汽轮发电机非线性特征的机理及其与运行条件的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文系统研究了汽轮发电机在正常及非正常运行条件下的复杂非线性问题。提出了汽轮发电机的非线性特征曲线族包含四种类型,揭示了这四种类型各自出现的条件。对导致上述非线性特征曲线族相互之间及其与空载特性之间出现显著差异的三个本质因素(主磁通饱和效应、励磁电流漏磁通饱和效应及磁场畸变非线性)进行了定量分析,揭示了这三个因素与运行条件及稳态非线性参数之间的关系。进而对非线性模型机进行了设计研究。本文工作主要包括以下几个方面:
     1)通过对发电机在多种不同运行条件下非线性特征曲线族的系统分析,提出了汽轮发电机气隙电势与合成磁势之间的非线性关系具有四种类型。在不同运行条件下它们之间及与空载特性之间存在着偏斜、相交及交错等复杂关系。某些运行条件下差异显著,为产生同一气隙电势,所需磁势与传统按空载特性确定的数值差异可达100%以上。
     2)对导致上述非线性特征曲线族相互之间呈现复杂关系的三个内在因素(主磁通饱和效应、励磁电流漏磁通饱和效应及磁场畸变非线性)进行了定量分析。揭示了电机这三种内在非线性因素是导致外在负载非线性特征曲线族相互之间出现显著差异的本质原因。
     3)首次提出上述三个内在非线性因素与外部运行条件具有如下关系:主磁通饱和效应不仅受到端电压大小的影响还受到功角的影响;励磁电流漏磁通导致的转子轭部附加饱和除了受到励磁电流的影响还受到了功角的影响;磁场畸变程度不仅与功角有关,还与励磁电流及q轴电流的大小有关,在某些运行条件下,等效气隙长度可达电机实际气隙长度的3倍以上。
     4)本文对已有的7.5kW模型机进行数值分析及实验研究。发现该模型机无法有效模拟大型汽轮发电机的非线性特性。在此基础上,提出模型机的结构特点及材料选择是成功模拟大型汽轮发电机非线性特性的关键。进而设计了一种新型的30kW非线性模型机。
     5)将最小二乘法参数辨识与非线性参数的数值计算相结合,得到了不同运行条件下的非线性参数x_(ad)和x_(aq)。并利用发电机内部的非线性机理对非线性参数变化趋势的合理性进行了说明。
The complex nonlinear characteristics of turbo-generator operating under variousconditions are studied in this thesis. The thesis proposes that nonlinear characteristics curvesof large generators include four typies. Three inner factors inducing the difference ofnonlinear characteristics curves are analyzed quantitatively including the main magnetic fluxcausedsaturation,excitedcurrent causedsaturationandmagneticfielddistortionnonlinearity.The relationship between these factors and operating conditions are discovered. Finally, thenonlinear model machine is further studied and designed. The work and attribute of the thesisisshownbelow:
     1)Load characteristics of turbo-generator under different operating conditions arestudied. The analysis shows that these curves include four types. Load characteristics of thefour cases are compared and it finds that most of them have great discrepancies from no-loadcurves and there are also discrepancies among these curves. In some cases, the discrepancymayreachto100%.
     2)Thesolutionandtheexpressionofmagneticdensityandmagneticpotentialaregivenin this thesis. Theyare used to quantitativelydescribe the inner nonlinear degree. Three innerfactors causing the difference of outer load characteristics are introduced. It shows that thethree inner nonlinear factors are the essential reasons resulting in the complex loadcharacteristics.
     3)Through extensive study it discovers that: The main flux saturation is influenced bythe terminal voltage and the power angle; the excited flux leakage caused iron saturation isnot only affected by the excited current but also affected by the power angle; while themagnetic field distortion is influenced bythe power angle, the excited currents and the q-axiscurrent.Undersomeconditions,theeffectiveair-gapmaybethreetimesofmachineair-gap.
     4)Through the numerical calculation and test research on a 7.5kW model machine, itshows that this model machine could not model the characteristics of the 300MW generatorexactly due to the structure difference. Through the analysis on the typical operatingconditions of the load and no-load characteristics of the 7.5kW and 300MW, the thesisdiscovers that a proper structure is the key problem of a good model machine. According tothe above conclusions, a 30kW model machine with novel structure is designed. The resultsshow that load characteristics of 30kW machine are ideal and can model the 300MWgeneratorwell.
     5)Theleastsquaremethodisusedtoestimatethelinearparametersof300MWgenerator.The saturated parameters xa dand x aqare calculated with the outside conditions changing.The analysis shows that the inner nonlinear factors are the essential cause making theparameterschanging.
引文
[1] 王建设. 凸极同步电机饱和同步电抗的数值计算. 哈尔滨电工学院学报,1985,8(3):179~189
    [2] Dandeno, P. L.. et al. Current Usage and Suggested Practices in Power System StabilitySimulationsforSynchronousMachine.IEEETransactononEC,1986,1(1):77~93.
    [3] Macdonald, D. C.. Turbine Generator Steady-State Reactances, Proc. of IEE, 1985,132(3):101~108
    [4] El-Serafi, A. M. et al. Experimental Verification of the Cross Magnetizing PhenomenoninSaturatedSynchronousMachines.IEEETransactononMAG,1987,23(5):3029~3031
    [5] El-Serafi, A. M. et al. Experimental Study of the Saturation and the Cross MagnetizingPhenomenon in Saturated Synchronous Machines. IEEE Transacton on EC, 1988, 3(4):812~823
    [6] 乔静秋,汤蕴璆.同步电机的正交磁化和直、交轴的耦合电抗.哈尔滨电工学院学报,1988,11(2):103~110
    [7] El-Serafi, A. M. et al. Determination of the Parameters Representing the CrossMagnetizing Effect in Saturated Synchronous Machines. IEEE Transacton on EC, 1993,8(3):333~342
    [8] Ide K. et al. Analysis of Saturated Synchronous Reactances of Large Turbine Generatorby Considering Cross-magnetizing Reactances Using Finite Elements. IEEE TransactononEC,1999,14(1):66~71
    [9] Vas, P. et al. Cross-Saturation in Smooth-Airgap Electrical Machines. IEEE T-EC, 1986,3(1):103~112
    [10]Boldea I. and Nasar, S. A. A General Equivalent Circuit (GEC) of Electric MachinesIncludingCrosscouplingSaturationandFrequencyEffects.IEEETransactononEC,1988,3(3):689~695
    [11]周济. 同步发电机不同运行条件下多因素饱和效应的研究:[博士学位论文].华北电力大学电力系,2000
    [12]PRABHA KUNDUR. 电力系统稳定和控制. 北京:中国电力出版社,2002
    [13]蒙亮. 同步发电机异常非线性特征的研究:[博士学位论文].华北电力大学电力系,2005
    [14]Turner P. J. Finite-element Simulation of Turbine-generator Terminal Faults andApplication to Machine Parameter Prediction. IEEE Transacton on EC, 1987,2(1):122~131
    [15]史家燕,董明会,李惠升,赵肖敏. 汽轮发电机的饱和功-角特性. 中国电机工程学报, 1986, 6(3):1~7
    [16]姚有光,汤蕴璆. 凸极同步电机饱和功角特性的数值计算. 哈尔滨电工学院学报,1987,10(1):9~15
    [17]陈俊琳. 大型汽轮发电机进相运行的实践与认识.中国电力,1997,30(12):61~63
    [18]Arjona L., M. A. et al. Saturation Effects on the Steady-state Stability Limit ofTurbine-Generators.IEEETransactononEC,1999,14(2):133~138
    [19]Narayan C. Kar, Toshiaki Murata and Junji Tamura. A New Method to Evaluate theq_axis Saturation Characteristic of Cylindrical-rotor Synchronous Generator. IEEETransactononEC,2000,15(3):269~275
    [20]刘取,倪以信. 电力系统稳定性与控制综述. 中国电机工程学报,1990,10(6):1~12
    [21]Schulz, R. P. and Farmer R. G.. Benefit Assessment of Finite-element based GeneratorSaturationModel.IEEETransactononPWRS,1987,2(4):1027~1033
    [22]El-Serafi, A. M. et al. Effect of Saturation on the Steady-State Stabilityof a SynchronousMachine Connected to an Infinite Bus System. IEEE Transacton on EC, 1991, 6(3):514~521
    [23]Kar, N. C., Tamura, J.. Effects of Synchronous Machine Saturation, Circuit Parameters,and Control Systems on Steady State Stability. Electric Machines and Power Systems,1999,27(3):327~342
    [24]Kar, N. C., Tamura, J. and Tkeda, I.. A Linearized Model of Saturated SynchronousGenerator.ICEM1996,vol.II:160~165
    [25]吴涛,王伟胜,王建全,夏道止. 用计及机组动态时的潮流雅可比矩阵计算电压稳定极限. 电力系统自动化,1997,21(4):17~21
    [26]郭剑,王伟胜,吴中习. 电力系统动态组件特性对电压稳定极限的影响. 电网技术,1998,22(9): 17~21
    [27]范磊,陈珩. 静态电压稳定分析中发电机的无功功率及其越限处理. 电力系统自动化,1998,22(12): 20~23
    [28]IEEE Std 115-1995, IEEE Guide: Test Procedures for Synchronous Machines, NewYork:IEEEPress,1995
    [29]GB/T 1029-2005,三相同步电机试验方法,中国标准出版社,2006
    [30]Kilgore, L. A.. Calculation of Synchronous Machine Constants—Reactances & TimeConstants Affecting Transient Characteristics. IEEE Transacton on AIEE.1931:1201~1214
    [31]Kingsley,C..SaturatedSynchronousReactances.ElectricalEngeering.1935:300~305
    [32]Fuchs, E. F., Erdelyi E. A.. Nonlinear Theory of Turbogenerators—Part I & II. IEEETransactononPAS.1973(4):583~599
    [33]Demerdash, N. A.. A Simplified Approach to Determination of Saturated SynchronousReactances of Large Turbogenerator under Load. IEEE Transacton on PAS.1976(2):561~568
    [34]Fuchs, E. F., Senske K.. Comparison of Iterative Solutions of the Finite DifferenceMethod with Measuraments as Applied to Poisson’s & Diffusion Equations. IEEETransactononPAS.1981(8):3983~3992
    [35]沈善德. 电力系统辨识. 北京:清华大学出版社,1993
    [36]赵争鸣,郑逢时. 同步电机非线性参数的自适应辨识方法. 电工技术学报,1994,21(2): 1~5
    [37] 蒋铁铮,郑逢时. 大型汽轮发电机参数辨识中基本参数数学模型的研究. 湖南大学学报,2002,27(6):74~79
    [38]J.JesúsRicoMelgoza,GeraldThomasHeydt,AliKeyhani,Baj L.Agrawal,andDouglasSelin, Synchronous Machine Parameter Estimation Using the Hartley Series. IEEETransactononEC,2001,16(1)
    [39]H. Tsai, A. Keyhani, J. A. Demcko, and D. A. Selin. Development of a Neural NetworkSaturation Model for Synchronous Generator Analysis. IEEE Transacton on EC,1995,10:617~624
    [40]H. Tsai, A. Keyhani, J. A. Demcko, and R. G. Farmer. Online Synchronous MachineParameterEstimationfromSmallDisturbanceOperatingData. IEEETransactononEC,1995,10(1):25~36
    [41]H. Bora Karayaka, Ali Keyhani, Gerald Thomas Heydt, Baj L. Agrawal, and Douglas A.Selin, Synchronous Generator Model Identification and Parameter Estimation FromOperatingData,TransactononEC,2003,18(1)
    [42]倪腊琴,鞠平,李靖霞.同步电机参数的可辨识性研究.电力系统自动化,1998,22(3):9~12
    [43]沈善德,朱守真,艾芊,陈厚连.用递归神经网络建立同步发电机模型.清华大学学报,1997,37(S1):95~98
    [44]王红宇,郭志忠,周逢权.汽轮发电机动态数学模型参数辨识. 继电器,2002,30(12):15~18
    [45]杨明贵,杨新宁,刘剑锋,徐青发,魏嵬. 同步电机在线参数辨识的混合算法. 西安交通大学学报,2004,38(10):1009~1012
    [46]鞠平,韩敬东,倪腊琴,李训铭,等. 电力系统动态等值的在线测辨研究(I)——模型及其可辨识性. 电力系统自动化,1999,23(4):15~17
    [47]倪腊琴,鞠平,李训铭. 电力系统动态等值的在线测辨研究(II)——辨识方法及仿真检验.电力系统自动化,1999,23(4):20~22
    [48]沈善德,朱守真,焦连伟,等. 电力系统辨识建模和瞬时稳定校核分析.电力系统自动化,23(19):43~47。
    [49]刘晓芳,蒙亮,罗应立,等. 同步发电机d-q 轴饱和特性曲线族.中国电机工程学报,2002,22(2):68~72
    [50]罗应立,蒙亮,刘晓芳. 汽轮发电机双因素非线性特性的研究.电工技术学报,2005,20(6):1~5
    [51]Meng liang, Zhang Xinli, Luo Yingli. Two Main Factors to the Effect of NonlinearCharacteristics of Turbo-generator. IEEE PES 2004 General Meeting,2004.6,Danver,USA.
    [52]Meng Liang, Luo YingLi, Liu XiaoFang. Study on the Complex Nonlinear Features ofHydrogenerator Caused by Multiply Factors. Proceedings of the Sixth InternationalConferenceonElectricalMachinesandSystems,ICEMS’2003.11.Beijing,China.
    [53]韩祯祥. 电力系统稳定.北京:中国电力出版社,1995
    [54]黄家裕. 同步电机基本理论及其动态行为分析.上海:上海交通大学出版社,1989
    [55]姜可熏. 电机瞬变过程.北京:机械工业出版社,1991
    [56]汤蕴璆. 电机内的电磁场(第二版).北京:科学出版社,1998
    [57]胡敏强,黄学良.电机运行性能竖直计算方法及其应用.江苏:东南大学出版社,2003
    [58]A. M. El-Serafi andY. Xu. An Experimental Method for Determining the SaturationCharacteristics in the Intermediate Axes of Synchronous Machines. in Proceedings.ofInternationalConference.ElectricalMachines,vol.II,2000:1143~1147
    [59]F.P.deMelloandL.N.Hannett.Representationof SaturationinSynchronousMachinesIEEETransactononPWRS,vol.1:8~18
    [60]S. Tahan and I. Kamwa. ATwo Factor Saturation Model for Synchronous Machines withMultipleRotorCircuits.IEEETransactiononEC,1995(10):609~616
    [61]N. C. Kar, T. Murata, and J. Tamura.A New Method to Evaluate the q-axis SaturationCharacteristic of Cylindrical-Rotor Synchronous Generators.IEEE Transacton onEC,15(3):269~276
    [62]电力系统动态模拟论文集. 清华大学.1960
    [63]中科院电工所.电力系统物理模拟.1973
    [64]李仁俊,李欣唐.动态模拟发电机组的自动控制系统.山东工业大学学报,1996,26(A09):365~370
    [65]朱凌,施传立.两极实芯转子模拟同步发电机.华北电力大学学报,1997,24(4):7~12
    [66]倪以信,陈寿孙,张宝霖.动态电力系统的理论和分析.北京:清华大学出版社,2002
    [67]IEEE Std 1110-1991, IEEE Guide for Synchronous Generator Modeling Practices inStabilityAnalyses,NewYork:IEEEPress,1991
    [68]丁坚勇.同步发电机动态参数辨识研究:[博士学位论文],武汉大学,2002
    [69]方崇智,萧德云.过程辨识.北京:清华大学出版社,1988
    [70]李言俊,系统辨识理论及应用.北京:国防工业出版社,1993
    [71]任锦堂.系统辨识.上海:上海交通大学出版社,1989
    [72]侯媛彬,汪梅,王立琦.系统辨识及其MATLAB仿真.北京:科学出版社,2004
    [73]史维祥,李天石.系统辨识.北京:机械工业出版社,1988
    [74]鞠平.电力系统非线性辨识. 安徽:河海大学出版社,1999
    [75]蒋铁铮,郑逢时.同步电机参数最小二乘辨识多值性及收敛性的改善方法. 电机与控制学报,1999,3(4):203~206
    [76]蔡超,陈光东,段三丁,成志明.最小二乘法在感应电机参数辨识中的应用研究.武汉化工学院学报,2003,25(2):57~59
    [77]刘桂英,韩莉,邵联合.可变加权因子的递推最小二乘辨识算法及应用.中国仪器仪表.2006,(3):59~61
    [78]石宏理,蔡远利,邱祖廉,非线性系统的递推最小二乘自适应模糊控制. 西安交通大学学报,2006,40(4):390~393
    [79]康尔良,王靖,孙力.大型发电机突然三相短路试验数据分析和动态参数辨识. 大电机技术,2005,(4):1~5
    [80] 高景德,王祥珩,李发海.交流电机及其系统分析. 北京:清华大学出版社,1992
    [81]马志云.电机瞬态分析.北京:中国电力出版社,1998

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700