微生物燃料电池中污染物的强化降解
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源短缺和环境污染是当今世界的两大挑战。最近发展起来的微生物燃料电池技术因其可以同时产电和去除污染而为同时解决这两大问题提供了一条新的可能途径。此文研究了微生物燃料电池中难降解污染物,特别是偶氮染料和硝基芳香化合物的强化降解。并通过阴极修饰或生物阴极来提高污染物的降解效率。
     首先研究了一种典型的偶氮染料—甲基橙在微生物燃料电池阴极的脱色。通过原位利用阳极的有机底物厌氧转化产生的电子,甲基橙在阴极被逐步还原。其还原过程可以通过假一级反应动力学来描述,相应的动力学常数为1.29/天。电化学阻抗谱分析表明,阴极具有较高的阻抗从而限制电子转移速率和阴极反应速率。为加快电子从阴极到甲基橙的转移以提高其脱色速率,我们利用一种典型的氧化还原介体硫堇,采用简单的电化学方法修饰阴极。阴极阻抗经过修饰降低了50%,而相应的甲基橙的脱色速率提高了20%。这些研究结果为偶氮染料脱色中限制性关键因素的识别及如何提高脱色速率提供了有价值的信息。然而偶氮染料的还原产物为有毒的芳香氨基化合物,仍需进一步处理。
     其次探索了完全矿化偶氮染料偶氮苯一种新颖方法,其通过耦合微生物燃料电池阴极的还原和阳极的氧化来实现偶氮染料的完全降解。偶氮苯首先在微生物燃料电池的阴极被还原成苯胺,与此同时苯胺在阳极则被(产电)微生物进一步氧化,并将氧化过程中产生的电子用于阴极偶氮染料的还原。该过程实现了偶氮苯中电子的充分利用而无需额外提供电能或有机碳源。同时,电流在此过程中得以产生。与闭路状态的微生物燃料电池比较,苯胺在开路时降解速率仅有前者的一半。通过循环伏安,电化学阻抗谱和扫描电子显微镜对阳极的分析表明,附着在阳极表面的产电微生物的直接电子转移和氧化还原介体的穿梭电子转移这两种方式共同参与了苯胺氧化过程中电子向阳极的转移。同时,电极电势对苯胺降解速率的影响实验表明,更高的阳极电势有利于苯胺的降解。该研究对处理含吸电子基团污染物的工业废水或生物修复这一类污染物提供了一个低能耗的有潜力的方法。
     最后,我们采用生物阴极来增强代表性的硝基芳香化合物—硝基苯的还原速率,并原位降解还原产物苯胺。硝基苯首先在生物阴极被还原为苯胺,然后苯胺被进一步好氧降解。通过分别以硝基苯或曝入的氧气作为电子受体,电流在这一氧化还原过程中始终产生。相比于非生物阴极,生物阴极极大的提高了硝基苯的还原速率,这要归功于微生物的催化作用,其大大降低了电荷转移阻抗进而促进了电子从生物阴极向硝基苯的转移速率。对于初始浓度为40mg/l的硝基苯,超过90%在4天内被还原,其速率常数为0.46/天;而还原生成的苯胺中有97%在一天内被进一步原位去除,相应的速率常数为3.5/天。这一策略不仅为含硝基苯或类似具有吸电子基团污染物的工业废水的处理,而且为这一类污染物的地下水或沉积物的生物电化学修复,提供了又一新颖的处理途径。
Energy shortage and environment pollution are two of the largest challenges around the world. Microbial fuel cells (MFCs), a recently developed technology which simultaneously generate electricity and reduce pollution, might provide an alternative solution to these problems. In this work, we studied the enhanced degradation of recalcitrant contaminants, especially azo dyes and nitroaromatic compounds, in MFCs. Also, cathode modification or biocathode was introduced to improve the degradation efficiency.
     Firstly, methyl orange (MO), a typical azo dye, was decolorized at the cathode of MFCs. With in situ utilization of the electrons derived from the anaerobic conversion of organics, MO was steadily reduced in the abiotic cathode. The MO reduction could be described by a pseudo first-order kinetic model with a rate constant of1.29day-1. Electrochemical impedance spectroscopic analysis shows the cathode had a high polarization resistance, which could decrease the reaction rate and limit the electron transfer. To enhance the electron transfer from cathode to MO for its reduction, the cathode was modified with a redox mediator, thionine. Then the polarization resistance significantly decreased by over50%and the MO decolorization efficiency increased by about20%. These results provide useful information about the key factors limiting the azo dye reduction in the MFCs and measures to improve such a process. However, the reduced products of azo dyes-aromatic amines, are reported to be toxic and carcinogenic, and should be further treated.
     Secondly, a novel approach was developed to completely mineralize azobenzene, a typical azo dye with simple structure, through coupling cathodic reduction and anodic oxidation processes in MFCs. Azobenzene was first electrochemically reduced at the abiotic cathode of MFCs to aniline, which was then further oxidized and degraded by the microorganisms at the anodic chamber of the same MFCs. Thus, the electrons present in azobenzene were fully utilized and no supply of external power or additional organic carbon source was needed in this process. Meanwhile, electricity was simultaneously produced. Compared with open circuit control, degradation rate of aniline was two-times higher. A characterization of the anode by cyclic voltammetry, electrochemical impedance spectroscopy and scanning electron microscopy indicate that both the electrochemically active microorganisms on the anode and the redox mediators contributed to the electron transfer in enhanced aniline oxidation. Furthermore, the aniline oxidation was favored by a higher applied anodic potential. This method provides a promising energy-efficient way to treat wastewater containing electron-withdrawing substances and may offer valuable reference for bioremediation of these pollutants.
     Lastly, biocathode was adopted to enhance the reduction rate of nitrobezene and reduced product was further degraded in situ the biocathode of MFCs. Nitrobenzene, a representative nitroaromtaic pollutant, was first reduced to aniline and then oxidized to inorganic carbons in the biocathode of MFCs with aeration. At initial concentration of40mg/1, over90%nitrobenzene was reduced to aniline in4days while97%aniline was further in situ degraded with aeration within1day. Electricity was generated in the whole reduction and oxidation processes with nitrobenzene and oxygen as electron acceptor respectively. Compared with abiotic cathode, biocathode obviously enhanced the reduction of nitrobenzene through catalysis by microorganisms, which greatly decreased the charge transfer resistance and then promoted electron transfer from biocathode to nitrobenzene. This strategy might provide another novel approach not only for treatment of industry wastewater containing nitrobenzene or other electron-withdrawing structure contaminants, but also for in situ bioelectrochemical remediation of groundwater and sediment contaminated by these pollutants.
     Energy shortage and environment pollution are two of the largest challenges around the world. Microbial fuel cells (MFCs), a recently developed technology which simultaneously generate electricity and reduce pollution, might provide an alternative solution to these problems. In this work, we studied the enhanced degradation of recalcitrant contaminants, especially azo dyes and nitroaromatic compounds, in MFCs. Also, cathode modification or biocathode was introduced to improve the degradation efficiency.
     Firstly, methyl orange (MO), a typical azo dye, was decolorized at the cathode of MFCs. With in situ utilization of the electrons derived from the anaerobic conversion of organics, MO was steadily reduced in the abiotic cathode. The MO reduction could be described by a pseudo first-order kinetic model with a rate constant of1.29day-1. Electrochemical impedance spectroscopic analysis shows the cathode had a high polarization resistance, which could decrease the reaction rate and limit the electron transfer. To enhance the electron transfer from cathode to MO for its reduction, the cathode was modified with a redox mediator, thionine. Then the polarization resistance significantly decreased by over50%and the MO decolorization efficiency increased by about20%. These results provide useful information about the key factors limiting the azo dye reduction in the MFCs and measures to improve such a process. However, the reduced products of azo dyes-aromatic amines, are reported to be toxic and carcinogenic, and should be further treated.
     Secondly, a novel approach was developed to completely mineralize azobenzene, a typical azo dye with simple structure, through coupling cathodic reduction and anodic oxidation processes in MFCs. Azobenzene was first electrochemically reduced at the abiotic cathode of MFCs to aniline, which was then further oxidized and degraded by the microorganisms at the anodic chamber of the same MFCs. Thus, the electrons present in azobenzene were fully utilized and no supply of external power or additional organic carbon source was needed in this process. Meanwhile, electricity was simultaneously produced. Compared with open circuit control, degradation rate of aniline was two-times higher. A characterization of the anode by cyclic voltammetry, electrochemical impedance spectroscopy and scanning electron microscopy indicate that both the electrochemically active microorganisms on the anode and the redox mediators contributed to the electron transfer in enhanced aniline oxidation. Furthermore, the aniline oxidation was favored by a higher applied anodic potential. This method provides a promising energy-efficient way to treat wastewater containing electron-withdrawing substances and may offer valuable reference for bioremediation of these pollutants.
     Lastly, biocathode was adopted to enhance the reduction rate of nitrobezene and reduced product was further degraded in situ the biocathode of MFCs. Nitrobenzene, a representative nitroaromtaic pollutant, was first reduced to aniline and then oxidized to inorganic carbons in the biocathode of MFCs with aeration. At initial concentration of40mg/1, over90%nitrobenzene was reduced to aniline in4days while97%aniline was further in situ degraded with aeration within1day. Electricity was generated in the whole reduction and oxidation processes with nitrobenzene and oxygen as electron acceptor respectively. Compared with abiotic cathode, biocathode obviously enhanced the reduction of nitrobenzene through catalysis by microorganisms, which greatly decreased the charge transfer resistance and then promoted electron transfer from biocathode to nitrobenzene. This strategy might provide another novel approach not only for treatment of industry wastewater containing nitrobenzene or other electron-withdrawing structure contaminants, but also for in situ bioelectrochemical remediation of groundwater and sediment contaminated by these pollutants.
引文
Adachi, M., et al. (2008). Chemical Communications,2055-2057.
    Ahn, Y. & Logan, B. E. (2010). Bioresour. Technol.101,469-475.
    Allen, J. B. & Larry, R. F. (2001). Department of Chemistry and Biochemistry University of Texas at Austin, John Wiley & Sons, Inc.
    Arends, J. B. A. & Verstraete, W. (2012). Microbial Biotechnology 5,333-346.
    Aulenta, F., et al. (2008). Environ. Sci. Technol.42,6185-6190.
    Aulenta, F., et al. (2009). Biotechnology and Bioengineering 103,85-91.
    Aulenta, F., et al. (2007). Environ. Sci. Technol.41,2554-2559.
    Aulenta, F., et al. (2010). Bioresour. Technol.101,9728-9733.
    Aulenta, F., et al. (2010). Biosens. Bioelectron.25,1796-1802.
    Aulenta, F., et al. (2011). Environ. Sci. Technol.45,8444-8451.
    Aulenta, F., et al. (2013). New Biotechnology 30,749-755.
    Bakhshian, S., et al. (2011). Bioresour. Technol.102,6761-6765.
    Bonmati, A., et al. (2013). Bioresour. Technol.143,147-153.
    Borole, A. P., et al. (2013). Environ. Sci. Technol.47,642-648.
    Borole, A. P., et al. (2009). Biotechnol. Biofuels 2.
    Cao, J., et al. (1999). Chemosphere 38,565-571.
    Cao, Y. Q., et al. (2010). Bioelectrochemistry 79,71-76.
    Cardenas-Robles, A., et al. (2013). Bioresour. Technol.127,37-43.
    Catal, T., et al. (2009). Biotechnology Letters 31,1211-1216.
    Catal, T., et al. (2008). J. Power Sources 180,162-166.
    Catal, T., et al. (2008). J. Power Sources 175,196-200.
    Catal, T., et al. (2008). Biosens. Bioelectron.24,849-854.
    Cercado-Quezada, B., et al. (2010). Bioresour. Technol.101,2748-2754.
    Chandrasekhar, K. & Mohan, S. V. (2012). Bioresour. Technol.110,517-525.
    Chaudhuri, S. K. & Lovley, D. R. (2003). Nature Biotechnology 21,1229-1232.
    Chen, J., et al. (2013). Asian Journal of Chemistry 25,8022-8026.
    Chen, Y.-P., et al. (2008). Chemosphere 72,532-536.
    Cheng, S., et al. (2007). Environ. Sci. Technol.41,8149-8153.
    Cheng, S., et al. (2006). Environ. Sci. Technol.40,364-369.
    Cheng, S. A., et al. (2011). Water Research 45,303-307.
    Clauwaert, P., et al. (2007). Environ. Sci. Technol.41,7564-7569.
    Contreras, S., et al. (2001). Journal of Photochemistry and Photobiology A:Chemistry 142,79-83.
    Cui, D., et al. (2012). Journal of Hazardous Materials 239,257-264.
    de Schamphelaire, L., et al. (2008). Environ. Sci. Technol.42,3053-3058.
    Dentel, S. K., et al. (2004). Water Sci. Technol.50,161-168.
    Dickel, O., et al. (1993). Biodegradation 4,187-194.
    Ding, H. R., et al. (2010). Bioresour. Technol.101,3500-3505.
    Donovan, C., et al. (2008). Environ. Sci. Technol.42,8591-8596.
    Du, Z. W., et al. (2007). Biotechnology Advances 25,464-482.
    Fang, Z., et al. (2013). Bioresour. Technol.144,165-171.
    Feng, C., et al. (2010). Biosensors and Bioelectronics 25,1516-1520.
    Feng, C. H., et al. (2010). Electrochim. Acta 55,2048-2054.
    Feng, C. H., et al. (2010). Environ. Sci. Technol.44,1875-1880.
    Feng, C. H., et al. (2011). Bioresour. Technol.102,1131-1136.
    Feng, Y., et al. (2008). Appl. Microbiol. Biotechnol.78,873-880.
    Feng, Y. J., et al. (2011). Bioresour. Technol.102,411-415.
    Fernando, E., et al. (2012). International Biodeterioration & Biodegradation 72,1-9.
    Finkelstein, D. A., et al. (2006). Environ. Sci. Technol.40,6990-6995.
    Fischer, F., et al. (2011). Bioresour. Technol.102,5824-5830.
    Fishbein, L. (1984). Science of The Total Environment 40,189-218.
    Forgacs, E., et al. (2004). Environment International 30,953-971.
    Freguia, S., et al. (2010). Bioresour. Technol.101,1233-1238.
    Friman, H., et al. (2013). Microbial Biotechnology 6,425-434.
    Friman, H., et al. (2012). Microbiology-Sgm 158,414-423.
    Friman, H., et al. (2013). International Biodeterioration & Biodegradation 84,155-160.
    Fu, L., et al. (2010). Chem. Eng. J.160,164-169.
    Galvez, A., et al. (2009). Bioresour. Technol.100,5085-5091.
    Ge, Z., et al. (2013). Bioresour. Technol.136,509-514.
    Ghica, M. E. & Brett, C. M. A. (2005). Analytica Chimica Acta 532,145-151.
    Gong, Y. M., et al. (2011). Environ. Sci. Technol.45,5047-5053.
    Goud, R. K. & Mohan, S. V. (2011). International Journal of Hydrogen Energy 36,13753-13762.
    Greenman, J., et al. (2009). Enzyme and Microbial Technology 44,112-119.
    Gu, H. Y, et al. (2007). Chinese Science Bulletin 52,3448-3451.
    Guo, X., et al. (2014). J. Power Sources 251,229-236.
    Guo, X. S., et al. (2013). International Journal of Hydrogen Energy 38,1342-1347.
    Hamelers, H. V. M., et al. (2010). Appl. Microbiol. Biotechnol.85,1673-1685.
    Han, J. L., et al. (2011). Biodegradation 22,321-333.
    Han, T. H., et al. (2013). Industrial & Engineering Chemistry Research 52,8174-8181.
    Harnisch, F., et al. (2013). Electrochemistry Communications 26,77-80.
    Hastie, J., et al. (2006). Industrial & Engineering Chemistry Research 45,4898-4904.
    He, Y. R., et al. (2013). Biochemical Engineering Journal 71,57-61.
    He, Z. & Angenent, L. T. (2006). Electroanalysis 18,2009-2015.
    Heijman, C. G, et al. (1995). Environ. Sci. Technol.29,775-783.
    Heilmann, J. & Logan, B. E. (2006). Water Environment Research 78,531-537.
    Hou, B., et al. (2012). Bioresour. Technol. 111,105-110.
    Hou, B., et al. (2011a). Appl. Microbiol. Biotechnol.90,1563-1572.
    Hou, B., et al. (2011b). Bioresour. Technol.102,4433-4438.
    Hu, Z. (2008). J. Power Sources 179,27-33.
    Huang, D. Y., et al. (2011). Chem. Eng. J.172,647-653.
    Huang, L. P. & Angelidaki, I. (2008). Biotechnology and Bioengineering 100,413-422.
    Huang, L. P., et al. (2011). Environ. Sci. Technol.45,5025-5031.
    Huang, L. P., et al. (2012). Bioresour. Technol. 111,167-174.
    Huang, L. P., et al. (2010). Bioprocess and Biosystems Engineering 33,937-945.
    Huang, L. P., et al. (2012). Biotechnology and Bioengineering 109,2211-2221.
    Huang, L. P., et al. (2011). Bioresour. Technol.102,8762-8768.
    Huang, L. P. & Logan, B. E. (2008a). Appl. Microbiol. Biotechnol.80,349-355.
    Huang, L. P. & Logan, B. E. (2008b). Appl. Microbiol. Biotechnol.80,655-664.
    Huang, L. P., et al. (2010). Journal of Chemical Technology and Biotechnology 85,621-627.
    Ieropoulos, I., et al. (2012). Physical Chemistry Chemical Physics 14,94-98.
    Ieropoulos, I. A., et al. (2013). Physical Chemistry Chemical Physics 15,15312-15316.
    Ishii, S., et al. (2008). Bmc Microbiology 8.
    Jain, R., et al. (2007). Journal of Colloid and Interface Science 313,248-253.
    Jang, J. K., et al. (2006). Biotechnology and Bioengineering 95,772-774.
    Jiang, J. Q., et al. (2010). Water Sci. Technol.61,2915-2921.
    Jiang, J. Q., et al. (2010). Water Research 44,2163-2170.
    Jiang, J. Q., et al. (2011). Bioresour. Technol.102,272-277.
    Jiang, Y. X., et al. (2013). Bioresour. Technol.139,349-354.
    Jonstrup, M., et al. (2011). Desalination 280,339-346.
    Kalathil, S., et al. (2011). New Biotechnology 29,32-37.
    Kalathil, S., et al. (2012). Bioresour. Technol.119,22-27.
    Kappler, A., et al. (2004). FEMS Microbiology Ecology 47,85-92.
    Kassongo, J. & Togo, C. A. (2011). African Journal of Biotechnology 10,15564-15570.
    Kim, B. H., et al. (2007). Appl. Microbiol. Biotechnol.76,485-494.
    Kim, J. R., et al. (2008). Applied and Environmental Microbiology 74,2540-2543.
    Kloepfer, A., et al. (2005). Environ. Sci. Technol.39,3792-3798.
    Kong, F. Y, et al. (2014). Bioresour. Technol.151,332-339.
    Kong, F. Y, et al. (2013). Bioresour. Technol.143,669-673.
    Kuscu, O. S. & Sponza, D. T. (2007). Environ. Technol.28,285-296.
    Lakaniemi, A. M., et al. (2012). Bioenergy Research 5,481-491.
    Lee, Y, et al. (2013). Environ. Technol.34,2727-2736.
    Li, J., et al. (2010). Bioresour. Technol.101,4013-4020.
    Li, Y, et al. (2009). Electrochemistry Communications 11,1496-1499.
    Li, Y, et al. (2010). Electrochemistry Communications 12,944-947.
    Li, Z. J., et al. (2008). Process Biochemistry 43,1352-1358.
    Li, Z. J., et al. (2010). Bioresour. Technol.101,4440-4445.
    Liang, B., et al. (2013). Environ. Sci. Technol.47,5353-5361.
    Liu, G., et al. (1999). Environ. Sci. Technol.33,2081-2087.
    Liu, H., et al. (2005). Environ. Sci. Technol.39,658-662.
    Liu, H., et al. (2013). International Biodeterioration & Biodegradation 76,108-111.
    Liu, L., et al. (2009). Appl. Microbiol. Biotechnol.85,175-183.
    Liu, L. A., et al. (2011). Bioresour. Technol.102,2468-2473.
    Liu, R. H., et al. (2011). Appl. Microbiol. Biotechnol.89,201-208.
    Logan, B. E. (2009). Nature Reviews Microbiology 7,375-381.
    Logan, B. E. (2010). Appl. Microbiol. Biotechnol.85,1665-1671.
    Logan, B. E., et al. (2006). Environ. Sci. Technol.40,5181-5192.
    Logan, B. E., et al. (2005). Water Research 39,942-952.
    Lohner, S. T., et al. (2011). Environ. Sci. Technol.45,6491-6497.
    Lovley, D. R. (2011). Energy & Environmental Science 4,4896-4906.
    Lu, N., et al. (2009). Biochemical Engineering Journal 43,246-251.
    Luo, H. P., et al. (2009). Chem. Eng. J.147,259-264.
    Luo, Y, et al. (2010). Journal of Hazardous Materials 176,759-764.
    Luo, Y, et al. (2011). Bioresour. Technol.102,3827-3832.
    Marashi, S. K. F., et al. (2013). Biotechnology Letters 35,197-203.
    Martinez-Huitle, C. A. & Brillas, E. (2009). Applied Catalysis B:Environmental 87,105-145.
    Min, B., et al. (2005). Water Research 39,4961-4968.
    Min, B. & Logan, B. E. (2004). Environ. Sci. Technol.38,5809-5814.
    Mohan, S. V. & Chandrasekhar, K. (2011). Bioresour. Technol.102,9532-9541.
    Morris, J. M. & Jin, S. (2008). J. Environ. Sci. Health Part A-Toxic/Hazard. Subst. Environ. Eng. 43,18-23.
    Morris, J. M. & Jin, S. (2012). Journal of Hazardous Materials 213,474-477.
    Morris, J. M., et al. (2009). Chem. Eng. J.146,161-167.
    Mu, Y, et al. (2009). Environ. Sci. Technol.43,5137-5143.
    Mu, Y, et al. (2011). Environ. Sci. Technol.45,782-788.
    Mu, Y, et al. (2009). Environ. Sci. Technol.43,8690-8695.
    Mu, Y, et al. (2004). Chemosphere 54,789-794.
    Niessen, J., et al. (2005). Letters in Applied Microbiology 41,286-290.
    Niu, C. G, et al. (2012). Bioresour. Technol.126,101-106.
    O'Neill, F. J., et al. (2000). Water Research 34,4397-4409.
    Pant, D., et al. (2010). Bioresour. Technol.101,1533-1543.
    Patil, S. A., et al. (2009). Bioresour. Technol.100,5132-5139.
    Pereira, R., et al. (2011). Water Research 45,191-200.
    Pham, H., et al. (2009). Water Research 43,2936-2946.
    Puig, S., et al. (2011). Journal of Hazardous Materials 185,763-767.
    Rabaey, K., et al. (2003). Biotechnology Letters 25,1531-1535.
    Rabaey, K. & Rozendal, R. A. (2010). Nature Reviews Microbiology 8,706-716.
    Radjenovic, J., et al. (2013). Environ. Sci. Technol.47,13686-13694.
    Rakoczy, J., et al. (2013). Biotechnology and Bioengineering 110,3104-3113.
    Reimers, C. E., et al. (2006). Geobiology 4,123-136.
    Reimers, C. E., et al. (2001). Environ. Sci. Technol.35,192-195.
    Rezaei, F., et al. (2007). Environ. Sci. Technol.41,4053-4058.
    Rezaei, F., et al. (2009). Applied and Environmental Microbiology 75,3673-3678.
    Rismani-Yazdi,H.,et al.(2007).Biotechnology and Bioengineering 97,1398-1407.
    Rodriguez, M., et al. (2002). Catalysis Today 76,291-300.
    Rosenbaum, M. A. & Franks, A. E. (2014). Appl. Microbiol. Biotechnol.98,509-518.
    Sakai, S. & Yagishita, T. (2007). Biotechnology and Bioengineering 98,340-348.
    Sasaki, K., et al. (2011). Appl. Microbiol. Biotechnol.89,449-455.
    Savizi, I. S. P., et al. (2012). Environ. Sci. Technol.46,6584-6593.
    Scott, K. & Murano, C. (2007). Journal of Chemical Technology and Biotechnology 82,809-817.
    Shantaram, A., et al. (2005). Environ. Sci. Technol.39,5037-5042.
    Shen, J. Y., et al. (2012). Journal of Hazardous Materials 209,516-519.
    Shen, J. Y, et al. (2013). Water Research 47,5511-5519.
    Sleutels, T., et al. (2012). Chemsuschem 5,1012-1019.
    Song, H., et al. (2013). Water Sci. Technol.68,2599-2604.
    Song, T. S., et al. (2009). Journal of Chemical Technology and Biotechnology 84,356-360.
    Sukkasem, C., et al. (2011). Bioresour. Technol.102,10363-10370.
    Sun, F., et al. (2013). Bioresour. Technol.143,699-702.
    Sun, J., et al. (2009). Bioresour. Technol.100,3185-3192.
    Sun, J., et al. (2013). Bioresour. Technol.142,407-414.
    Sun, J., et al. (2012). Biotechnology Letters 34,2023-2029.
    Sun, J. A., et al. (2011). Water Research 45,283-291.
    Sun, M., et al. (2012). Environ. Sci. Technol.46,6174-6181.
    Tandukar, M., et al. (2009). Environ. Sci. Technol.43,8159-8165.
    Tao, H. C., et al. (2012). Bioresour. Technol. 111,92-97.
    Tao, H. C., et al. (2013). Journal of Hazardous Materials 254,236-241.
    Tender, L. M., et al. (2008). J. Power Sources 179,571-575.
    Ter Heijne, A., et al. (2010). Environ. Sci. Technol.44,4376-4381.
    Virdis, B., et al. (2010). Water Research 44,2970-2980.
    Virdis, B., et al. (2011). Bioresour. Technol.102,334-341.
    Wagner, R. C., et al. (2010). Environ. Sci. Technol.44,6036-6041.
    Wang, A. J., et al. (2011). Environ. Sci. Technol.45,10186-10193.
    Wang, A. J., et al. (2012). Journal of Hazardous Materials 199,401-409.
    Wang, H. M. & Ren, Z. Y. J. (2013). Biotechnology Advances 31,1796-1807.
    Wang, X., et al. (2012). Biotechnology and Bioengineering 109,426-433.
    Wang, X., et al. (2009). Environ. Sci. Technol.43,6088-6093.
    Wang, Y. Z., et al. (2013). Bioresour. Technol.146,740-743.
    Wang, Y. Z., et al. (2013). Bioresour. Technol.142,688-692.
    Wang, Z., et al. (2011). Bioresour. Technol.102,6304-6307.
    Weber, E. J. & Lee Wolfe, N. (1987). Environmental Toxicology and Chemistry 6,911-919.
    Wen, Q., et al. (2011). Chem. Eng. J.168,572-576.
    Wen, Q., et al. (2013). Journal of Hazardous Materials 244,743-749.
    Xafenias, N., et al. (2013). Environ. Sci. Technol.47,4512-4520.
    Xu, N., et al. (2013). Bioresour. Technol.138,136-140.
    Xue, A., et al. (2013). Journal of Hazardous Materials 261,621-627.
    Yadav, A. K., et al. (2012). Ecological Engineering 47,126-131.
    Yan, Z. S., et al. (2012). Journal of Hazardous Materials 199,217-225.
    Yang, R., et al. (1999). Electrochim. Acta 44,1585-1596.
    Yang, Y. G, et al. (2013). Plos One 8.
    Yu, L., et al. (2011). Appl. Microbiol. Biotechnol.90,1119-1127.
    Yuan, S. J., et al. (2010). Environ. Sci. Technol.44,5575-5580.
    Zang, G. L., et al. (2012). Physical Chemistry Chemical Physics 14,1978-1984.
    Zang, G L., et al. (2010). Environ. Sci. Technol.44,2715-2720.
    Zhang, B. G., et al. (2012). J. Power Sources 204,34-39.
    Zhang, B. G., et al. (2010). Bioprocess and Biosystems Engineering 33,187-194.
    Zhang, C. P., et al. (2009). Journal of Hazardous Materials 172,465-471.
    Zhang, C. P., et al. (2010). J. Environ. Sci. Health Part A-Toxic/Hazard. Subst. Environ. Eng.45, 250-256.
    Zhang, G. D., et al. (2012). Water Research 46,43-52.
    Zhang, J., et al. (2013). Bioresour. Technol.138,198-203.
    Zhang, T., et al. (2010). Environmental Microbiology 12,1011-1020.
    Zhang, Y. F., et al. (2009). Applied and Environmental Microbiology 75,3389-3395.
    Zhu, X. P. & Ni, J. R. (2009). Electrochemistry Communications 11,274-277.
    Zhuang, L., et al. (2012). Bioresour. Technol.123,406-412.
    Zhuang, L., et al. (2010). Chem. Eng. J.163,160-163.
    Zuo, Y., et al. (2006). Energy & Fuels 20,1716-1721.
    Adachi, M., Shimomura, T., Komatsu, M., Yakuwa, H. and Miya, A. (2008) A novel mediator-polymer-modified anode for microbial fuel cells. Chemical Communications (17),2055-2057.
    Ahn, Y. and Logan, B.E. (2010) Effectiveness of domestic wastewater treatment using microbial fuel cells at ambient and mesophilic temperatures. Bioresource Technology 101(2),469-475.
    Allen, J.B. and Larry, R.F. (2001) Electrochemical methods:fundamentals and applications. John Wiley & Sons, Inc., New York.
    Arends, J.B.A. and Verstraete, W. (2012) 100 years of microbial electricity production: Three concepts for the future. Microbial Biotechnology 5(3),333-346.
    Aulenta, F., Catervi, A., Majone, M., Panero, S., Reale, P. and Rossetti, S. (2007) Electron transfer from a solid-state electrode assisted by methyl viologen sustains efficient microbial reductive dechlorination of TCE. Environmental Science & Technology 41(7),2554-2559.
    Aulenta, F., Canosa, A., Majone, M., Panero, S., Reale, P. and Rossetti, S. (2008) Trichloroethene dechlorination and h(2) evolution are alternative biological pathways of electric charge utilization by a dechlorinating culture in a bioelectrochemical system. Environmental Science & Technology 42(16), 6185-6190.
    Aulenta, F., Canosa, A., Reale, P., Rossetti, S., Panero, S. and Majone, M. (2009) Microbial reductive dechlorination of trichloroethene to ethene with electrodes serving as electron donors without the external addition of redox mediators. Biotechnology and Bioengineering 103(1),85-91.
    Aulenta, F., Di Maio, V., Ferri, T. and Majone, M. (2010a) The humic acid analogue antraquinone-2,6-disulfonate (aqds) serves as an electron shuttle in the electricity-driven microbial dechlorination of trichloroethene to cis-dichloroethene. Bioresource Technology 101(24),9728-9733.
    Aulenta, F., Reale, P., Canosa, A., Rossetti, S., Panero, S. and Majone, M. (2010b) Characterization of an electro-active biocathode capable of dechlorinating trichloroethene and cis-dichloroethene to ethene. Biosensors & Bioelectronics 25(7),1796-1802.
    Aulenta, F., Tocca, L., Verdini, R., Reale, P. and Majone, M. (2011) Dechlorination of trichloroethene in a continuous-flow bioelectrochemical reactor:Effect of cathode potential on rate, selectivity, and electron transfer mechanisms. Environmental Science & Technology 45(19),8444-8451.
    Aulenta, F., Verdini, R., Zeppilli, M., Zanaroli, G, Fava, F., Rossetti, S. and Majone, M. (2013) Electrochemical stimulation of microbial cis-dichloroethene (cis-dce) oxidation by an ethene-assimilating culture. New Biotechnology 30(6),749-755.
    Bakhshian, S., Kariminia, H.R. and Roshandel, R. (2011) Bioelectricity generation enhancement in a dual chamber microbial fuel cell under cathodic enzyme catalyzed dye decolorization. Bioresource Technology 102(12),6761-6765.
    Bonmati, A., Sotres, A., Mu, Y., Rozendal, R. and Rabaey, K. (2013) Oxalate degradation in a bioelectrochemical system:Reactor performance and microbial community characterization. Bioresource Technology 143,147-153.
    Borole, A.P., Mielenz, J.R., Vishnivetskaya, T.A. and Hamilton, C.Y. (2009) Controlling accumulation of fermentation inhibitors in biorefinery recycle water using microbial fuel cells. Biotechnology for Biofuels 2:7.
    Borole, A.P., Hamilton, C.Y. and Schell, D.J. (2013) Conversion of residual organics in corn stover-derived biorefinery stream to bioenergy via a microbial fuel cell. Environmental Science & Technology 47(1),642-648.
    Cao, J., Wei, L., Huang, Q., Wang, L. and Han, S. (1999) Reducing degradation of azo dye by zero-valent iron in aqueous solution. Chemosphere 38(3),565-571.
    Cao, Y.Q., Hu, Y.Y., Sun, J.A. and Hou, B. (2010) Explore various co-substrates for simultaneous electricity generation and congo red degradation in air-cathode single-chamber microbial fuel cell. Bioelectrochemistry 79(1),71-76.
    Cardenas-Robles, A., Martinez, E., Rendon-Alcantar, I., Frontana, C. and Gonzalez-Gutierrez, L. (2013) Development of an activated carbon-packed microbial bioelectrochemical system for azo dye degradation. Bioresource Technology 127,37-43.
    Catal, T., Fan, Y.Z., Li, K.C., Bermek, H. and Liu, H. (2008a) Effects of furan derivatives and phenolic compounds on electricity generation in microbial fuel cells. Journal of Power Sources 180(1),162-166.
    Catal, T., Li, K., Bermek, H. and Liu, H. (2008b) Electricity production from twelve monosaccharides using microbial fuel cells. Journal of Power Sources 175(1), 196-200.
    Catal, T., Xu, S.T., Li, K.C., Bermek, H. and Liu, H. (2008c) Electricity generation from polyalcohols in single-chamber microbial fuel cells. Biosensors & Bioelectronics 24(4),849-854.
    Catal, T., Bermek, H. and Liu, H. (2009) Removal of selenite from wastewater using microbial fuel cells. Biotechnology Letters 31(8),1211-1216.
    Cercado-Quezada, B., Delia, M.L. and Bergel, A. (2010) Testing various food-industry wastes for electricity production in microbial fuel cell. Bioresource Technology 101(8),2748-2754.
    Chandrasekhar, K. and Mohan, S.V. (2012) Bio-electrochemical remediation of real field petroleum sludge as an electron donor with simultaneous power generation facilitates biotransformation of pah:Effect of substrate concentration. Bioresource Technology 110,517-525.
    Chaudhuri, S.K. and Lovley, D.R. (2003) Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nature Biotechnology 21(10), 1229-1232.
    Chen, J., Yang, S.K., Wang, W.K., Li, B., Gao, L.C. and Liu, Y.Y. (2013) Effect of graphene modified cathode on paracetamol removal in microbial fuel cell. Asian Journal of Chemistry 25(14),8022-8026.
    Chen, Y.-P., Liu, S.-Y., Yu, H.-Q., Yin, H. and Li, Q.-R. (2008) Radiation-induced degradation of methyl orange in aqueous solutions. Chemosphere 72(4),532-536.
    Cheng, S., Liu, H. and Logan, B.E. (2006) Power densities using different cathode catalysts (pt and cotmpp) and polymer binders (nafion and ptfe) in single chamber microbial fuel cells. Environmental Science & Technology 40(1),364-369.
    Cheng, S., Dempsey, B.A. and Logan, B.E. (2007) Electricity generation from synthetic acid-mine drainage (amd) water using fuel cell technologies. Environmental Science & Technology 41(23),8149-8153.
    Cheng, S.A., Jang, J.H., Dempsey, B.A. and Logan, B.E. (2011) Efficient recovery of nano-sized iron oxide particles from synthetic acid-mine drainage (amd) water using fuel cell technologies. Water Research 45(1),303-307.
    Clauwaert, P., Van der Ha, D., Boon, N., Verbeken, K., Verhaege, M., Rabaey, K. and Verstraete, W. (2007) Open air biocathode enables effective electricity generation with microbial fuel cells. Environmental Science & Technology 41(21), 7564-7569.
    Contreras, S., Rodriguez, M., Chamarro, E. and Esplugas, S. (2001) Uv-and uv/fe(ⅲ)-enhanced ozonation of nitrobenzene in aqueous solution. Journal of Photochemistry and Photobiology A:Chemistry 142(1),79-83.
    Cui, D., Guo, Y.Q., Cheng, H.Y., Liang, B., Kong, F.Y., Lee, H.S. and Wang, A.J. (2012) Azo dye removal in a membrane-free up-flow biocatalyzed electrolysis reactor coupled with an aerobic bio-contact oxidation reactor. Journal of Hazardous Materials 239,257-264.
    de Schamphelaire, L., van den Bossche, L., Dang, H.S., Hofte, M., Boon, N., Rabaey, K. and Verstraete, W. (2008) Microbial fuel cells generating electricity from rhizodeposits of rice plants. Environmental Science & Technology 42(8), 3053-3058.
    Dentel, S.K., Strogen, B. and Chiu, P. (2004) Direct generation of electricity from sludges and other liquid wastes. Water Science and Technology 50(9),161-168.
    Dickel, O., Haug, W. and Knackmuss, H.-J. (1993) Biodegradation of nitrobenzene by a sequential anaerobic-aerobic process. Biodegradation 4(3),187-194.
    Ding, H.R., Li, Y., Lu, A.H., Jin, S., Quan, C., Wang, C.Q., Wang, X., Zeng, C.P. and Yan, Y. (2010) Photocatalytically improved azo dye reduction in a microbial fuel cell with rutile-cathode. Bioresource Technology 101(10),3500-3505.
    Donovan, C., Dewan, A., Heo, D. and Beyenal, H. (2008) Batteryless, wireless sensor powered by a sediment microbial fuel cell. Environmental Science & Technology 42(22),8591-8596.
    Du, Z.W., Li, H.R. and Gu, T.Y. (2007) A state of the art review on microbial fuel cells:A promising technology for wastewater treatment and bioenergy. Biotechnology Advances 25(5),464-482.
    Fang, Z., Song, H.L., Cang, N. and Li, X.N. (2013) Performance of microbial fuel cell coupled constructed wetland system for decolorization of azo dye and bioelectricity generation. Bioresource Technology 144,165-171.
    Feng, C., Ma, L., Li, F., Mai, H., Lang, X. and Fan, S. (2010a) A polypyrrole/anthraquinone-2,6-disulphonic disodium salt (ppy/aqds)-modified anode to improve performance of microbial fuel cells. Biosensors and Bioelectronics 25(6),1516-1520.
    Feng, C.H., Li, F.B., Liu, H.Y., Lang, X.M. and Fan, S.S. (2010b) A dual-chamber microbial fuel cell with conductive film-modified anode and cathode and its application for the neutral electro-fenton process. Electrochimica Acta 55(6), 2048-2054.
    Feng, C.H., Li, F.B., Mai, H.J. and Li, X.Z. (2010c) Bio-electro-fenton process driven by microbial fuel cell for wastewater treatment. Environmental Science & Technology 44(5),1875-1880.
    Feng, C.H., Li, F.B., Sun, K.W., Liu, Y.Y., Liu, L.A., Yue, X.J. and Tong, H. (2011a) Understanding the role of fe(iii)/fe(ii) couple in mediating reductive transformation of 2-nitrophenol in microbial fuel cells. Bioresource Technology 102(2),1131-1136.
    Feng, Y, Wang, X., Logan, B.E. and Lee, H. (2008) Brewery wastewater treatment using air-cathode microbial fuel cells. Applied Microbiology and Biotechnology 78(5),873-880.
    Feng, Y.J., Yang, Q.A., Wang, X., Liu, Y.K., Lee, H. and Ren, N.Q. (201 lb) Treatment of biodiesel production wastes with simultaneous electricity generation using a single-chamber microbial fuel cell. Bioresource Technology 102(1),411-415.
    Fernando, E., Keshavarz, T. and Kyazze, G. (2012) Enhanced bio-decolourisation of acid orange 7 by shewanella oneidensis through co-metabolism in a microbial fuel cell. International Biodeterioration & Biodegradation 72,1-9.
    Finkelstein, D.A., Tender, L.M. and Zeikus, J.G (2006) Effect of electrode potential on electrode-reducing microbiota. Environmental Science & Technology 40(22), 6990-6995.
    Fischer, F., Bastian, C., Happe, M., Mabillard, E. and Schmidt, N. (2011) Microbial fuel cell enables phosphate recovery from digested sewage sludge as struvite. Bioresource Technology 102(10),5824-5830.
    Fishbein, L. (1984) An overview of environmental and toxicological aspects of aromatic hydrocarbons. I. Benzene. Science of The Total Environment 40(1), 189-218.
    Forgacs, E., Cserhati, T. and Oros, G (2004) Removal of synthetic dyes from wastewaters:A review. Environment International 30(7),953-971.
    Freguia, S., Teh, E.H., Boon, N., Leung, K.M., Keller, J. and Rabaey, K. (2010) Microbial fuel cells operating on mixed fatty acids. Bioresource Technology 101(4),1233-1238.
    Friman, H., Schechter, A., Nitzan, Y. and Cahan, R. (2012) Effect of external voltage on pseudomonas putida fl in a bio electrochemical cell using toluene as sole carbon and energy source. Microbiology-Sgm 158,414-423.
    Friman, H., Schechter, A., Ioffe, Y, Nitzan, Y and Cahan, R. (2013a) Current production in a microbial fuel cell using a pure culture of cupriavidus basilensis growing in acetate or phenol as a carbon source. Microbial Biotechnology 6(4), 425-434.
    Friman, H., Schechter, A., Nitzan, Y and Cahan, R. (2013b) Phenol degradation in bio-electrochemical cells. International Biodeterioration & Biodegradation 84, 155-160.
    Fu, L., You, S.J., Zhang, GQ., Yang, F.L. and Fang, X.H. (2010) Degradation of azo dyes using in-situ fenton reaction incorporated into h2o2-producing microbial fuel cell. Chemical Engineering Journal 160(1),164-169.
    Galvez, A., Greenman, J. and Ieropoulos, I. (2009) Landfill leachate treatment with microbial fuel cells; scale-up through plurality. Bioresource Technology 100(21), 5085-5091.
    Ge, Z., Zhang, F., Grimaud, J., Hurst, J. and He, Z. (2013) Long-term investigation of microbial fuel cells treating primary sludge or digested sludge. Bioresource Technology 136,509-514.
    Ghica, M.E. and Brett, C.M.A. (2005) A glucose biosensor using methyl viologen redox mediator on carbon film electrodes. Analytica Chimica Acta 532(2), 145-151.
    Gong, Y.M., Radachowsky, S.E., Wolf, M., Nielsen, M.E., Girguis, P.R. and Reimers, C.E. (2011) Benthic microbial fuel cell as direct power source for an acoustic modem and seawater oxygen/temperature sensor system. Environmental Science & Technology 45(11),5047-5053.
    Goud, R.K. and Mohan, S.V. (2011) Pre-fermentation of waste as a strategy to enhance the performance of single chambered microbial fuel cell (mfc). International Journal of Hydrogen Energy 36(21),13753-13762.
    Greenman, J., Galvez, A., Giusti, L. and Ieropoulos, L. (2009) Electricity from landfill leachate using microbial fuel cells:Comparison with a biological aerated filter. Enzyme and Microbial Technology 44(2),112-119.
    Gu, H.Y., Zhang, X.W., Li, Z.J. and Lei, L.C. (2007) Studies on treatment of chlorophenol-containing wastewater by microbial fuel cell. Chinese Science Bulletin 52(24),3448-3451.
    Guo, X., Zhan, Y.L., Chen, C.M., Zhao, L.J. and Guo, S.H. (2014) The influence of microbial synergistic and antagonistic effects on the performance of refinery wastewater microbial fuel cells. Journal of Power Sources 251,229-236.
    Guo, X.S., Liu, J.X. and Xiao, B.Y. (2013) Bioelectrochemical enhancement of hydrogen and methane production from the anaerobic digestion of sewage sludge in single-chamber membrane-free microbial electrolysis cells. International Journal of Hydrogen Energy 38(3),1342-1347.
    Hamelers, H.V.M., Ter Heijne, A., Sleutels, T., Jeremiasse, A.W., Strik, D. and Buisman, C.J.N. (2010) New applications and performance of bioelectrochemical systems. Applied Microbiology and Biotechnology 85(6),1673-1685.
    Han, J.L., Liu, Y., Chang, C.T., Chen, B.Y, Chen, W.M. and Xu, H.Z. (2011) Exploring characteristics of bioelectricity generation and dye decolorization of mixed and pure bacterial cultures from wine-bearing wastewater treatment. Biodegradation 22(2),321-333.
    Han, T.H., Khan, M.M., Kalathil, S., Lee, J. and Cho, M.H. (2013) Simultaneous enhancement of methylene blue degradation and power generation in a microbial fuel cell by gold nanoparticles. Industrial & Engineering Chemistry Research 52(24),8174-8181.
    Harnisch, F., Gimkiewicz, C., Bogunovic, B., Kreuzig, R. and Schroder, U. (2013) On the removal of sulfonamides using microbial bioelectrochemical systems. Electrochemistry Communications 26,77-80.
    Hastie, J., Bejan, D., Teutli-Leon, M. and Bunce, N.J. (2006) Electrochemical methods for degradation of orange ii (sodium 4-(2-hydroxy-1-naphthylazo)benzenesulfonate). Industrial & Engineering Chemistry Research 45(14),4898-4904.
    He, Y.R., Xiao, X., Li, W.W., Cai, P.J., Yuan, S.J., Yan, F.F., He, M.X., Sheng, G.R., Tong, Z.H. and Yu, H.Q. (2013) Electricity generation from dissolved organic matter in polluted lake water using a microbial fuel cell (mfc). Biochemical Engineering Journal 71,57-61.
    He, Z. and Angenent, L.T. (2006) Application of bacterial biocathodes in microbial fuel cells. Electroanalysis 18(19-20),2009-2015.
    Heijman, C.G, Grieder, E., Holliger, C. and Schwarzenbach, R.P. (1995) Reduction of nitroaromatic compounds coupled to microbial iron reduction in laboratory aquifer columns. Environmental Science & Technology 29(3),775-783.
    Heilmann, J. and Logan, B.E. (2006) Production of electricity from proteins using a microbial fuel cell. Water Environment Research 78(5),531-537.
    Hou, B., Sun, J. and Hu, Y.Y. (2011a) Effect of enrichment procedures on performance and microbial diversity of microbial fuel cell for congo red decolorization and electricity generation. Applied Microbiology and Biotechnology 90(4),1563-1572.
    Hou, B., Sun, J.A. and Hu, Y.Y. (2011b) Simultaneous congo red decolorization and electricity generation in air-cathode single-chamber microbial fuel cell with different microfiltration, ultrafiltration and proton exchange membranes. Bioresource Technology 102(6),4433-4438.
    Hou, B., Hu, Y.Y. and Sun, J. (2012) Performance and microbial diversity of microbial fuel cells coupled with different cathode types during simultaneous azo dye decolorization and electricity generation. Bioresource Technology 111, 105-110.
    Hu, Z. (2008) Electricity generation by a baffle-chamber membraneless microbial fuel cell. Journal of Power Sources 179(1),27-33.
    Huang, D.Y., Zhou, S.G, Chen, Q., Zhao, B., Yuan, Y. and Zhuang, L. (2011a) Enhanced anaerobic degradation of organic pollutants in a soil microbial fuel cell. Chemical Engineering Journal 172(2-3),647-653.
    Huang, L.P. and Angelidaki, I. (2008) Effect of humic acids on electricity generation integrated with xylose degradation in microbial fuel cells. Biotechnology and Bioengineering 100(3),413-422.
    Huang, L.P. and Logan, B.E. (2008a) Electricity generation and treatment of paper recycling wastewater using a microbial fuel cell. Applied Microbiology and Biotechnology 80(2),349-355.
    Huang, L.P. and Logan, B.E. (2008b) Electricity production from xylose in fed-batch and continuous-flow microbial fuel cells. Applied Microbiology and Biotechnology 80(4),655-664.
    Huang, L.P., Chen, J.W., Quan, X. and Yang, F.L. (2010a) Enhancement of hexavalent chromium reduction and electricity production from a biocathode microbial fuel cell. Bioprocess and Biosystems Engineering 33(8),937-945.
    Huang, L.P., Yang, X.H., Quan, X., Chen, J.W. and Yang, F.L. (2010b) A microbial fuel cell-electro-oxidation system for coking wastewater treatment and bioelectricity generation. Journal of Chemical Technology and Biotechnology 85(5),621-627.
    Huang, L.P., Chai, X.L., Chen, GH. and Logan, B.E. (2011b) Effect of set potential on hexavalent chromium reduction and electricity generation from biocathode microbial fuel cells. Environmental Science & Technology 45(11),5025-5031.
    Huang, L.P., Gan, L.L., Zhao, Q.L., Logan, B.E., Lu, H. and Chen, GH. (2011c) Degradation of pentachlorophenol with the presence of fermentable and non-fermentable co-substrates in a microbial fuel cell. Bioresource Technology 102(19),8762-8768.
    Huang, L.P., Chai, X.L., Quan, X., Logan, B.E. and Chen, GH. (2012a) Reductive dechlorination and mineralization of pentachlorophenol in biocathode microbial fuel cells. Bioresource Technology 111,167-174.
    Huang, L.P., Gan, L.L., Wang, N., Quan, X., Logan, B.E. and Chen, GH. (2012b) Mineralization of pentachlorophenol with enhanced degradation and power generation from air cathode microbial fuel cells. Biotechnology and Bioengineering 109(9),2211-2221.
    Ieropoulos, I., Greenman, J. and Melhuish, C. (2012) Urine utilisation by microbial fuel cells; energy fuel for the future. Physical Chemistry Chemical Physics 14(1), 94-98.
    Ieropoulos, I.A., Ledezma, P., Stinchcombe, A., Papaharalabos, G., Melhuish, C. and Greenman, J. (2013) Waste to real energy:The first mfc powered mobile phone. Physical Chemistry Chemical Physics 15(37),15312-15316.
    Ishii, S., Shimoyama, T., Hotta, Y. and Watanabe, K. (2008) Characterization of a filamentous biofilm community established in a cellulose-fed microbial fuel cell. Bmc Microbiology 8.
    Jain, R., Varshney, S. and Sikarwar, S. (2007) Electrochemical techniques for the removal of reactofix golden yellow 3 rfh from industrial wastes. Journal of Colloid and Interface Science 313(1),248-253.
    Jang, J.K., Chang, I.S., Moon, H., Kang, K.H. and Kim, B.H. (2006) Nitrilotriacetic acid degradation under microbial fuel cell environment. Biotechnology and Bioengineering 95(4),772-774.
    Jiang, J.Q., Zhao, Q.L., Wang, K., Wei, L.L., Zhang, GD. and Zhang, J.N. (2010a) Effect of ultrasonic and alkaline pretreatment on sludge degradation and electricity generation by microbial fuel cell. Water Science and Technology 61(11),2915-2921.
    Jiang, J.Q., Zhao, Q.L., Wei, L.L. and Wang, K. (2010b) Extracellular biological organic matters in microbial fuel cell using sewage sludge as fuel. Water Research 44(7),2163-2170.
    Jiang, J.Q., Zhao, Q.L., Wei, L.L., Wang, K. and Lee, D.J. (2011) Degradation and characteristic changes of organic matter in sewage sludge using microbial fuel cell with ultrasound pretreatment. Bioresource Technology 102(1),272-277.
    Jiang, Y.X., Ulrich, A.C. and Liu, Y. (2013) Coupling bioelectricity generation and oil sands tailings treatment using microbial fuel cells. Bioresource Technology 139, 349-354.
    Jonstrup, M., Kumar, N., Murto, M. and Mattiasson, B. (2011) Sequential anaerobic-aerobic treatment of azo dyes:Decolourisation and amine degradability. Desalination 280(1-3),339-346.
    Kalathil, S., Lee, J. and Cho, M.H. (2011) Granular activated carbon based microbial fuel cell for simultaneous decolorization of real dye wastewater and electricity generation. New Biotechnology 29(1),32-37.
    Kalathil, S., Lee, J. and Cho, M.H. (2012) Efficient decolorization of real dye wastewater and bioelectricity generation using a novel single chamber biocathode-microbial fuel cell. Bioresource Technology 119,22-27.
    Kappler, A., Benz, M., Schink, B. and Brune, A. (2004) Electron shuttling via humic acids in microbial iron(iii) reduction in a freshwater sediment. FEMS Microbiology Ecology 47(1),85-92.
    Kassongo, J. and Togo, C.A. (2011) Evaluation of full-strength paper mill effluent for electricity generation in mediator-less microbial fuel cells. African Journal of Biotechnology 10(69),15564-15570.
    Kim, B.H., Chang, I.S. and Gadd, G.M. (2007) Challenges in microbial fuel cell development and operation. Applied Microbiology and Biotechnology 76(3), 485-494.
    Kim, J.R., Dec, J., Bruns, M.A. and Logan, B.E. (2008) Removal of odors from swine wastewater by using microbial fuel cells. Applied and Environmental Microbiology 74(8),2540-2543.
    Kloepfer, A., Jekel, M. and Reemtsma, T. (2005) Occurrence, sources, and fate of benzothiazoles in municipal wastewater treatment plants. Environmental Science & Technology 39(10),3792-3798.
    Kong, F.Y., Wang, A.J., Liang, B., Liu, W.Z. and Cheng, H.Y. (2013) Improved azo dye decolorization in a modified sleeve-type bioelectrochemical system. Bioresource Technology 143,669-673.
    Kong, F.Y., Wang, A.J., Cheng, H.Y. and Liang, B. (2014) Accelerated decolorization of azo dye congo red in a combined bioanode-biocathode bioelectrochemical system with modified electrodes deployment. Bioresource Technology 151, 332-339.
    Kuscu, O.S. and Sponza, D.T. (2007) Effects of hydraulic retention time (hrt) and sludge retention time (srt) on the treatment of nitrobenzene in ambr/cstr reactor systems. Environmental Technology 28(3),285-296.
    Lakaniemi, A.M., Tuovinen, O.H. and Puhakka, J.A. (2012) Production of electricity and butanol from microalgal biomass in microbial fuel cells. Bioenergy Research 5(2),481-491.
    Lee, Y, Martin, L., Grasel, P., Tawfiq, K. and Chen, G (2013) Power generation and nitrogen removal of landfill leachate using microbial fuel cell technology. Environmental Technology 34(19),2727-2736.
    Li, J., Liu, GL., Zhang, R.D., Luo, Y, Zhang, C.P. and Li, M.C. (2010a) Electricity generation by two types of microbial fuel cells using nitrobenzene as the anodic or cathodic reactants. Bioresource Technology 101(11),4013-4020.
    Li, Y, Lu, A.H., Ding, H.R., Jin, S., Yan, Y.H., Wang, C.Q., Zen, C.P. and Wang, X. (2009) Cr(vi) reduction at rutile-catalyzed cathode in microbial fuel cells. Electrochemistry Communications 11(7),1496-1499.
    Li, Y, Lu, A.H., Ding, H.R., Wang, X., Wang, C.Q., Zeng, C.P. and Yan, YH. (2010b) Microbial fuel cells using natural pyrrhotite as the cathodic heterogeneous fenton catalyst towards the degradation of biorefractory organics in landfill leachate. Electrochemistry Communications 12(7),944-947.
    Li, Z.J., Zhang, X.W. and Lei, L.C. (2008) Electricity production during the treatment of real electroplating wastewater containing cr(6+) using microbial fuel cell. Process Biochemistry 43(12),1352-1358.
    Li, Z.J., Zhang, X.W., Lin, I., Han, S. and Lei, L.C. (2010c) Azo dye treatment with simultaneous electricity production in an anaerobic-aerobic sequential reactor and microbial fuel cell coupled system. Bioresource Technology 101(12),4440-4445.
    Liang, B., Cheng, H.Y., Kong, D.Y., Gao, S.H., Sun, F., Cui, D., Kong, F.Y., Zhou, A.J., Liu, W.Z., Ren, N.Q., Wu, W.M., Wang, A.J. and Lee, D.J. (2013) Accelerated reduction of chlorinated nitroaromatic antibiotic chloramphenicol by biocathode. Environmental Science & Technology 47(10),5353-5361.
    Liu, G., Wu, T., Zhao, J., Hidaka, H. and Serpone, N. (1999) Photoassisted degradation of dye pollutants.8. Irreversible degradation of alizarin red under visible light radiation in air-equilibrated aqueous tio2 dispersions. Environmental Science & Technology 33(12),2081-2087.
    Liu, H., Cheng, S.A. and Logan, B.E. (2005) Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. Environmental Science & Technology 39(2),658-662.
    Liu, H., Hu, T.J., Zeng, GM., Yuan, X.Z., Wu, J.J., Shen, Y. and Yin, L. (2013) Electricity generation using p-nitrophenol as substrate in microbial fuel cell. International Biodeterioration & Biodegradation 76,108-111.
    Liu, L., Li, F.B., Feng, C.H. and Li, X.Z. (2009) Microbial fuel cell with an azo-dye-feeding cathode. Applied Microbiology and Biotechnology 85(1), 175-183.
    Liu, L.A., Yuan, Y, Li, F.B. and Feng, C.H. (2011a) In-situ cr(vi) reduction with electrogenerated hydrogen peroxide driven by iron-reducing bacteria. Bioresource Technology 102(3),2468-2473.
    Liu, R.H., Sheng, G.P., Sun, M., Zang, GL., Li, W.W., Tong, Z.H., Dong, F., Lam, M.H.W. and Yu, H.Q. (2011b) Enhanced reductive degradation of methyl orange in a microbial fuel cell through cathode modification with redox mediators. Applied Microbiology and Biotechnology 89(1),201-208.
    Logan, B.E., Murano, C., Scott, K., Gray, N.D. and Head, I.M. (2005) Electricity generation from cysteine in a microbial fuel cell. Water Research 39(5),942-952.
    Logan, B.E., Hamelers, B., Rozendal, R.A., Schrorder, U., Keller, J., Freguia, S., Aelterman, P., Verstraete, W. and Rabaey, K. (2006) Microbial fuel cells: Methodology and technology. Environmental Science & Technology 40(17), 5181-5192.
    Logan, B.E. (2009) Exoelectrogenic bacteria that power microbial fuel cells. Nature Reviews Microbiology 7(5),375-381.
    Logan, B.E. (2010) Scaling up microbial fuel cells and other bioelectrochemical systems. Applied Microbiology and Biotechnology 85(6),1665-1671.
    Lohner, S.T., Becker, D., Mangold, K.-M. and Tiehm, A. (2011) Sequential reductive and oxidative biodegradation of chloroethenes stimulated in a coupled bioelectro-process. Environmental Science & Technology 45(15),6491-6497.
    Lovley, D.R. (2011) Live wires:Direct extracellular electron exchange for bioenergy and the bioremediation of energy-related contamination. Energy & Environmental Science 4(12),4896-4906.
    Lu, N., Zhou, S.G, Zhuang, L., Zhang, J.T. and Ni, J.R. (2009) Electricity generation from starch processing wastewater using microbial fuel cell technology. Biochemical Engineering Journal 43(3),246-251.
    Luo, H.P., Liu, GL., Zhang, R.D. and Jin, S. (2009) Phenol degradation in microbial fuel cells. Chemical Engineering Journal 147(2-3),259-264.
    Luo, Y, Zhang, R.D., Liu, GL., Li, J., Li, M.C. and Zhang, C.P. (2010) Electricity generation from indole and microbial community analysis in the microbial fuel cell. Journal of Hazardous Materials 176(1-3),759-764.
    Luo, Y., Zhang, R.D., Liu, GL., Li, J., Qin, B.Y., Li, M.C. and Chen, S.S. (2011) Simultaneous degradation of refractory contaminants in both the anode and cathode chambers of the microbial fuel cell. Bioresource Technology 102(4), 3827-3832.
    Marashi, S.K.F., Kariminia, H.R. and Savizi, I.S.P. (2013) Bimodal electricity generation and aromatic compounds removal from purified terephthalic acid plant wastewater in a microbial fuel cell. Biotechnology Letters 35(2),197-203.
    Martinez-Huitle, C.A. and Brillas, E. (2009) Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods:A general review. Applied Catalysis B:Environmental 87(3-4),105-145.
    Min, B. and Logan, B.E. (2004) Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell. Environmental Science & Technology 38(21),5809-5814.
    Min, B., Kim, J.R., Oh, S.E., Regan, J.M. and Logan, B.E. (2005) Electricity generation from swine wastewater using microbial fuel cells. Water Research 39(20),4961-4968.
    Mohan, S.V. and Chandrasekhar, K. (2011) Self-induced bio-potential and graphite electron accepting conditions enhances petroleum sludge degradation in bio-electrochemical system with simultaneous power generation. Bioresource Technology 102(20),9532-9541.
    Morris, J.M. and Jin, S. (2008) Feasibility of using microbial fuel cell technology for bioremediation of hydrocarbons in groundwater. Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering 43(1),18-23.
    Morris, J.M., Jin, S., Crimi, B. and Pruden, A. (2009) Microbial fuel cell in enhancing anaerobic biodegradation of diesel. Chemical Engineering Journal 146(2), 161-167.
    Morris, J.M. and Jin, S. (2012) Enhanced biodegradation of hydrocarbon-contaminated sediments using microbial fuel cells. Journal of Hazardous Materials 213,474-477.
    Mu, Y., Yu, H.Q., Zheng, J.C., Zhang, S.J. and Sheng, GP. (2004) Reductive degradation of nitrobenzene in aqueous solution by zero-valent iron. Chemosphere 54(7),789-794.
    Mu, Y, Rabaey, K., Rozendal, R.A., Yuan, Z.G and Keller, J. (2009a) Decolorization of azo dyes in bioelectrochemical systems. Environmental Science & Technology 43(13),5137-5143.
    Mu, Y, Rozendal, R.A., Rabaey, K. and Keller, J. (2009b) Nitrobenzene removal in bioelectrochemical systems. Environmental Science & Technology 43(22), 8690-8695.
    Mu, Y, Radjenovic, J., Shen, J.Y, Rozendal, R.A., Rabaey, K. and Keller, J. (2011) Dehalogenation of iodinated X-ray contrast media in a bioelectrochemical system. Environmental Science & Technology 45(2),782-788.
    Niessen, J., Schroder, U., Harnisch, F. and Scholz, F. (2005) Gaining electricity from in situ oxidation of hydrogen produced by fermentative cellulose degradation. Letters in Applied Microbiology 41(3),286-290.
    Niu, C.G, Wang, Y, Zhang, X.G, Zeng, GM., Huang, D.W., Ruan, M. and Li, X.W. (2012) Decolorization of an azo dye orange g in microbial fuel cells using fe(ⅱ)-edta catalyzed persulfate. Bioresource Technology 126,101-106.
    O'Neill, F.J., Bromley-Challenor, K.C.A., Greenwood, R.J. and Knapp, J.S. (2000) Bacterial growth on aniline:Implications for the biotreatment of industrial wastewater. Water Research 34(18),4397-4409.
    Pant, D., Van Bogaert, G., Diels, L. and Vanbroekhoven, K. (2010) A review of the substrates used in microbial fuel cells (mfcs) for sustainable energy production. Bioresource Technology 101(6),1533-1543.
    Patil, S.A., Surakasi, V.P., Koul, S., Ijmulwar, S., Vivek, A., Shouche, Y.S. and Kapadnis, B.P. (2009) Electricity generation using chocolate industry wastewater and its treatment in activated sludge based microbial fuel cell and analysis of developed microbial community in the anode chamber. Bioresource Technology 100(21),5132-5139.
    Pereira, R., Pereira, L., van der Zee, F.P. and Madalena Alves, M. (2011) Fate of aniline and sulfanilic acid in uasb bioreactors under denitrifying conditions. Water Research 45(1),191-200.
    Pham, H., Boon, N., Marzorati, M. and Verstraete, W. (2009) Enhanced removal of 1,2-dichloroethane by anodophilic microbial consortia. Water Research 43(11), 2936-2946.
    Puig, S., Serra, M., Coma, M., Cabre, M., Balaguer, M.D. and Colprim, J. (2011) Microbial fuel cell application in landfill leachate treatment. Journal of Hazardous Materials 185(2-3),763-767.
    Rabaey, K., Lissens, G., Siciliano, S.D. and Verstraete, W. (2003) A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency. Biotechnology Letters 25(18),1531-1535.
    Rabaey, K. and Rozendal, R.A. (2010) Microbial electrosynthesis-revisiting the electrical route for microbial production. Nature Reviews Microbiology 8(10), 706-716.
    Radjenovic, J., Flexer, V, Donose, B.C., Sedlak, D.L. and Keller, J. (2013) Removal of the x-ray contrast media diatrizoate by electrochemical reduction and oxidation. Environmental Science & Technology 47(23),13686-13694.
    Rakoczy, J., Feisthauer, S., Wasmund, K., Bombach, P., Neu, T.R., Vogt, C. and Richnow, H.H. (2013) Benzene and sulfide removal from groundwater treated in a microbial fuel cell. Biotechnology and Bioengineering 110(12),3104-3113.
    Reimers, C.E., Tender, L.M., Fertig, S. and Wang, W. (2001) Harvesting energy from the marine sediment-water interface. Environmental Science & Technology 35(1), 192-195.
    Reimers, C.E., Girguis, P., Stecher, H.A., Tender, L.M., Ryckelynck, N. and Whaling, P. (2006) Microbial fuel cell energy from an ocean cold seep. Geobiology 4(2), 123-136.
    Rezaei, F., Richard, T.L., Brennan, R.A. and Logan, B.E. (2007) Substrate-enhanced microbial fuel cells for improved remote power generation from sediment-based systems. Environmental Science & Technology 41(11),4053-4058.
    Rezaei, F., Xing, D.F., Wagner, R., Regan, J.M., Richard, T.L. and Logan, B.E. (2009) Simultaneous cellulose degradation and electricity production by enterobacter cloacae in a microbial fuel cell. Applied and Environmental Microbiology 75(11), 3673-3678.
    Rismani-Yazdi, H., Christy, A.D., Dehority, B.A., Morrison, M., Yu, Z. and Tuovinen, O.H. (2007) Electricity generation from cellulose by rumen microorganisms in microbial fuel cells. Biotechnology and Bioengineering 97(6),1398-1407.
    Rodriguez, M., Timokhin, V., Michl, F., Contreras, S., Gimenez, J. and Esplugas, S. (2002) The influence of different irradiation sources on the treatment of nitrobenzene. Catalysis Today 76(2-4),291-300.
    Rosenbaum, M.A. and Franks, A.E. (2014) Microbial catalysis in bioelectrochemical technologies:Status quo, challenges and perspectives. Applied Microbiology and Biotechnology 98(2),509-518.
    Sakai, S. and Yagishita, T. (2007) Microbial production of hydrogen and ethanol from glycerol-containing wastes discharged from a biodiesel fuel production plant in a bioelectrochemical reactor with thionine. Biotechnology and Bioengineering 98(2),340-348.
    Sasaki, K., Hirano, S., Morita, M., Sasaki, D., Matsumoto, N., Ohmura, N. and Igarashi, Y. (2011) Bioelectrochemical system accelerates microbial growth and degradation of filter paper. Applied Microbiology and Biotechnology 89(2), 449-455.
    Savizi, I.S.P., Kariminia, H.R. and Bakhshian, S. (2012) Simultaneous decolorization and bioelectricity generation in a dual chamber microbial fuel cell using electropolymerized-enzymatic cathode. Environmental Science & Technology 46(12),6584-6593.
    Scott, K. and Murano, C. (2007) A study of a microbial fuel cell battery using manure sludge waste. Journal of Chemical Technology and Biotechnology 82(9), 809-817.
    Shantaram, A., Beyenal, H., Raajan, R., Veluchamy, A. and Lewandowski, Z. (2005) Wireless sensors powered by microbial fuel cells. Environmental Science & Technology 39(13),5037-5042.
    Shen, J.Y., Feng, C.C., Zhang, Y.Y., Jia, F., Sun, X.Y., Li, J.S., Han, W.Q., Wang, L.J. and Mu, Y. (2012) Bioelectrochemical system for recalcitrant p-nitrophenol removal. Journal of Hazardous Materials 209,516-519.
    Shen, J.Y., Zhang, Y.Y., Xu, X.P., Hua, C.X., Sun, X.Y., Li, J.S., Mu, Y. and Wang, L.J. (2013) Role of molecular structure on bioelectrochemical reduction of mononitrophenols from wastewater. Water Research 47(15),5511-5519.
    Sleutels, T., Ter Heijne, A., Buisman, C.J.N. and Hamelers, H.V.M. (2012) Bioelectrochemical systems:An outlook for practical applications. Chemsuschem 5(6),1012-1019.
    Song, H., Guo, W., Liu, M.L. and Sun, J.H. (2013) Performance of microbial fuel cells on removal of metronidazole. Water Science and Technology 68(12), 2599-2604.
    Song, T.S., Xu, Y, Ye, Y.J., Chen, Y.W. and Shen, S.B. (2009) Electricity generation from terephthalic acid using a microbial fuel cell. Journal of Chemical Technology and Biotechnology 84(3),356-360.
    Sukkasem, C., Laehlah, S., Hniman, A., O-Thong, S., Boonsawang, P., Rarngnarong, A., Nisoa, M. and Kirdtongmee, P. (2011) Upflow bio-filter circuit (ubfc): Biocatalyst microbial fuel cell (mfc) configuration and application to biodiesel wastewater treatment. Bioresource Technology 102(22),10363-10370.
    Sun, F., Liu, H., Liang, B., Song, R.T., Yan, Q. and Wang, A.J. (2013a) Reductive degradation of chloramphenicol using bioelectrochemical system (bes):A comparative study of abiotic cathode and biocathode. Bioresource Technology 143,699-702.
    Sun, J., Hu, Y. Y., Bi, Z. and Cao, Y.Q. (2009) Simultaneous decolorization of azo dye and bioelectricity generation using a microfiltration membrane air-cathode single-chamber microbial fuel cell. Bioresource Technology 100(13),3185-3192.
    Sun, J., Li, Y.M., Hu, Y.Y., Hou, B., Xu, Q., Zhang, Y.P. and Li, S.Z. (2012a) Enlargement of anode for enhanced simultaneous azo dye decolorization and power output in air-cathode microbial fuel cell. Biotechnology Letters 34(11), 2023-2029.
    Sun, J., Li, W.J., Li, Y.M., Hu, Y.Y. and Zhang, Y.P. (2013b) Redox mediator enhanced simultaneous decolorization of azo dye and bioelectricity generation in air-cathode microbial fuel cell. Bioresource Technology 142,407-414.
    Sun, J.A., Bi, Z., Hou, B., Cao, Y.Q. and Hu, Y.Y. (2011) Further treatment of decolorization liquid of azo dye coupled with increased power production using microbial fuel cell equipped with an aerobic biocathode. Water Research 45(1), 283-291.
    Sun, M., Reible, D.D., Lowry, GV. and Gregory, K.B. (2012b) Effect of applied voltage, initial concentration, and natural organic matter on sequential reduction/oxidation of nitrobenzene by graphite electrodes. Environmental Science & Technology 46(11),6174-6181.
    Tandukar, M., Huber, S.J., Onodera, T. and Pavlostathis, S.G (2009) Biological chromium(vi) reduction in the cathode of a microbial fuel cell. Environmental Science & Technology 43(21),8159-8165.
    Tao, H.C., Gao, Z.Y., Ding, H., Xu, N. and Wu, W.M. (2012) Recovery of silver from silver(i)-containing solutions in bioelectrochemical reactors. Bioresource Technology 111,92-97.
    Tao, H.C., Wei, X.Y., Zhang, L.J., Lei, T. and Xu, N. (2013) Degradation of p-nitrophenol in a bes-fenton system based on limonite. Journal of Hazardous Materials 254,236-241.
    Tender, L.M., Gray, S.A., Groveman, E., Lowy, D.A., Kauffman, P., Melhado, J., Tyce, R.C., Flynn, D., Petrecca, R. and Dobarro, J. (2008) The first demonstration of a microbial fuel cell as a viable power supply:Powering a meteorological buoy. Journal of Power Sources 179(2),571-575.
    Ter Heijne, A., Liu, F., van der Weijden, R., Weijma, J., Buisman, C.J.N. and Hamelers, H.V.M. (2010) Copper recovery combined with electricity production in a microbial fuel cell. Environmental Science & Technology 44(11),4376-4381.
    Virdis, B., Rabaey, K., Rozendal, R.A., Yuan, Z.G and Keller, J. (2010) Simultaneous nitrification, denitrification and carbon removal in microbial fuel cells. Water Research 44(9),2970-2980.
    Virdis, B., Read, S.T., Rabaey, K., Rozendal, R.A., Yuan, Z.G. and Keller, J. (2011) Biofilm stratification during simultaneous nitrification and denitrification (snd) at a biocathode. Bioresource Technology 102(1),334-341.
    Wagner, R.C., Call, D.I. and Logan, B.E. (2010) Optimal set anode potentials vary in bioelectrochemical systems. Environmental Science & Technology 44(16), 6036-6041.
    Wang, A.J., Cheng, H.Y., Liang, B., Ren, N.Q., Cui, D., Lin, N., Kim, B.H. and Rabaey, K. (2011a) Efficient reduction of nitrobenzene to aniline with a biocatalyzed cathode. Environmental Science & Technology 45(23), 10186-10193.
    Wang, A.J., Cui, D., Cheng, H.Y., Guo, Y.Q., Kong, F.Y., Ren, N.Q. and Wu, W.M. (2012a) A membrane-free, continuously feeding, single chamber up-flow biocatalyzed electrolysis reactor for nitrobenzene reduction. Journal of Hazardous Materials 199,401-409.
    Wang, H.M. and Ren, Z.Y.J. (2013) A comprehensive review of microbial electrochemical systems as a platform technology. Biotechnology Advances 31(8), 1796-1807.
    Wang, X., Feng, Y.J., Wang, H.M., Qu, Y.P., Yu, Y.L., Ren, N.Q., Li, N., Wang, E., Lee, H. and Logan, B.E. (2009) Bioaugmentation for electricity generation from corn stover biomass using microbial fuel cells. Environmental Science & Technology 43(15),6088-6093.
    Wang, X., Cai, Z., Zhou, Q.X., Zhang, Z.N. and Chen, C.H. (2012b) Bioelectrochemical stimulation of petroleum hydrocarbon degradation in saline soil using u-tube microbial fuel cells. Biotechnology and Bioengineering 109(2), 426-433.
    Wang, Y.Z., Wang, A.J., Liu, W.Z., Kong, D.Y., Tan, W.B. and Liu, C. (2013a) Accelerated azo dye removal by biocathode formation in single-chamber biocatalyzed electrolysis systems. Bioresource Technology 146,740-743.
    Wang, Y.Z., Wang, A.J., Liu, W.Z. and Sun, Q. (2013b) Enhanced azo dye removal through anode biofilm acclimation to toxicity in single-chamber biocatalyzed electrolysis system. Bioresource Technology 142,688-692.
    Wang, Z., Lim, B. and Choi, C. (2011b) Removal of Hg2+ as an electron acceptor coupled with power generation using a microbial fuel cell. Bioresource Technology 102(10),6304-6307.
    Weber, E.J. and Lee Wolfe, N. (1987) Kinetic studies of the reduction of aromatic azo compounds in anaerobic sediment/water systems. Environmental Toxicology and Chemistry 6(12),911-919.
    Wen, Q., Kong, F.Y., Zheng, H.T., Cao, D.X., Ren, Y.M. and Yin, J.L. (2011) Electricity generation from synthetic penicillin wastewater in an air-cathode single chamber microbial fuel cell. Chemical Engineering Journal 168(2), 572-576.
    Wen, Q., Yang, T., Wang, S.Y, Chen, Y, Cong, L.J. and Qu, YJ. (2013) Dechlorination of 4-chlorophenol to phenol in bioelectrochemical systems. Journal of Hazardous Materials 244,743-749.
    Xafenias, N., Zhang, Y. and Banks, C.J. (2013) Enhanced performance of hexavalent chromium reducing cathodes in the presence of shewanella oneidensis mr-1 and lactate. Environmental Science & Technology 47(9),4512-4520.
    Xu, N., Zhang, Y.Y., Tao, H.C., Zhou, S.G and Zeng, Y.Q. (2013) Bio-electro-fenton system for enhanced estrogens degradation. Bioresource Technology 138, 136-140.
    Xue, A., Shen, Z.Z., Zhao, B. and Zhao, H.Z. (2013) Arsenite removal from aqueous solution by a microbial fuel cell-zerovalent iron hybrid process. Journal of Hazardous Materials 261,621-627.
    Yadav, A.K., Dash, P., Mohanty, A., Abbassi, R. and Mishra, B.K. (2012) Performance assessment of innovative constructed wetland-microbial fuel cell for electricity production and dye removal. Ecological Engineering 47,126-131.
    Yan, Z.S., Song, N., Cai, H.Y., Tay, J.H. and Jiang, H.L. (2012) Enhanced degradation of phenanthrene and pyrene in freshwater sediments by combined employment of sediment microbial fuel cell and amorphous ferric hydroxide. Journal of Hazardous Materials 199,217-225.
    Yang, R., Ruan, C., Dai, W., Deng, J. and Kong, J. (1999) Electropolymerization of thionine in neutral aqueous media and h2o2 biosensor based on poly(thionine). Electrochimica Acta 44(10),1585-1596.
    Yang, Y.G., Xu, M.Y., He, Z.L., Guo, J., Sun, GP. and Zhou, J.Z. (2013) Microbial electricity generation enhances decabromodiphenyl ether (bde-209) degradation. Plos One 8(8).
    Yu, L., Li, W.-W., Lam, M.-W. and Yu, H.-Q. (2011) Adsorption and decolorization kinetics of methyl orange by anaerobic sludge. Applied Microbiology and Biotechnology 90(3),1119-1127.
    Yuan, S.J., Sheng, G.P., Li, W.W., Lin, Z.Q., Zeng, R.J., Tong, Z.H. and Yu, H.Q. (2010) Degradation of organic pollutants in a photoelectrocatalytic system enhanced by a microbial fuel cell. Environmental Science & Technology 44(14), 5575-5580.
    Zang, GL., Sheng, G.P., Tong, Z.H., Liu, X.W., Teng, S.X., Li, W.W. and Yu, H.Q. (2010) Direct electricity recovery from canna indica by an air-cathode microbial fuel cell inoculated with rumen microorganisms. Environmental Science & Technology 44(7),2715-2720.
    Zang, GL., Sheng, G.R, Li, W.W., Tong, Z.H., Zeng, R.J., Shi, C. and Yu, H.Q. (2012) Nutrient removal and energy production in a urine treatment process using magnesium ammonium phosphate precipitation and a microbial fuel cell technique. Physical Chemistry Chemical Physics 14(6),1978-1984.
    Zhang, B.G, Zhou, S.G, Zhao, H.Z., Shi, C.H., Kong, L.C., Sun, J.J., Yang, Y. and Ni, J.R. (2010a) Factors affecting the performance of microbial fuel cells for sulfide and vanadium (v) treatment. Bioprocess and Biosystems Engineering 33(2), 187-194.
    Zhang, B.G, Feng, C.P., Ni, J.R., Zhang, J. and Huang, W.L. (2012a) Simultaneous reduction of vanadium (v) and chromium (vi) with enhanced energy recovery based on microbial fuel cell technology. Journal of Power Sources 204,34-39.
    Zhang, C.P., Li, M.C., Liu, GL., Luo, H.P. and Zhang, R.D. (2009a) Pyridine degradation in the microbial fuel cells. Journal of Hazardous Materials 172(1), 465-471.
    Zhang, C.P., Liu, GL., Zhang, R.D. and Luo, H.P. (2010b) Electricity production from and biodegradation of quinoline in the microbial fuel cell. Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering 45(2),250-256.
    Zhang, GD., Zhao, Q.L., Jiao, Y, Wang, K., Lee, D.J. and Ren, N.Q. (2012b) Efficient electricity generation from sewage sludge using biocathode microbial fuel cell. Water Research 46(1),43-52.
    Zhang, J., Zhang, B.G, Tian, C.X., Ye, Z.F., Liu, Y, Lei, Z.F., Huang, W.L. and Feng, C.P. (2013) Simultaneous sulfide removal and electricity generation with corn stover biomass as co-substrate in microbial fuel cells. Bioresource Technology 138,198-203.
    Zhang, T., Gannon, S.M., Nevin, K.P., Franks, A.E. and Lovley, D.R. (2010c) Stimulating the anaerobic degradation of aromatic hydrocarbons in contaminated sediments by providing an electrode as the electron acceptor. Environmental Microbiology 12(4),1011-1020.
    Zhang, Y.F., Min, B.K., Huang, L.P. and Angelidaki, I. (2009b) Generation of electricity and analysis of microbial communities in wheat straw biomass-powered microbial fuel cells. Applied and Environmental Microbiology 75(11),3389-3395.
    Zhu, X.P. and Ni, J.R. (2009) Simultaneous processes of electricity generation and p-nitrophenol degradation in a microbial fuel cell. Electrochemistry Communications 11(2),274-277.
    Zhuang, L., Zhou, S.G., Yuan, Y, Liu, M. and Wang, YD. (2010) A novel bioelectro-fenton system for coupling anodic cod removal with cathodic dye degradation. Chemical Engineering Journal 163(1-2),160-163.
    Zhuang, L., Yuan, Y, Wang, Y.Q. and Zhou, S.G. (2012) Long-term evaluation of a 10-liter serpentine-type microbial fuel cell stack treating brewery wastewater. Bioresource Technology 123,406-412.
    Zuo, Y, Maness, P.C. and Logan, B.E. (2006) Electricity production from steam-exploded corn stover biomass. Energy & Fuels 20(4),1716-1721.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700