氧化环境下进行的,矿化方式有热液交代、热液充填和热液沉积等,矿化产物有热液硅质岩、热液隐爆角砾岩、热液沉积砾岩、热液碳酸盐岩等,构成一个完整的具内在时空分布规律的热液交代—充填—沉积成岩成矿体系。空间上,以热液活动中心的热液隐爆角砾岩墙(筒)向外依次为热液充填硅质岩和热液方解石脉体—热液交代似碧玉岩和蚀变花岗闪长岩—热液交代灰岩或白云质灰岩等;自下而上由热液交代充填细脉-网脉状硅质岩、脉状碳酸盐过渡到热液沉积纹层状-条带状硅质岩、热液沉积鲕(豆)状砾岩和近水平覆盖于矿体之上的厚大方解石壳体。时间上,热液交代蚀变矿化略早于热液充填和热液沉积矿化,热液体系的物质组成由早期富铁硅质成分向晚期富碳酸盐质成分演化。作为热液活动主要产物之一的富赤铁矿硅质岩矿石普遍呈红色、紫褐色等氧化色,系本身即富含铁质、硅质的矿液于开放氧化环境下交代或直接充填沉积而成的,并非次生氧化成因的。
     矿床的地质地球化学特征、成矿环境地质体的含金性、稳定同位素(Si、C、O、H)和稀土元素示踪等综合研究表明,大水式金矿成矿作用与燕山期构造岩浆活动密切有关,成矿物质主要来源于深部,成矿期浅层构造活动、中酸性岩浆侵入或喷发、含矿热液喷流及其后来的地表热泉活动是统一的受深部地质构造制约的构造—岩浆—热液活动体系的系列演化产物。它们不仅表现出空间上伴生、时间上紧随、活动范围逐渐缩小、活动强度逐渐减弱的特点,而且在成岩成矿物质成分上具相同渊源和继承演化的特点。
     金在热水溶液中主要呈金-硅络合物形式输运的。当富铁硅质的含矿热液由深处相对封闭体系快速上升到达地表完全开放环境时,由于温度、压力等的急剧降低使热液SiO_2的浓度处于过饱和状态。于是,热液中呈AuH_3SiO_4~0络合物形式迁移的金等成矿物质便伴随着大量隐晶-微晶玉髓质石英的快速沉淀而卸载成矿。成矿温度变化区间较大,在105—386℃之间,说明成矿作用经历了一个从高温到低温急剧变化的过程。由流体包裹体获得的成矿压力在5—70bar之间,也说明成矿深度非常之浅,几近地表环境。流体包裹体成分表明,成矿热液富含碱质、且K~+>Na~+,反映成矿流体与深部偏碱性岩浆活动有关;气体还原参数(R)远小于1,也说明成矿体系处于较强的氧化环境,与矿石富含赤铁矿而极贫硫化物的宏观地质特征相吻合。成矿时代为燕山早期。
     矿床成因类型为岩浆热液浅成—超浅成交代—充填—沉积矿床。
Dashui gold ore deposit, being of a superlarge deposit newly discovered in western Qinling orogenicbelt, has very unique ore-forming characteristics. A systematic studies including ore-generatinggeologic settings, ore-controlling geological factors, metallogenic mechanism and metallogenicregularities have been done in this paper for the first time.
     The gold mineralization in Dashui deposit mainly occurred in the Triassic limestones and dolomites.Other gold-hosted rocks include Permian limestones, Jurassic conglomerates and intermediate-basicvein-like magmatic rocks formed during Yanshannian intracontinental orogenic period. The orebodies were produced in major forms of vein-like, sack-like and funnels. The ore-controllingstructures are NWW-EW strike, nearly SN strike and NEE-NE strike faults. The convergent partsof different strike faults and the contact zones between vein-like magmatic rocks and sedimentaryroeks are the best ore-hosted structures. The ore mineral assemblages are golds+hematites+chalc-edonieso The gold mineralization was strongly related to silifications and hematitizations. Thefabrics of gold ores mainly consist of metasomatic relict texture, crypto-micro crystal texture,colloform texture and oolitic-pisolitic texture; laminated-banded structure, brecciated structure,veinlet-stockwork structure, porous or vuggy structure and massive structure etc. The ores can beclassified into three genetic types: hydrothermal metasomatic, hydrothermal infilling andhydrothermal sedimentary mmeralizationo They are the serial products of the one hydrothermal systemat different geological environments. The hydrothermal sediments or ores include hvdrothermalsiliceous rocks, hydrothermal explosive breccias, hydrothermal sedimentary, oolitic-pisoliticconglomerates and hydrothermal carbonate rocks. There is a very good regularity for the time-spatialdistribution of all the hydrothermal products: In space, from the center toward peripheral parts of thehydrothermal active systems, the hydrothermal sediments are produced in the order of hydrothermalexplosive breceias+hydrothermal siliceous rocks+hydrothermai carbonate veins, hydrothermalmetasomatic jasperoids+hydrothermal metasomatic granodiorites, hydrothermal metasomaticlimestones. From the lower to upper parts, the hydrothermal products are respectively hydrothermalfilling veinlet-stockwork siliceous rocks+carbonate veins, hydrothermal sedimentary laminated-banded siliceous rocks+oolitic-pisolitic conglomerates+horizontally occurred carbonate crusts. Intime, hydrothermal metasomatic mineralizations are a bit earlier than hydrothermal infilling andsedimentary mineralizations, and the compositions of the hydrothermal systems evolved from ferro-silico rich in the earlier stages towards carbonate rich in the late periods. The red or brown silicalitetype ores were formed due to the directly infilling or sedimentation of the ferri-rich siliceoushydrothermals.
     Evidences from the geological and geochemical characteristics of the deposit, the Au abundances ofgold-hosted geological bodies, the stable isotope elements (C, Si, O, H) and rare elements etc.indicate that the ore-forming materials mainly came from the deep sources which are closely related toYanshannian tectono-magmatism. The shallow tectonic activities, the magmatic intrusion orvolcanism, the hydrothermal eruptions and the late active hot-springs are all the serial evolutionaryproducts of the regional crust due to the deep upwelling and mantle-crust interactions. Thus, they accompanied and associated each other in time and space, and the active intensity and extensivenessof these serial products became much weaker and narrower with the time going on.
     Au was transported probably in the complex form of AuH_3SiO_4~0. When the ore-containinghydrothermal solutions rapidly got to the surface being of full-open and oxidative environment from thedeep sources, the concentration of silica would be changed into supersaturated relative to quartzbecause of the abruptly descendment of the temperature and pressure of the hydrothermal systems.Therefore, the gold transporting in the complex of AuH_3SiO_4~0 would be wholly depositedaccompanied with the depositing of quantities of chalcedonies. The ore-forming temperature andpressure obtained from the fluid inclusions show that the whole mineralization suffered a quite shortprocess with a wide range of temperature variation, and the metallogenic depth might be very shallowor almost near the surface of the crust. The compositions of the fluid inclusions demonstrate thehydrothermals might be rich in alkaline components and the concentration of K~+ far more than that ofNa~+. This implies the sources of the ore-forming fluid be closely related to the Yanshannian alkalinemagmatic rocks. The gas reduction parameters (R=(CO+H_2+CH_4)/CO_2) of fluid inclusions arevery low, showing a high oxidation metallogenic environment. The metallogenic epoch belongs tothe earlier stage of Yanshannian according to the geologic evidences.
     In a word, Dashui-type gold ore deposits should be classified into the magmatic hydrothermalshallow-near surface metasomatism-infilling-sedimentation ore deposits from whatever viewpoints ofthe mineralization.
引文
1.甘肃省地质矿产局,甘肃省区域地质志,地质出版社,1989.
    2.甘肃省地质矿产局,碌曲幅(1:20万)区域地质调查报告,1973.
    3.甘肃省地矿局第三地质队,化探队,甘肃省西秦岭南亚带金锰成矿带成矿远景区划报告,1994.
    4.甘肃省地质矿产局,甘肃省成矿远景区划及“九五”找矿地质工作部署建议,1994.
    5.四川省地矿局,四川省成矿远景区划及“九五”找矿地质工作部署建议,1994.
    6.甘肃省地矿局第三地质队,甘肃省大水式金矿找矿方向研究报告{内部资料),1995.
    7.甘肃省地质矿产局第三地质队,1:5万玛曲幅、桑木差幅区域地质调查报告,1997.
    8.朱俊亭,王忠福等,秦岭大巴山地区矿产资源和成矿规律,西安地图出版社,1992.
    9.张二朋等,秦巴及临区地质—构造特征概论,地质出版社,1993.
    10.殷鸿福等,秦岭及临区三叠系,中国地质大学出版社,1992.
    11.尚瑞钧,李和祥等,秦巴金矿地质,合肥:安徽科学技术出版社,1992.
    12.陈毓川、王平安等,秦岭地区主要金属矿床成矿系列的划分及区域成矿规律探讨,矿床地质,1994,134),289—298.
    13.殷鸿福,杨逢清,赖旭龙,秦岭三叠系分带及印支期发展史,现代地质,1988,2(3),355—365.
    14.张风岭,西秦岭南亚带地质构造演化模式讨论,甘肃地质学报,1993,2(1),72—79。
    15.金松桥,西秦岭成矿带的划分。西北地质,1985,1,18—25.
    16.杨逢清等,松潘甘孜地块与秦岭褶皱带、扬子地台的关系及其发展史,地质学报,1994,68(3),208—217.
    17.方宝庆等,西秦岭海西—印支期成矿大地构造背景及主要构造型式,矿产与地质,1994,8(41),197—200.
    18.杨恒书,川北甘南地区三叠纪岩相古地理与成矿,河南地质,1994,12(4),284—289.
    19.杨恒书,张风岭,殷鸿福等,西秦岭造山带演化与成矿,四川地质学报,1996,16(1),73—79.
    20.张洪荣,黄秀英,四川坝—秀水地学断面,四川地质学报,1993,13(2),94—109.
    21.沈松平,西秦岭南亚带三叠纪地层研究新进展,四川地质学报,1993,13(1),66—68.
    22.四川地矿局川西北地质大队,中国地质大学(武汉),川北甘南地区金和多金属矿在三叠系中的控矿因素、成矿规律及找矿标志、成矿预测研究,地矿部八五科技攻关项目课题研究报告,1995.
    23.张本仁等,秦巴岩石圈构造及成矿规律地球化学研究,武汉:中国地质大学出版社,1994.
    24.秦克令,金浩甲,赵东宏,碧口古岛弧构造演化与成矿,河南地质,1994,2(4),304—317.
    25.毛裕年,闵永明,西秦岭硅灰泥岩型铀矿,地质出版社,1989.
    26.王驹,碳硅泥岩型金(铀)矿床成矿富集地球化学,原子能出版社,1994.
    27.李通国,西秦岭地区金主要成矿带及其地球化学特征,甘肃地质科技情报,1994,1.17—22.
    28.文锦明,毛裕年,乔瑞,川甘边陲热泉分布特征及形成机制,矿产与地质,1994,8(6),428—432.
    29.周德安,西秦岭南亚带硅灰泥岩型金矿床的同位素地质学研究,地质与勘探,1995,31(5),36—42.
    30.赵琦,川西北地区微细粒浸染型金矿成矿的区域地质地球物理地球化学特征,四川地质学报,1995,15(1),31—40.
    31.李小壮,川西北地区浅成低温热液金矿系列的矿床类型与分布规律,四川地质学报,1996,16(2),135—141.
    32.李学斌、祝渊陵,川西北炉霍构造带微细粒浸染型金矿的构造控矿作用,四川地质学报,1993,13(4),288—295.
    33.董振生,张哲儒,战新志,川西北微细浸染型金矿成矿特点及分布规律,地质地球化学,1996,2,61—64.
    34.肖劲东,杜定汉,刘鸿章,陕甘南秦岭泥盆纪秦岭海及其控矿作用,河南地质,1994,12(4),290—293.
    35.胡传久等,甘肃省西倾山地区发现赤铁矿(化)碳酸盐岩型金矿床,黄金科学技术,1993,1,22—23.
    36.李亚东,白龙江地区逆冲推覆构造及其与金矿的关系,贵金属地质,1994,3(4),262—268。
    37.李亚东,西倾山热泉—岩溶—蚀变岩型金矿成矿模式的初步研究,矿产与地质,1994,8(1),8—11.
    38.胡开荣,邵卫声等,白龙江成矿带成矿地质条件及成矿模式,甘肃地质科技情报,1997,1-2,15—20.
    39.郑明华等,四川东北寨微细浸染型金矿床成矿物理化学条件和成矿过程分析,矿床地质,1990,9(2)
    40.郑明华等,四川东北寨微细浸染型金矿床的同位素组成特征及其成因意义,地质科学,1991,2
    41.郑明华等,论四川东北寨微细浸染型金矿床的成矿物质来源,秦巴金矿论文集,地质出版社,1993。
    42.李小壮.四川东北寨金矿床的主要地质特征及控矿条件,秦巴金矿论文集,地质出版社,1993.
    43.孙树浩,微细浸染型联合村式金矿的地质地球化学特征,第五届全国矿床会议论文集,地质出版社,1993.
    44.姚仲友,甘肃碌曲拉尔玛金矿地质特征及成因探讨,矿床地质,1994,13(1),19—27.
    45.张占螯,拉尔玛金矿床成矿机理,矿物岩石,1993,13(1),60—67
    46.文锦明,川西北—甘南地区三叠纪地层中层控Au矿床成因初探,四川地质科技情报,1995,1.
    47.王小春,川西北地区微细浸染型金矿的成矿过程,四川地质学报,1995,15(1),41—47.
    48.任丰寿,黄建清,甘肃省金矿类型及区域成矿的某些特点,甘肃地质科技情报,1995,1—2.
    49.谭光裕,坪定砷金矿床地质特征及成矿机制探讨,甘肃地质学报,1992,1(1).
    50.胡传久等,甘肃省碌曲县拉尔玛硅灰(泥)岩型金(汞)矿床地质特征与成矿模式,甘肃地质科技情报,1993,2—3.
    51.胡传久,叶发荣,甘肃省周曲县九源金矿床地质特征及成矿机理,甘肃地质科技情报,1994,1.
    52.杨岳清,田农,金沙江—澜沧江—怒江地区金矿类型及成矿条件,地质学报,1993,67(1),63—74.
    53.杨岳清等,新类型金矿—红土坡赤铁矿型金矿床的成矿特征及找矿方向,四川地质学报,1989,9(4),19—30.
    54.周渝峰等,川西北三叠系中金矿床的含矿主岩、热液矿物建造特征及其成因,第五届矿床会议论文集,地质出版社,1993.
    55.程裕淇,陈毓川,赵一鸣,初论矿床的成矿系列问题,中国地质科学院院报,1979,1,32—58.
    56.程裕淇,陈毓川,赵一鸣等,再论矿床的成矿系列问题,中国地质科学院院报,1983,6,1—64.
    57.陈毓川,矿床的成矿系列研究现状与趋势,地质与勘探,1997,33(1),21—25.
    58.翟裕生,姚书振,崔彬等,成矿系列研究,武汉:中国地质大学出版社,1996.
    59.V.F.Hollister,浅成低温热液贵金属矿床(中译本),1985.
    60.涂光炽,西秦岭与西南贵州铀金成矿带及其与美国西部卡林金矿床的类似性,铀矿地质,1990,6.
    61.胡涛,张振儒,低温热泉型金矿床特征及找矿标志,黄金科技动态,1991,10,12—15.
    62.候宗林,我国热泉型金矿成矿地质背景与找矿前景,地质与勘探,1992,28(3).
    63.郭充裕等,热泉型金矿床成矿模式及成矿远景评价,天津科学技术出版社,1993.
    64.刘建明,大陆火山—岩浆地热田内的热液金属成矿系列模式,第五届全国矿床会议论文集,地质出版社,1993.
    65.S.Hopf,新西兰地热系统中稀土元素的行为,地质科学译丛,1995,
    66.朱梅湘,与地热活动有关的矿床类型初探,第五届全国矿床会议论文集,167—169,地质出版社,1993.
    67.王建业等,卡林型金矿成矿模式综述,矿产与地质,1993,35(7),166—175.
    68.谭运金,卡林型金矿床的控矿构造之一密集裂隙带的研究,矿产与地质,1994,7 (3),201—205
    69.刘东升,中国卡林型(微细浸染型)金矿,南京大学出版社,1994.
    70.韦龙明等,卡林型金矿床稀土元素地球化学,矿产与地质,1995,6,487—492.
    71.陈先兵,卡林型金矿地质地球化学特征及成因综述,黄金地质,1996,2(2),73—78.
    72.王安建,金矿源岩研究与判定,地质找矿论丛,1986,1(3),29—38.
    73.王安建,热液型金矿伴生脉岩系研究及其意义,黄金,1990,11(10),1—7.
    74.张洪涛、芮宗瑶,论与斑岩有关的矿化角砾岩成因类型及其地质意义,矿床地质,1991,10(3),217—231.
    75.谢广东,热液沸腾作用与金矿化的关系及其找矿意义,地质科技情报,1993,12(3),61—67.
    76.陈衍景,富士谷,豫西金矿成矿规律,地震出版社,1992.
    77.杜乐天,硅桥问题—兼论当代热液成矿理论的概念更新,矿床地质,1992,11(1),13—20.
    78.涂光炽,几个金矿地质传统认识的质疑,国外前寒武纪地质,1994,1,19—23.
    79.李双宝,热液交代蚀变作用元素迁移定量研究方法在矿床、岩石研究中的应用(一),国外前寒武纪地质,1993,2,68-71.
    80.李双宝,热液交代蚀变作用元素迁移定量研究方法在矿床、岩石研究中的应用(二),国外前寒武纪地质,1994,1,33-44.
    81.李献华等,“煌斑岩”与金矿的实际现察与理论评述,地质论评,1995,41(3),252—259.
    82.刘正义,金铀硅溶解和活化性状的实验研究(科研报告),核工业部三所,1989.
    83.丁悌平等,硅同位素地球化学,地质出版社,1994.
    84.李延河、丁悌平等,硅同位素动力学分馏的实验研究及地质应用,矿床地质,1994,13(3),282—288.
    85.樊文苓、王声远、吴建军,低温热液中金—硅络合作用的实验标定,科学通报,1993,38(10),933—935.
    86.王声远,An在SiO_2-HCl-H_2O系中200℃溶解度测定—硅化对金矿化的意义初探,矿物学报,1994,14(1),46—55.
    87.樊文苓,王声远,田戈夫,金在碱性富硅热液中溶解和迁移的实验研究,矿物学报,1995,15(2),176—184。
    88.樊文苓等,金—硅配合作用的实验研究及其地球化学意义,矿物岩石地球化学通报,1994.1,18—20.
    89.徐文圻,矿物包裹体中水溶气体成分的物理化学参数图解,矿产与地质,1991,5(3),200—206.
    90.徐文圻.初论碳酸盐岩地区利用碳,氧同位素地球化学找矿的可能性,矿产与地质,1991,5(6),464—469.
    91.中国地质大学(北京),地学前缘,1994,1(3—4).
    92.中国地质大学(北京),地学前缘,1996,3(3—4).
    93.陈毓川、黄民智等,大厂锡矿地质,北京:地质出版社,1993.
    94.陈毓川、朱裕生等,中国矿床成矿模式,北京:地质出版社,1993.
    95.陈毓川、毛景文等,桂北地区矿床成矿系列和成矿历史演化轨迹,广西科学技术出版社,1995。
    96.张贻侠、寸圭、刘连登等,中国金矿床:进展与思考,北京:地质出版社,1996.
    97.李文达、王文斌、程忠富,华南红土化作用地球化学及红土型金矿形成的可能性,北京:地质出版社,1995.
    98.韩发、赵汝松、沈建忠等,大厂锡多金属矿床地质及成因,北京:地质出版社,1997.
    99.朱裕生、李纯杰等,成矿地质背景分析,北京:地质出版社,1997.
    100.毛景文,李红艳,徐珏等,湖南万古地区金矿地质与成因,原子能出版社,1997.
    101.翟裕生等,大型构造与超大型矿床,北京:地质出版社,1997.
    102.王东安,雅鲁藏布深断裂所产硅岩的特征及其成因,西藏南部的沉积岩,北京:科学技术出版社,1981,52—72.
    103.张待时,硅质岩和灰岩中铀矿床的同位素研究及矿床成因,国际交流地质学术论文集(5),地质出版社,1985。
    104.张复新,喷流岩及其识别与找矿,地质科技情报,1988,7(3),67—73.
    105.肖晋,对一种“全硅质”陆相火山岩的探讨,地质论评,1987,33(4),
    106.韩发,大厂锡多金属矿床热液喷气沉积的证据—含矿建造及热液沉积岩,矿床地质,1989,8(2),25—37.
    107.周永章,丹池盆地热水成因硅质岩地球化学特征,沉积学报,1990,8(3),75—83.
    108.薛春纪,银洞子似碧玉岩的海底热液沉积特征研究,矿物岩石,1991,11(2),31—40.
    109.隗合明,秦岭凤太矿田层控铅锌(铜)矿床的氧化硅产出特征及其硅质来源,矿床地质,1991,10(4),300—312.
    110.隗合明、张振飞,角砾岩家族的新成员—海底喷气角砾岩的特征及形成机制,地质与勘探,1992,28(8).
    111.刘家军、郑明华,硅质岩的新成因—热水沉积作用,四川地质学报,1991,4.
    112.陈先沛、高计元等,热水沉积作用的概念和几个岩石学标志,沉积学报,1992,10(3),124—131。
    113.郑明华,西秦岭南亚带金-铜-铀成矿带中硅岩的海底喷流沉积特征研究,成都地质学院学报,1993,2.
    114.曾允孚,西秦岭太阳顶群硅质岩的岩石学及地球化学特征,矿物岩石,1993,13(3),12—20.
    115.李瑛,论热液矿床的分类,地质与勘探,1992,28(9),1—8.
    116.祁思敬,李英,曾章仁等,秦岭热水沉积型铅锌(铜)矿床,地质出版社,1993.
    117.颜文、李朝阳,热水喷流沉积成矿与地学思维,地球科学进展,1993,8(2),40—46.
    118.陈多福,陈先沛,贵州瓮福磷矿中的硅化作用,沉积学报,1993,11(2),58—65
    119.李朝阳,王京彬,肖容阁等,滇西地区陆相热水沉积成矿作用,铀矿地质,1993,9(1),14—21.
    120.方适宜,郑大瑜,热水沉积成矿的主要控制因素及识别标志,铀矿地质,1993,9(4),27—30.
    121.刘家军,郑明华,热水沉积硅岩的地球化学,四川地质学报,1993,13(2),110—118.
    122.郑大中,热液中金的活化迁移富集模式,四川地质学报,1993,13(4),280—287.
    123.肖荣阁、杨忠芳、杨卫东等,热水成矿作用,地学前缘,1994,1(3—4),140—147.
    124.伊海生,扬子地台东南大陆边缘上震旦统硅质岩的超徼组构及其成因,地质学报,1994,6(2),132—139.
    125.王江海,腾冲热水沉积金矿床硅质岩特征和金银赋存状态研究,矿物岩石地球化学通报,1996,15(1),32—35.
    126.吴志亮,热水沉积成岩成矿作用—以阿尔泰泥盆纪火山沉积盆地为例,北京:地质出版社,1996,21—24.
    127. T. G. Lovering, The origin of jasperoid in limestone, Econ. Geol., 1962, Vol. 57, No. 6, pp. 861-889.
    128. J.R.O'Neil and G.B.Balley, Stable isotope investigation of gold-bearing jasperoid in the Central Drum Mountain,Utah, Econ. Geol., 1979, Vol.74, pp.852-859.
    129. T.G.Lovering and A.V.Heyl, Jasperoid as a ginde to mineralization in the Taylor Mining District and Vicinity near Ely,Nevada, Econ.Geol., 1974, Vol.69, pp.46-58.
    130. C.E.Nelson, Comparative geochemistry of jasperoids from Carlin-tyoe gold deposits of the western Unitied States, Journal of Geochemical Exploration, 1990, Vol.36, pp.171-195.
    131. J.R.Graney,S.E.Kesler and H.D.Jones, Application of gas analysis of jasperoid inclusion fluids to exploration for micron gold deposits, Journal of Geochemical Exploration, Vol.42, pp.91-106.
    132. P.T.HolIand,D.W. Beaty and G.G.Snow, Comparative elemental and oxygen isotope geochemistry: of jasperoid in the Northern Great Basin:Evidence for distinctive fluid evolution in gold-producing hydrothermal system, Econ.Geol., 1988, Vol.83, pp.1401-1423.
    133. R.O.Fourier, Silica mineral as indicators of conditions dunng gold deposition, US. Geol. Survey Bull., 1985, pp.15-26.
    134. P.Moller,G.Morteani and F.Schley, Discussion of REE distribution patterns of carbonatites and alkalic rocks, Lithos., 1980, Vol. 13, pp. 171-179.
    135. S.M.McLennan and S.R.Taylor, Heat flow and the chemical composition of continental crust, The Journal of Geology, 1996, Vol. 104, pp.369-377.
    136. M.R.Wilson,T.K.Kyser and R.Fagan, Sulfur isotope systematics and plantinum group element behavior in REE-enriched metasomatic fluids: A study of mantle xenoliths from Dish Hill.California,USA, Geochimica et Cosmochimica Acta, 1996, Vol.60, No. 11, pp. 1933-1942.
    137. Y.F.Zheng and J.Hoefs, Carbon and oxygen isotopic covariations in hvdrothermai calcites, Mineral Deposita, 1993, Vol.28, pp.79-89.
    138. P.D.Maniar and P.M.Piccoli, Tectonic discrimination of granitoids, Geological Society of America Bulletin, 1989, Vol.101, pp635-643.
    139. N.M.S.Rock and D.I.Groves, Can lamprophyres resolve the genetic controversy over mesothermal gold deposits?, Geology, 1988, Vol.16, pp.538-541.
    140. T.M.Seward, Thio complexes of gold and the transport of gold in hvdrothermal ore solutions, Geochimica et Cosmochimica Acta, 1973, Vol.37, pp.379-399.
    141. N.F.Spycher and M.H.Reed, Evolution ofa Broadland-type epithermal ore fluid along alternative P-T paths:Implications for the transport and deposition of base,precious,and volatile metals, Econ. Geol., 1989, Vol.84, pp.328-359.
    142. B.R.Berger and W.C.Bagby, The geology and origin of Carlin-type gold deposits, in Gold metallogeny and exploration, 1993, pp.210-248.
    142. C.A.Kuehn and A.W.Rose, Carlin gold deposits,Nevada:Origin in a deep zone of mixing between normally pressured and overpressured fluids, Econ. Geol., 1995, Vol.90, pp. 17-36.
    143. B.E.Nesbitt, Gold deposit continuum: A genetic modal for lode Au mineralization in the continental crust, Geology, 1988, Vol. 16, pp. 1044-048.
    144. H.C.Helgeson and R.M.Garrels, Hydrothermal transport and deposition of gold, Econ. Geol., 1968, Vol.63, pp.622-635.
    145. J.A.Saunders, Colloidal transport of gold and silica in epithermal precious-metal systems: Evidence from the Sleeper deposit,Nevada, Geology, 1990, Vol. 18, pp.757-760.
    146. J.A.Saunders and P.A.Schoenly, Boiling,colloid nucleation and aggregation,and the genesis of bonanza Au-Ag ores of the Sleeper deposit,Nevada, Mineralium Deposita, 1995, Vol.30, pp. 199-210.
    147. R.H.Sillitoe and H.F.Bonham,Jr, Sediment-hosted gold deposit: Distal products of magmatic hydrothermal systems, Geology, 1990, Vol. 18, pp. 157-161.
    148. J.A.Saunders, Silica and gold texture in bonanza ores of the Sleeper deposit,Hunboldt county,Nevada: Evidence for colloids and implications for epithermal ore-forming processes, Econ. Geol., 1994, Vol.89, pp.628-638.
    149. B.R.Berger and P.M.Bethke, Geology and geochemistry of epithermal systems, in Reviews in Economic Geology,Vol.2, 1985.
    150. T.J.Percival,W.C.Bagby and A.S.Radtke, Physical and chemical features of precious metal deposits hosted by sedimentary rocks in the western United States, in Bulk mineable precious metal deposits of the western United States. 1988.
    151. C.ENelson, Gold deposit in the hot spring environment, in Bulk mineable precious metal deposits of the western United States, 1988.
    152. D.W.Haynes, K.C.Cross,and M.H.Reed, Olympic dam ore genisis: A fluid-mixing medal, Economic Ceology, 1995, Vol.90, pp281-307.
    153. C.E.Nelson and D.L.Giles, Hydrothermal eruption mechanism and hot spring gold deposits, Economic Geology, 1985, Vol.80, pp. 1633-1639,
    154. A.H.Hofstra,J.S.Northrop et al., Genesis of sediment-hosted disseminated-gold deposits by fluid mixing and sulfidation: Chemical-reaction-path modaling of ore-depositional processes documented in the Jerritt Canyon district,Nevada, Geology, 1991, Vol.19, pp36-40.
    155. O.D.Christensen, Gold deposits of the Carlin trend,Nevada—Guidebook prepared for Society of Economic Geologosts Field Conference 13-15 April 1993.
    156. N.M.S.Rock and D.I.Groves, Do lamprophyres carry gold as well as diamonds?, Nature, 1988, Vol.332, pp.253-255.
    157. D.I.Groves,S.D.Golding,and N.M.S.Rock et al., Archaean carbon reservoirs and their relevence to the fluid source for gold deposits, Nature, 1988, Vol.331, pp.254-257.
    160. D.R.Burrows,P.C.Wood and E.T.C.Spooner, Carbon isotope evidence for a magmatic origin for Archaean gold-quartz vein ore deposits, Nature, 1986, Vol.321, pp851-854.
    161. R.Kerrich,B.J.Fryer,and R.W.King et al., Crnstal outgassing and LILE enrictunent in major lithosphere structures,Archaean Abitibi greenstone belt: ecidence on the source reservoir from strontium and carbon isotope tracers, Contrib. Mineral. Petrol., 1987, Vol.97, pp.156-168.
    162. P.N.Wilson and W.T.Parry, Characterization and dating of argillic alteration in the Mercur gold district,Utah, Econ. Geol., 1995, Vol.90, pp.1197-1216.
    162. F.Santagnida and M.D.Hannington, Characteristics of gold mineralization in volcanogenic massive sulfide deposits of the Notre Dame Bay area,central Newfoundland, Canadian Journal of Earth Sciences, 1996, Vol.33, pp.316-334.
    163. Y.Matsuhisa,Y.Morishta,and T.Sato, Oxygen and carbon isotope variations in gold-bearing hydrothermal veins in the Kushikino mining area,southern Kyushu,Japan, Econ. Geol., 1985, Vol.80, pp.283-293.
    164. H.P.Taylor, The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition, Econ. Geol., 1974, Vol.69, pp.843—883.
    165. M.H.Reed and N.F.Spycher, Boiling, cooling and oxidation in epithennal systems, Rev. Econ. Geol., 1985, Vol.2, pp.249—272.
    166. MD.Hanning et al., Gold in sea-floor polymeallic sulfide deposits, Econ. Geol., 1986,Vol.81, pp. 1861—1883.
    167. D.R.Code and S.E.Drummond, The effect of transport and boiling on Ag/Au ratios in hydrothermal solutions, Jour. Geochem. Explor., 1986, Vol.25, pp.45—79.
    168. D.L.Huston, A chemical model for the concentration of gold in volcanogenic massive sulfide deposits, Ore Geol. Rev., 1989, Vol.4, ppl71-200.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700