胶莱盆地构造演化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
早白垩世是中国东部及邻区强烈的伸展裂陷和岩石圈减薄时期。胶东半岛胶莱盆地处于一系列具有重大地质意义的大型构造带交汇处,其形成和演化可能受控于太平洋(古)板块向东亚大陆边缘俯冲诱发的区域应力场和大陆岩石圈深部动力(底侵作用、拆沉作用、地幔底辟和对流)的联合作用。此外,由于该盆地位于华北板块与扬子板块的结合处,因此又可能与造山带的伸展崩塌作用有关。加之该时期其西侧的郯庐断裂带发生了强烈的走滑运动,因此该盆地的构造演化过程非常复杂。由于该盆地的大地构造位置十分特殊,加之具有一定的油气资源潜力,因此其成因长期以来一直为许多研究者所关注。但已有的各种动力学机制,难以全面而合理地解释胶莱盆地的各种地质证据,因而也难以合理地解释其构造演化过程。为了进一步加深对胶莱盆地基础地质条件的认识,以便更好地指导该盆地的油气勘探布署,迫切需要在已有勘探成果的基础上,对胶莱盆地的构造演化过程及其动力学机制进行深化研究和理论探讨。
     盆地的动力学机制决定了盆地的运动学特征,而运动学特征又决定了几何学特征,所以盆地的几何学、运动学特征必然会渗透着盆地动力学的信息。因此,利用盆地几何学和运动学特征“反演”出来的动力学机制,就能够比较合理地解释盆地的形成与演化过程。盆地几何学特征主要是指盆地的各种基本构造特征,对其查明需要综合利用重、磁、震资料和基于残留地层的各种观察分析资料。而盆地的运动学特征主要包括垂向上的沉降特征和平面上的应变特征,本文在剥蚀厚度恢复的基础上,综合利用地震剖面信息(包括断裂同沉积活动特征、速度谱等)、钻录测井资料等,包括制作多向多条平衡剖面和代表点的沉降曲线,进一步结合地表露头和地层界面的年龄,查明盆地各原型的运动学特征。各盆地原型的几何学和运动学特征清楚了,其古构造应力场也就基本清晰了,但还需要接受有限元模拟的检验。进一步结合岩浆岩类型、地球化学和时空分布等特征和地层界面年龄等资料,合理地阐述盆地形成演化过程及相应的动力学机制。
     胶莱盆地位于胶东半岛,为一白垩纪残留叠合陆相沉积盆地。其南缘通过五莲断裂与苏鲁造山带(胶南隆起)相接,北界蜿蜒于胶北隆起之上,西部为郯庐断裂带所截,东部跨越海阳和乳山入黄海直至千里岩断裂。盆地北边界可能是一条剥蚀边界,根据鲁东地区的区域地球物理场特征,可将现今残存地层的包络线大致作为胶莱原型盆地的北边界,而其它边界同现今边界。
     胶莱盆地内部划分为7个次级构造单元,即:诸城凹陷、柴沟地垒、高密凹陷、大野头凸起、莱阳凹陷、牟平—即墨断裂带和海阳凹陷,其中高密凹陷又进一步划分为夏格庄洼陷、平度洼陷、李党家—马山凸起、高密洼陷4个相对独立的构造单元。
     胶莱盆地的地层可划分为基底和盖层两大岩系。基底岩系由太古界和元古界的变质岩系组成;盖层岩系由白垩系、古近系和第四系组成,其中下白垩统莱阳组、青山组、上白垩统王氏组构成了盖层岩系的主体,分别形成于莱阳期、青山期和王氏期。
     莱阳组主要为一套内陆湖泊和河流相为主的碎屑沉积,夹酸性~中基性火山岩夹层。该组可划分为六段,自下而上为:逍仙庄段、止凤庄段、马耳山段、水南段、龙旺庄段、曲格庄段。青山组为一套复成分火山岩和火山碎屑岩系,夹少量正常碎屑沉积岩。青山组火山岩多为中心式火山喷发的产物,一系列的中心式火山机构主要沿牟平—即墨—五莲断裂分布。王氏组主要岩性为河流—洪泛平原相的红色碎屑岩夹滨浅湖相杂色碎屑岩及少量泥灰岩,并夹有基性火山岩夹层。
     莱阳初期,盆地内部NW-SE向展布的剥蚀凸起和沉积中心,以及NE-SW向展布的沉积中心,不仅说明了莱阳期盆地可能的平面双轴拉张状态,而且还说明了广泛分布的NW-SE向基底断裂对盆地形成的控制作用。青山期沂沭裂谷系的存在,王氏期E-W向正断层对地层沉积厚度的显著控制作用,均说明了拉张应力场的普遍存在。
     胶莱盆地及其周缘地区的岩浆活动非常活跃,使得深成侵入岩~火山喷出岩、酸性~超基性岩浆岩在本区都很发育。莱阳期侵入岩的岩石地球化学特征指示了研究区在该时期发生了强烈的幔源岩浆底侵作用,而底侵作用被认为是大陆地壳拉张伸展的重要作用之一。研究区的火山岩可划分为6个喷发旋回,即莱阳组中的莱阳旋回,青山组中的后夼旋回、八亩地旋回、石前庄旋回、方戈庄旋回,王氏组中的史家屯旋回。
     岩石地球化学资料表明,莱阳旋回~方戈庄旋回属中国东部中生代“橄榄粗安岩省”的重要组成部分,其成因与拉张区域地质背景下富集岩石圈地幔的部分熔融作用有关,并且中酸性火山岩的铕负异常有逐渐增强之势。而史家屯旋回中的基性火山岩表现为其岩浆源区由具大陆岩石圈地幔性质源岩向具软流圈地幔性质源岩的突然演化。以上特征表明,胶莱盆地在3个地质时期均受控于拉张应力场的作用并发生了岩石圈的持续减薄事件。
     胶莱盆地各种构造几何学特征,例如莫霍面埋深状态(隆起)、断裂的组合型式等,也都指示研究区发生过显著的伸展作用。
     胶莱盆地在3个地质时期均有不同方向的正断裂组同时发生同沉积活动,指示了面状伸展状态。由多条平衡剖面所反映的盆地在不同方向上的伸展特征表明,胶莱盆地各时期原型均为平面双轴拉张应力场控制。典型地区的多条沉降曲线反映,胶莱盆地从莱阳期至王氏期不是一次连续的裂陷过程,而是多期裂陷原型的叠加。在盆地发育初期,诸城凹陷和高密凹陷可能更偏于主动伸展裂陷性质,而莱阳凹陷则更具被动伸展裂陷性质。
     胶莱盆地各凹陷的盖层断裂同沉积活动特征、水平伸展运动特征和垂直沉降特征三者之间具有良好的对应关系,这也增强了各方面结果的可信度。诸城凹陷断裂的同沉积活动主要发生在莱阳期和王氏期,青山期几乎无同沉积断裂活动。与此相对应,该凹陷3个方向测线的伸展速率在莱阳期~王氏期均表现出大→小→大的规律,而该凹陷的构造沉降速率在青山期较小,在莱阳期和王氏期较大;高密凹陷的大部分同沉积断裂都显示出在盆地的3个发展阶段均有同沉积活动。该凹陷3个方向测线的伸展速率在莱阳期~王氏期基本表现出较大→较小→最大的规律,与之对应,该凹陷的构造沉降速率在青山期较小,而在莱阳期和王氏期较大;莱阳凹陷内部的断裂更多地显示出在青山期的同沉积活动。与此相对应,该凹陷2个方向测线的伸展速率在莱阳期~王氏期均具有小→大→小的规律,而该凹陷的构造沉降速率在青山期较大,在莱阳期和王氏期较小。
     由3条组合地震测线计算得到的3期平面双轴拉张应力场的主应力σ_1的方位角分别约为30°-210°、143°-323°和3.5°-183.5°,σ_3的方向与其垂直,为120°-300°、53°-233°和93.5°-273.5°。这些方向可大致看作胶莱盆地整体上所受的区域构造应力的方向,并可用于建立初始应力场模拟模型。
     依据各时期沉积(岩)相特征和较大规模同沉积断裂的分布状况,莱阳期、青山期和王氏期的模拟模型分别被划分为16、12和9个区域。进而划分有限元954、764和758个,节点2723、2179和2101个。3个模拟模型共定义了2种单元类型及5种材料类型。
     基于ANSYS系统的有限元模拟结果表明,仅需对由地质分析得到的各主应力方向作小幅度的修正。将莱阳期的角度再顺时针旋转10°、青山期的保持原方向、王氏期的再逆时针旋转13.5°,分别施加状态为40:15、60:30和60:50的载荷,即可得到与地质资料符合性较好的模拟结果,因此进一步确认了3个裂陷原型均受控于平面双轴拉张区域应力的控制。
     由地质资料分析得出并经有限元模拟检验的双轴拉张区域应力,指示了可能的盆地深部动力的存在,因为这种应力状态可以由岩石圈地幔或软流圈地幔在垂向上的上拱、顶托作用引起。
     从莱阳组、青山组和王氏组之间普遍存在的微(小)角度不整合、平行不整合接触关系和王氏期末研究区沉积作用的基本停止来判断,各裂陷原型发育末期均发生了构造挤压反转事件。胶莱盆地3套共轭剪节理的形成与之相对应。由节理特征可知其所对应的是倾伏角不大或近于水平的区域构造压性应力的作用,方向分别为SSE-NNW、SEE-NWW向和NE-SW向。3期压性应力还形成了一些宽缓褶皱,而其它一些褶皱可能与断裂带(特别是沂沭断裂带)的走滑运动有关,反映了断裂带对盆地的改造作用。
     基于本文和前人的各种资料、证据和分析,可以推知,胶莱盆地的生成,可能与(古)太平洋板块向东亚大陆边缘俯冲诱发的区域应力场和岩石圈的深部动力的关系更加密切。140 Ma之前,伊泽纳崎板块向东亚大陆之下俯冲的方向和速度突然发生改变,可能是其所引发的强烈岩浆底侵作用造成了胶莱盆地的成生。莱阳期末,可能是伊泽纳崎板块的一次脉动式俯冲加速使莱阳期裂陷原型发生构造挤压反转,同时也拉开了青山期裂陷原型发育的序幕。脉动加速以后,由于随后继续进行的俯冲作用所引发的下地壳拆沉作用,控制了青山期裂陷原型的形成。大约起始于100 Ma之前的太平洋板块的俯冲加速,可能使研究区迅速为压性应力场所控制并造成青山期裂陷原型发生反转,并且可能是随于其后的高角度、快速的继续俯冲作用所引发的岩石圈根的拆沉作用控制了王氏期裂陷原型的形成。王氏期末,可能是由于在当时日本海之下形成的中心地幔热柱所造成的上部岩石圈NE→SW方向的推挤力和来自SW方向远程弱压性应力场的顶托的联合作用,使得王氏期裂陷原型发生构造反转。王氏期以后,伴随着太平洋板块的逐渐北移,由其高角度俯冲造成的中国东部伸展活动也相应向北迁移并移出研究区,因此胶莱盆地没有再次裂陷成盆接受沉积。
In Early Cretaceous, eastern China and adjacent areas stretched and rifted intensively withthe lithosphere's thinning. Jiaolai basin developed within Jiaodong peninsula, and is located atthe convergence of a series of important tectonic belts which have great geological significances.The formation and evolution of this basin were probably controlled by joint process of regionalstress fields and deep dynamic forces of continental lithosphere (underplating, delamination, mantle diapir and convection) induced by the subduction of (paleo-)pacific plate beneath the Asiacontinent. Besides, the formation of Jiaolai basin probably related to orogenic extensionalcollapse because Jiaolai basin's location was also at the combination part of Huabei plate andYangtze plate. Additionally, Tan-Lu fault zone experienced an intensive strike-slip displacementin this period. So the tectonic evolution of Jiaolai basin is very complicated. For its specialtectonic location and hydrocarbon potential, Jiaolai basin's forming mechanism has attractedmany researcher's attention for a long time. But existing dynamics mechanisms cannotcompletely and reasonably interpret all kinds of geological evidence and its tectonic evolutioneither. In order to understand Jiaolai basin's basic geological condition more deeply and directhydrocarbon exploration better, we need a more reasonable tectonic revolution and thecorresponding dynamics mechanisms.
     Basin's dynamic mechanisms determine kinematic characteristics, whereas furthermorekinematic characteristic determine geometric characteristics, so geometric and kinematiccharacteristics must contain information of basin dynamics. For this reason, deduced dynamicmechanisms from geometric and kinematic characteristics can reasonably interpret basin'sformation and evolution. Geometric characteristics mainly include various basic tectoniccharacteristics, so we should comprehensively utilize gravity, magnetic and seismic data andsome observing/analyzing materials based on residual strata to study them. Whereas kinematiccharacteristics mainly include the features of vertical subsidence and plane strain. On the basis ofestimating eroded strata, this paper plans to utilize comprehensively various information inseismic sections (including faults' syndepositional movement characteristics, velocity spectrumetc.), drilling and logging data etc., make many balanced sections and subsidence curves ofrepresentative areas, furthermore integrate outcrop data and strata interfaces' ages to find out thekinematic characteristics of basin prototypes. When prototypes' geometric and kinematiccharacteristics are clear, their paleotectonic stress fields are almost clear too. But the stress fieldsneed to be tested with finite element simulations. Furthermore this paper combines magmatite types, its characteristics of geochemistry and spatiotemporal distribution and strata interfaces'ages to depict the process of basin formation and evolution and the corresponding dynamicmechanisms reasonably.
     Jiaolai basin is located at Jiaodong peninsula and is a Cretaceous residual superimposedcontinental sedimentary basin. Its south margin is connected with SuLu orogenic belt (Jiaonanuplift) through Wulian fault. Its north margin wanders on Jiaobei uplift. Its west margin istruncated by Tan-Lu fault belt and its east margin spans Haiyang and Rushan, enters Huang seaand steps eastwards until Qianliyan fault. The north boundary perhaps is a denuded one.According to the regional geophysical characteristics of eastern Shandong province, we canregard the envelope line of residual strata as Jiaolai prototype basin's north boundary. Whereasother boundaries are the same with present ones.
     Jiaolai basin can be divided into 7 secondary tectonic units: Zhucheng depression, Chaigouhorst, Gaomi depression, Dayetou salient, Laiyang depression, Mouping-Jimo fault zone andHaiyang depression. Furthermore the Gaomi depression can be divided into 4 independenttectonic units: Xiagezhuang sag, Pingdu sag, Lidangjia-mashan salient and Gaomi sag.
     The strata of Jiaolai basin can be divided into two big rock series, i.e. basement series andsedimentary cover series. The former is composed of Archaeozoic group and Proterozoic groupmetamorphic rocks. The latter is composed of Cretaceous, Paleogene and Quaternary. Laiyangformation and Qingshan formation of Lower Cretaceous and Wangshi formation of UpperCretaceous compose the main part of sedimentary cover and they are formed at Laiyang, Qingshaand Wangshi stages respectively.
     The Laiyang formation is mainly composed of sedimentary clastic rocks of inland lacustrinefacies and fluvial facies, interbedded by acidic~intermediate-basic volcanic rocks. From bottomto top, this formation can be divided into 6 members: Xiaoxianzhuang member, Zhifengzhuangmember, Maershan member, Shuinan member, Longwangzhuang member and Qugezhuangmember. The Qingshan formation is composed of polygenic volcanic rocks and volcaniclasticrocks. The volcanic rocks in the Qingshan formation resulted from central volcanic eruption anda series of central volcanic apparatus distributed along Mouping-Jimo-Wulian fault belt. Mainlithology of the Wangshi formation is red clastic rocks of fluvial facies interbedded by variegatedclastic rocks and a little marl of shallow lake facies as well as basic volcanic rocks.
     At the beginning of Laiyang stage, the salient and depocenters extending in NW-SEdirection and depocenters extending in NE-SW direction in Jiaolai basin not only indicated thatthe basin was probably in the condition of plane bidirectional extension, but also indicated thebasin forming was controlled by ubiquitous basement faults in NW-SE direction. The existenceof Yishu rift system at the Qingshan stage and the normal faults' notable controlling effect onstrata depth at the Wangshi stage suggested extension stress fields were very common in studyareas.
     The magmation was very active in Jiaolai basin and its adjacent areas. This resulted in allkinds of magmatites occurred well in study areas including plutonic intrusive rocks~volcanicrocks and acidic~ultrabasic magmatic rocks. The geochemical characteristics of intrusive rocks in the Laiyang formation indicate the strong underplating of mantle-derived magma at this stage.Underplating is regarded as one of processes that can cause crust stretching. The volcanic rockscan be divided into 6 eruption cycles: Laiyang cycle in the Laiyang formation, Houkuang cycle, Bamoudi cycle, Shiqianzhuang cycle and Fanggezhuang cycle in the Qing shan formation andShijiatun cycle in the Wangshi formation.
     The rock geochemical data show that the Laiyang~Fanggezhuang volcano eruption cyclesbelong to the mesozoic "Shoshonite Province" in eastern China. These cycles developed due toenriched lithospheric mantle's partial melting process under tensile background. And the negativeEu anomalies of the intermediate-acidic volcanic rocks in these cycles become stronger graduallyfrom early to late. The Shijiatun cycle's basic volcanic rocks show a sudden change of theirmagma source from lithospheric mantle to asthenosphere. The above characteristics suggestthat Jiaolai basin was dominated by extensional stress field at its three geological stages and itslithosphere was thinned continuously.
     The various tectonic geometric characteristics of Jiaolai basin, such as the status of mohodepth(uplifting) and the configuration patterns of faults, also indicate Jiaolai basin has undergonenotable extension.
     The syndepositonal movements of normal fault groups with different running directions inJiaolai basin occurred simultaneously at its three geological stages. This shows the status of planeextention. The characteristics displayed by some balanced cross sections in different directionsindicate that the three prototypes of Jiaolai basin were all under the control of bidirectionalextentional stress field. Several subsidence curves of representative areas show it is not acontinuous rifting process from the Laiyang stage to Wangshi stage but a superimposing processof three rifting prototypes. At the beginning of basin forming, the Zhucheng and Gaomidepression had more characteristics that suggested their initiative rifting, whereas the Laiyangdepression had more passive rifting characteristics.
     There are good correlations among the characteristics of syndepositional fault movements, horizontal extension and vertical subsidence. This also strengthens the reliability of each aspect.The syndepositional fault movements in the Zhucheng depression mainly occurred at the Laiyangand Wangshi stages, whereas there was almost no syndepositional movements at the Qingshanstage. Correspondingly, extentional velocities of seismic sections in three different directions hada law of big→small→big from the Laiyang to Wangshi stage; Tectonic subsidence velocity wasthe smallest at the Qingshan stage but relatively big at the Laiyang and Wangshi stages. Mostsyndepositional faults in Gaomi depression kept to move at the three stages. Extentionalvelocities of seismic sections in three different directions in Gaomi depression had a law of big→small→biggest from the Laiyang to Wangshi stage and correspondingly tectonic subsidencevelocity was small at the Qingshan stage but relatively big at the Laiyang and Wangshi stages.The faults within the Laiyang depression had more notable syndepositional movements at theQinshan stage. Correspondingly, extentional velocities of seismic sections in two differentdirections had a law of small→big→small from the Laiyang to Wangshi stage; Tectonicsubsidence velocity is big at the Qingshan stage but relatively small at the Laiyang and Wangshi stages.
     The azimuthes of principal stress 1 of the three plane bidirectional extensional stress fieldwere 30°-210°, 143°-323°and 3.5°-183.5°respectively. The principal stress 3 should beperpendicular to principal stress 1, so their azimuths were 120°-300°, 53°-233°and 93.5°-273.5°respectively. These azimuthes can be regarded as the directions of regional tectonic stressesimposed on the whole Jiaolai basin, so they can be used to build initial models for stress fieldsimulations.
     According to the distributing characteristics of sedimentary facies (or lithofacies) andmajor syndepositional faults, the simulation models for the Laiyang~Qingshan stages can bedivided into 16, 12 and 9 areas respectively. Further, 954, 764 and 758 finite elements and 2723, 2179 and 2101 nodes are obtained respectively. Altogether, two element types and five materialsare defined in the three simulation models.
     Results of finite element simulations based on Ansys system suggest the principal stressdirections obtained by geological analyses only need small corrections. The Laiyang stage'sinitial direction need a 10°clockwise rotation, the Qingshan stage's need no rotation and theWangshi stage's need a 13.5°anticlockwise rotation. Moreover, imposing loads with the status of40: 15, 60: 30 and 60: 50 respectively, we can get ideal simulation results when compared with theones of geological analyses. This further confirms that the three prototypes of Jiaolai basin wereall dominated by plane bidirectional extentional regional stresses.
     The bidirectional extentional regional stresses obtained from geological analyses andconfirmed by finite element simulations indicate possible deep dynamic processes, because thiskind of stress can be produced by uplitling of lithosphere mantle or asthenosphere.
     Judging from ubiquitous tiny angular or parallel unconformity among the three formationsof Jiaolai basin and the fact that sedimentoiogical cease after the Wangshi stage, we can knowcompressive tectonic reversions occurred at the end of each prototype. Three sets of conjugatedshear joints were corresponding with the three tectonic reversions. The characteristics of thesejoints indicate they were generated due to regional compressive tectonic stresses whose pitchangles were tiny or horizontal and their directions were SSE-NNW, SEE-NWW and NE-SWrespectively. These compressive stresses also produced some gentle folds. But some other foldswere possibly generated by strike-slip movements of large faults, especially the Yishu fault belt, this reflected their reconstructing influences on basin.
     Based on the data, evidence and analyses of this paper and former studies, we can concludethat the formation of Jiaolai basin probably had a closer relationship with the regional stress fieldand the deep lithospheric dynamics induced by westward subduction of the (paleo-) pacific platebeneath the Asia continent. Because the sudden change of subduction direction and velocity ofthe Izanagi plate 140 Ma ago, the induced magma underplating probably made Jiaolai basin comeinto being. At the end of the Laiyang stage, a possible pulsative acceleration made the Laiyangrift prototype inverted because of compressive stress. At the same time, this tectonic inversioncaused the prelude of the Qingshan rift prototype. After this pulsative acceleration, lower crustwas delaminated perhaps because of the subsequent continuing subduction, so the Qingshan rift prototype was generated. Almost 100 Ma ago, the subduction pacific plate began to speed up andmade the Qingsha rift prototype inverted because of the possible induced compressive stress field.The subsequent continuing fast subduction of pacific plate in high angle perhaps caused thedelamination of lithosphere root and made the forming of the Wangshi prototype. At the end ofthe Wangshi stage, the Wangshi prototype began to be in tectonic inversion possibly because ofthe joint process of the compressive stress from NE to SW generated by the forming of hotcentral mantle plume under Japan sea at that time and the withstanding caused by long distancegentle compressive stress field that came from SW direction. After the Wangshi stage, with thegradual northern movement of the pacific plate, the extensional activities caused by high anglesubduction of the pacific plate moved norwards too and stepped out of study area, so the Jiaolaibasin hasn't developed rift prototype again since then.
引文
[1] 赵文智,靳久强,薛良清,等.中国西北地区侏罗纪原型盆地形成与演化.北京:地质出版社,2000.5-19
    [2] 刘池洋,杨兴科.改造盆地研究和油气评价思路.石油与天然气地质,2000,21(1):11-14
    [3] 刘光鼎.试论残留盆地.勘探家,1997,2(3):1-4,45
    [4] 王定一.改造型含油气盆地类型及研究思路.石油与天然气地质,2000,21(1):19-23
    [5] 赵重远,周立发.成盆期后改造与中国含油气盆地地质特征.石油与天然气地质,2000,21(1):7-10
    [6] 高长林,叶德燎,钱一雄.残余盆地和残留盆地及其油气前景.油气盆地研究新进展,2002,1:143-146
    [7] 尤绮妹,孙风霞.改造型盆地构造演化动态研究方法探讨及其意义.油气盆地研究新进展,2002,1:133-142
    [8] 陈伟,卢华复,施央申.平衡剖面计算机模拟及其应用.北京:科学出版社,1993.62-78
    [9] 毛小平,吴冲龙,袁艳斌.地质构造的物理平衡剖面法.地球科学——中国地质大学学报,1998,23(2):167-170
    [10] Ingersoll R V, Busby C J. Tectonic of sedimentary basins. In.. Busby C J, Ingersoll R V. Tectonics of sedimentary basins. Cambridge: Blackwell Science, 1995. 1-51
    [11] 刘和甫.盆地-山岭耦合体系与地球动力学机制.地球科学——中国地质大学学报,2001,26(6):581-596
    [12] 刘和甫.盆山耦合类型.地学前缘,2000,7(4):469
    [13] Wemicke. Blow-angle normal faults in the Basin and Range province: nappe tectonics in aun extending orogen. Nature, 1981, 291: 65-648
    [14] 刘和甫,梁慧社,李晓清,等.中国东部中新生代裂陷盆地与伸展山岭耦合机制.地学前缘,2000,7(4):477-468
    [15] 金振民,高山.底侵作用(underplating)及其壳—幔演化动力学意义.地质科技情报,1996,15(2):1-7
    [16] 高山,金振民.拆沉作用(delamination)及其壳—幔演化动力学意义.地质科技情报,1997,16(1):1-9
    [17] Sylvester A G. Strike slip fault. Bull Geol Soe Am, 1989, 100:1666-1703
    [18] Zolnai G. Continental wrench tectonics and hydrocarbon habitat. AAPG Continuing Education Course Note Series, 1991, No. 30, Second edition
    [19] 张文佑.断块构造导论.北京:石油工业出版社,1984.1-385
    [20] Nilsen T H, Sylvester A G. Strike-slip Basins. In: Busby C J, Ingersoll R V. Tectonics of sedimentary basins. Cambridge: Blackwell Science, 1995. 425-457
    [21] Mann P H, ampton M P, Bradley D C, et al. Development of pull-apart basins. Journal of Geology, 1983, 91: 529-554
    [22] Dooley T, McClay K. Analog modeling of pull-apart basins. AAPG, 1997, 81(11): 1804-1826
    [23] Basile C, Brun J P. Transtensional faulting patterns ranging from pull-apart basins to transform continental margins: an experimental investigation. Journal of Structural Geology, 1999, 21: 23-27
    [24] 翟慎德.胶莱盆地形成演化与油气形成条件:[博士学位论文].保存地点:中国知网—学位论文全文数据库,2003.
    [25] 宋明水,吴智平,戴俊生,等.胶莱坳陷原型盆地恢复及石油地质条件分析.东营:中国石油大学出版社,2005.1-143
    [26] 陆克政,戴俊生,陈书平,等.胶莱盆地的形成与演化.东营:石油大学出版社,1994.1-174
    [27] 陆克政,朱筱敏,漆家福.含油气盆地分析.东营:石油大学出版社,2004.1-172
    [28] 廖远涛.胶莱盆地的盆地样式及构造演化.新疆石油地质,2002,23(4):345-347
    [29] 殷秀兰.苏鲁造山带的伸展构造作用——胶莱盆地的沉积响应:[博士后论文].保存地点:万方数据资源系统—中国学位论文全文数据库,2003.
    [30] Zhang Y Q, Dong S W, Shi W. Cretaceous deformation history of the middle Tan-Lu fault zone in Shangdong Province, eastern China. Tectonophysics, 2003, 363: 243-258
    [31] 张岳桥,赵越,董树文,等.中国东部及邻区早白垩世裂陷盆地构造演化阶段.地学前缘,2004,11(3):123-133
    [32] 姜同海.胶莱盆地构造特征及演化:[工程硕士学位论文].保存地点:中国知网—学位论文全文数据库,2005.
    [33] 李桂群,范德江,任景民.胶莱盆地发育演化及其油气前景探讨.青岛海洋大学学报,1994,24(3):413-419
    [34] 唐华风,程日辉,白云风,等.胶莱盆地构造演化规律.世界地质,2003,22(3):246-251
    [35] 徐贵忠,蔡燕杰,周瑞,等.山东胶莱盆地形成的动力学条件及其与金成矿作用的相关性讨论.现代地质,2004,18(1):8-16
    [36] 朱光,刘国生,牛漫兰,等.郯庐断裂带的平移运动与成因.地质通报,2003,22(3):200-207
    [37] 张增奇,宋志勇,张淑芳,等.鲁东前寒武纪岩石地层清理意见.山东地质,1994,10(增刊):14-27
    [38] 刘明渭,张庆玉,宋万千.山东省白垩纪岩石地层序列与火山岩系地层划分.地层学杂志,2003,27(3):247-253
    [39] 吴智平,李凌,李伟,等.胶莱盆地莱阳期原型盆地的沉积格局及有利油气勘探区选择.大地构造与成矿学,2004,28(3):330-337
    [40] 黄太岭.胶莱盆地区域地球物理场特征及构造单元划分.山东地质,2000,16(3):41-47
    [41] 邱检生,王德滋,罗清华,等.鲁东胶莱盆地青山组火山岩的~(40)Ar-~(40)Ar定年——以五莲分岭山火山机构为例.高校地质学报,2001,7(3):351-355
    [42] 山东省地质矿产局.山东省区域地质志.北京:地质出版社,1991.597
    [43] 赵广涛,曹钦臣,王德滋,等.崂山花岗岩锆石U-Pb年龄测定及其意义.青岛海洋大学学报,1997,27(3):382-388
    [44] 裘有守,王孔海,杨广华.山东招远—掖县地区金矿区域成矿条件.辽宁:科学技术出版社,1988.73-74
    [45] 关康,罗镇宽,苗来成,等.郭家岭型花岗岩地球化学特征与金矿化的关系.地质找矿论丛,1997,12(4):1-8
    [46] 关康,罗镇宽,苗来成,等.胶东招掖郭家岭型花岗岩锆石SHRIMP年代学研究.地质科学,1998,33(3):318-328
    [47] 苗来成,罗镇宽,关康,等.玲珑花岗岩中锆石的离子质谱U-Pb年龄及其岩石学意义.岩石学报,1998,14(2):198-206
    [48] 苗来成,罗镇宽,黄佳展,等.山东招掖金矿带内花岗岩类侵入体锆石SHRIMP研究及其意义.中国科学D辑地球科学,1997,27(3):207-213
    [49] 刘燊,胡瑞忠,赵军红,等.胶北晚中生代煌斑岩的岩石地球化学特征及其成因研究.岩石学报,2005,21(3):947-958
    [50] 刘燊,胡瑞忠,赵军红,等.胶东北部碱性超基性脉岩地球化学特征及环境和成因探讨.地质科学,2005,40(1):69-83
    [51] 谭俊,魏俊浩,杨春福,等.胶东郭城地区脉岩类岩石地球化学特征及成岩构造背景.地质学报,2006,80(8):69-83
    [52] 徐红,徐光平.胶东煌斑岩的地球化学特征及成因探讨.岩石矿物学杂志,2000,19(1):36-44
    [53] 杨进辉,周新华.胶东地区玲珑金矿矿石和载金矿物Rb-Sr等时线年龄与成矿时代.科学通报,2000,45(14).1547-1553
    [54] 王德滋,赵广涛,邱检生.中国东部晚中生代A型花岗岩的构造制约.高校地质学报,1995,1(2):13-21
    [55] 赵广涛,王德滋,曹钦臣.崂山花岗岩岩石地球化学与成因.高校地质学报,1997,3(1):1-15
    [56] 宋明春,严庆利.胶南地区伟德山超单元中闪长质包体的特征及岩浆成因.山东地质,2000,16(4):16-21
    [57] Yang W C. Geophysical profiling across the Sulu ultra-high-pressure metamorphic belt, Easter China. Tectonophysics, 2002, 354: 277-288
    [58] Yang W C, Chen Z D. Seismic multi-arch structures in East China. Science in Chian: Series D Earth Science, 2006, 49(2): 133-146
    [59] 周建波,郑永飞,赵子福.山东五莲中生代岩浆岩的锆石U-Pb年龄.高校地质学报,2003,9(2):185-194
    [60] Frost B R, Barnes C G, Collins W J, et al. A geochemical classification for granite rocks. The Journal of Petroleum, 2001, 42: 2033-2048
    [61] 张增奇,刘明渭,宋志勇,等.全国地层多重划分对比研究(37)山东省岩石地层.武汉:中国地质大学出版社,1996.200-306
    [62] 赵广涛,韩宗珠,栾光忠,等.崂山地区玄武质岩石的地球化学特征.高校地质学报,2001,7(4):435-443
    [63] Gradstein F M;金玉玕,王向东,王玥.国际地层表.地层学杂志,2005,29(2):98
    [64] 王鸿祯,李光岑.国际地层时代对比表.北京:地质出版社,1990.
    [65] 张增奇,刘书才,张成基,等.《中国区域年代地层(地质年代)表》和《国际地层表》简介.山东国土资源,2003,19(3):34-42
    [66] 李守军,何文渊.山东省中生代地层划分与对比.高校地质学报,1997,3(1):87-93
    [67] 李守军,谢传礼.山东莱阳盆地莱阳组时代讨论.地层学杂志,1997,20(3):233-238
    [68] 李守军.山东侏罗—白垩纪地层划分与对比.石油大学学报(自然科学版),1998,22(1):1-4
    [69] 李守军.综合地层学在山东省中生代地层研究中的应用.山东地质,1998,14(4):31-36
    [70] 凌文黎,谢先军,柳小明,等.鲁东中生代标准剖面青山群火山岩锆石U-Pb年龄及其构造意义.中国科学D辑地球科学,2006,36(5):401-411
    [71] 马兆同,刘慧勤,马兆祥.胶南造山带及邻近地区的重磁特征及地质解释.山东地质,1997,13(1):92-102
    [72] 胜利油田石油地质志编写组.中国石油地质志(卷六)胜利油田.北京:石油工业出版社,1993.491-505
    [73] 李桂群,范德江.胶莱盆地构造单元划分及其特征.青岛海洋大学学报,1994,24(2):239-246
    [74] 徐贵忠,周瑞,闫臻,等.论胶东地区中生代岩石圈减薄的证据及其动力学机制,大地构造与成矿学,2001,25(4):368-380
    [75] 俞鸿年,卢华复.构造地质学原理.南京:南京大学出版社,1998.1-254
    [76] 许浚远,王艳萍,王磊,等.多轴水平拉伸盆地三维古构造重建探讨.石油与天然气地质,1997,18(1):1-6
    [77] 梁慧社,张建珍,夏义平.平衡剖面及其在油气勘探中的应用.北京:地震出版社,2002.2-3
    [78] 邓承仪,成培江.工程材料力学实验.北京:科学技术文献出版社,1997.129-132
    [79] 戴俊生,陆克政,宋全友,等.胶莱盆地的运动学特征.石油大学学报(自然科学版),1995,19(2):1-6
    [80] 施炜,张岳桥,董树文,等.山东胶莱盆地构造变形及形成演化——以王氏群和大盛群变形分析为例.地质通报,2003,22(5):325-334
    [81] 郭秋麟,米石云,石广仁,等.盆地模拟原理方法.北京:石油工业出版社,1998.1-66
    [82] 陈发景,汪新文,陈昭年,等.伸展断陷盆地分析.北京:地质出版社,2004.93-108
    [83] 谢传礼,李守军,陈增智.胶莱坳陷中生界莱阳组露头层序研究及其石油地质意义.见:顾家裕,邓宏文,朱筱敏.层序地层学及其在油气勘探开发中的应用.北京:石油工业出版社,1997.24-27
    [84] Vail P R, Michum R M, Thonoson S. Seismic stratigraphy and global changes of sea level. AAPG Memoir, 1977, 26(1): 63-81
    [85] Allen P A, Allen J R. Basin analysis, principles and applications. London: Blackwell Scientific Publications, 1990. 263-281
    [86] Gallagher K, Dumitru T A, Gleadow A J W. Constraints on the vertical motion of eastern Australia during the Mesozoic. Basin Research, 1994, 6: 77-94
    [87] 漆家福,陈发景.辽东湾—下辽河裂陷盆地的构造样式.石油与天然气地质,1992,13(3):272-283
    [88] 漆家福,陈发景.下辽河—辽东湾新生代裂陷盆地的构造解析.北京:地质出版社,1995.10-100
    [89] 易日.使用ANSYS 6.1进行结构力学分析.北京:北京大学出版社,2002.1-284
    [90] 蒋有录,张乐,鲁雪松,等.基于ANSYS的应力场模拟在库车坳陷克拉苏地区的初步应用.天然气工业,2005,25(4):42-44
    [91] 刘涛,杨凤鹏.精通ANSYS.北京:清华大学出版社,2002.1-120
    [92] 翟明国,孟庆任,刘建明,等.华北东部中生代构造体制转折峰期的主要地质效应和形成动力学探讨.地学前缘,2004,11(3):285-297
    [93] 陈文寄,Harrison T M,Heizler M T,等.苏北-胶南构造混杂岩冷却历史的多重扩散域~(40)Ar-~(39)Ar热年代学研究.岩石学报,1992,8(1):1-17
    [94] Kay R W, Kay S M. Delamination and delamination magmatism. Tectonophisics, 1993, 219(13): 177-189
    [95] 索书田,钟增球,游振东,等.大别—苏鲁超高压和高压变质带碰撞后韧性伸展构造框架.地质学报,2001,75(2):220
    [96] 索书田,钟增球,游振东.大别一苏鲁超高压一高压变质带伸展构造格架及其动力学意义.地质学报,2001,75(1):14-24
    [97] 杨天南,徐惠芬,宋明春,等.胶南地块的隆升一伸展构造.山东地质,1997,13(1):67-76
    [98] Engebretson D C, Cox A, Gordon R G. Relative motions between oceanic and continental plates in the Pacific basin. The Geological Society of American, Special Paper 206, 1985, 1-59
    [99] Maruyama S, Isozaki Y, Kimura G, et al. Paleogeographic maps of the Japanese Islands: plate tectonic systhesis from 750 Ma to the present. The Island Arc, 1997, 6: 121-142
    [100] Maruyama S, Seno T. Orogeng and relative plate Motions: Example of the Japanese Islands. Tectonophysics, 1986, 127: 305-329
    [101] 王德滋,任启江,邱检生,等.中国东部橄榄安粗岩省的火山岩特征及其成矿作用.地质学报,1996,70(1):23-34
    [102] 杨进辉,朱美妃,刘伟,等.胶东地区郭家岭花岗闪长岩的地球化学特征及成因.岩石学报,2003,19(4):692-700
    [103] 朱光,牛漫兰,刘国生,等.郯庐断裂带早白垩世走滑运动中的构造、岩浆、沉积事件.地质学报,2002,76(3):325-334
    [104] 牛漫兰,朱光,刘国生,等.郯庐断裂带中—南段中生代岩浆活动的构造背景与深部过程.地质科学,2002,37(4):393-404
    [105] 樊祺诚.岩浆底侵作用与陆壳生长.见:马宗晋,杨主恩,吴正文.构造地质学—岩石圈动力学研究进展.北京:地震出版社,1999.287-293
    [106] 张岳桥,李金良,柳宗泉,等.胶莱盆地深部拆离系统及其区域构造意义.石油与天然气地质,2006,27(4):504-511
    [107] 曹国权.山东胶南地体及其边界断裂五莲—荣成断裂的构造意义.山东地质,1990, 6(1):1-14
    [108] 邓晋福,赵海玲,莫宣学,等.中国大陆根—柱——大陆动力学的钥匙.北京:地质出版社,1996.1-64
    [109] 朱光,刘国生,宋传中,等.郯庐断裂带的脉动式伸展活动.高校地质学报,2000,6(3):396-404
    [110] Tamaki K, Suyehiro K, Allan J, et al. Tectonic synthesis and implications of Japan Sea ODP drilling. In: Tamaki K, Suyehiro K, Allan J, et al. Proceedings of the Ocean Drilling Program, Scientific Results 127/128. TX: Ocean Drilling Program, 1992. 1333-1348
    [111] Okamura S, Martynov Y A, Furuyama K, et al. K-Ar ages of the basaltic rocks from Far East Russia: constraints on the tectonomagmatism associated with the Japan Sea opening. The Island Arc, 1998, 7: 271-282
    [112] 韩宗珠,武心尧,张继武.胶莱盆地火山岩系的地球化学特征.青岛海洋大学学报,1993,23(4):98-108
    [113] Fan W M, Guo F, Wang Y J, et al. Late Mesozoic volcanism in the northern Huaiyang tectono-magmatic belt, central China: Partial melts from a lithospheric mantle with subducted continental crust relicts beneath the Dabie orogen. Chemical Geology, 2004, 209: 27-48
    [114] 邱检生,蒋少涌,张晓琳,等.大别—苏鲁造山带南北两侧晚中生代富钾火山岩的成因:微量元素及Sr-Nd-Pb同位素制约.地球学报,2004,25(2):255-262
    [115] Rudnick R L, Fountain D M. Nature and composition of the continental crust: a lower crust perspective. Reviews of Geophysics, 1995, 33: 267-309
    [116] 邓晋福,莫宣学,赵海玲,等.中国东部岩石圈根/去根作用与大陆“活化”.现代地质,1994,8(3):349-356
    [117] 李显武,周新民.中国东南部晚中生代俯冲带探索.高校地质学报,1999,5(2):164-169
    [118] Zhou X M, Li X W. Origin of late Mesozoic igneous rocks in Southeastern China: implications for lithosphere subduction and underplating of mafic magmas. Tectonophysics, 2000, 326: 269-287
    [119] 朱光,王道轩,刘国生,等.郯庐断裂带的演化及其对西太平洋板块运动的响应.地质科学,2004,39(1):36-49
    [120] 闫峻,陈江峰,谢智,等.鲁东晚白垩世玄武岩中的幔源捕虏体:对中国东部岩石圈减薄时间制约的新证据.科学通报,2003,48(14):1570-1574
    [121] 闫峻,陈江峰,谢智,等.鲁东晚白垩世玄武岩及其中幔源包体的岩石学和地球化学研究.岩石学报,2005,21(1):99-112
    [122] 邢集善,刘建华,赵晋泉.华北板内深部构造.山西地质,2002,4:3-12
    [123] 夏斌,刘朝露,陈根文.渤海湾盆地中新生代构造演化与构造样式.天然气工业,2006,26(12):57-60
    [124] Bowley D B. Minimum age of initiation of collision between Indian and Asia north of Everest based on the subsidence history of the Zhepure Mountain section. The Journal of Geology. 1998. 106: 229-235
    [125] 朱光,王道轩,刘国生,等.郯庐断裂带的伸展活动及其动力学背景.地质科学,2001,36(3):269-278

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700