非金属与稀土金属掺杂二氧化钛的光催化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二氧化钛是一种优良的光催化剂,具有广泛的应用前景。它具有光催化活性高、化学性质稳定、无毒和低成本等优势。但是,由于其禁带宽度较大(Eg=3.2eV),只能在紫外光区才能表现出光催化活性,而在这部分仅占太阳光的3-5%,加上其电子空穴复合率高的缺点,限制了二氧化钛对光能的有效利用。因此,为了制备高活性的TiO_2光催化材料,本文开展了以下几方面的研究工作。主要内容如下:
     1、为寻找到使用更简便、更绿色的方法来制备二氧化钛光催化材料,用三种不同的制备方法(溶胶凝胶法、反相微乳液法、生物模板法)制备出了TiO_2样品,通过XRD、SEM对合成的TiO_2样品的物相和结构进行了表征,以降解罗丹明B溶液的程度为参考对三种TiO_2样品的光催化性能作出对比,结合三种制备方法的反应时间、成本、毒性等相关因素,最后综合分析了三种制备方法的利与弊。
     2、为了提高二氧化钛的光催化活性,使用非金属B和P对TiO_2进行掺杂,采用溶胶凝胶法制备出了B-TiO_2和P-TiO_2样品,经过XRD表征发现,非金属掺杂后的TiO_2样品均有锐钛矿型,都具有降解染料溶液的能力,但是通过对比研究,发现掺杂B的改性效果要比掺杂P好,随后详细研究讨论了B掺杂TiO_2的制备以及影响催化效果的因素,以对染料溶液罗丹明B的降解程度为参考,研究了其光催化性能,最后在煅烧温度,B原子掺杂量,染料溶液PH值,催化剂投入量等方面确立了B掺杂的最优值,结论为500℃煅烧2h之后掺杂量为2%的B-TiO_2具有的光催化性能最好。
     3、为了进一步系统研究掺杂对TiO_2的改性效果,利用共掺杂的改性方法,共掺杂为比较少见的稀土元素和非金属元素的组合,采用溶胶凝胶法制备了单掺B、P及Gd-B共掺杂的TiO_2光催化剂,在对样品表征后,发现共掺杂之后,TiO_2的表面形貌发生了巨大变化,在保持锐钛矿相的前提下,晶粒尺寸减小,以致比表面积变大。以降解三种不同的染料溶液(活性艳蓝KGR、活性艳红X3B、活性艳红K2G)为参考,对比考察了它们光催化性能的高低,并进一步探讨了稀土元素Gd和非金属B掺杂提高光催化活性的机理。实验证明了稀土元素Gd和非金属B共掺杂可以减小TiO_2晶粒尺寸,有利于抑制光生电子-空穴对的复合,从而提高TiO_2光催化活性。研究结果可以得出结论稀土金属Gd和非金属B共掺杂的TiO_2的光催化活性要大于单掺杂的TiO_2和未掺杂的TiO_2。
Titanium dioxide is a great photocatalytic material. It has good application prospect. It has manyadvantages such as high photocatalytic activity, chemical stability, non-toxic and low cost. But, its practicalapplication is limited in the UV region because of its large band gap value of3.2eV and low quantumyields, so TiO_2can only capture about3-5%of the solar irradiance at the earth’s surface. Therefore, inorder to improve the photocatalytic activity of TiO_2, this paper carried out research work including thefollowing several aspects. The main contents are the following:
     1, In order to find a method which is more simple and environmental for the preparation of titaniumdioxide material, three different kinds of preparation methods are used. They are sol-gel method, inversemicroemulsion method and biological template method. The prepared catalysts were characterized byX-ray diffraction, scanning electron microscope, and UV–Vis spectra.The photocatalytic activity of thethree different samples was evaluated through the photodegradation of Rhodamine B under UV light. Andthen the best method was found.
     2, In order to improve the photocatalytic activity of TiO_2, boron doped TiO_2and phosphorus dopedTiO_2nanoparticles were prepared using a sol–gel method. By contrast, boron doped TiO_2has smallercrystallite size and higher photocatalytic activity than that of phosphorus doped TiO_2samples and undopedTiO_2. And then different dosage of boron doping TiO_2were prepared, The photocatalytic activity of thesamples was evaluated by the photodegradation of Rhodamine B, and then research the relation aboutphotocatalytic performance and calcined temperature, boron doping amounts, PH, the quantity of catalystFinaly the best boron doping condition was found.
     3, In order to further research the modification effect on doping TiO_2, Gadolinium–boron codoped andmono-doped TiO_2nanoparticles were prepared using a sol–gel method, and tested for photocatalyticactivity by the UV light after a further calcination process. For comparison, a pure TiO_2sample was alsoprepared and tested under the same conditions. The prepared catalysts were characterized by X-raydiffraction, scanning electron microscope, and UV–Vis spectra. The photocatalytic activity of the samples was evaluated through the photodegradation of three different dyes under UV light. The experimentsdemonstrated that the gadolinium–boron codoped TiO_2(Gd–B–TiO_2) sample calcined at500℃possessedthe best photocatalytic activity, and the photodegradation rate of the Reactive Brilliant Red K2G aqueoussolution could reach to95.7%under UV irradiation for80min. The results showed that Gd–B–TiO_2hassmaller crystallite size and higher photocatalytic activity than that of mono-doped TiO_2samples andundoped TiO_2.
引文
[1] Fujishima A., Honda K. Photolysis-decomposition of water at the surface of an irradiatedsemiconductor[J]. Nature,1972,238(5385):37-38.
    [2] Carey J. H., Oliver B. G. Intensity effects in the electrochemical photolysis of water at theTiO2electrode[J].1976,
    [3] Vayssieres L. Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions[J].Advanced Materials,2003,15(5):464-466.
    [4] Baeck S. H., Choi K. S., Jaramillo T. F., et al. Enhancement of photocatalytic andelectrochromic properties of electrochemically fabricated mesoporous WO3thin films[J].Advanced Materials,2003,15(15):1269-1273.
    [5] Jaeger C. D., Bard A. J. Spin trapping and electron spin resonance detection of radicalintermediates in the photodecomposition of water at titanium dioxide particulate systems[J].Journal of Physical Chemistry,1979,83(24):3146-3152.
    [6]唐建军,范小江,邹原, et al. TiO2的晶型对其可见光催化性能的影响[J].北京科技大学学报,2009,004:418-422.
    [7] Tanaka K., Hisanaga T., Rivera A. Effect of crystal form of TiO2on the photocatalyticdegradation of pollutants[J]. Photocatalytic purification and treatment of water and air,1993,169-178.
    [8] Rivera A., Tanaka K., Hisanaga T. Photocatalytic degradation of pollutant over TiO2indifferent crystal structures[J]. Applied Catalysis B: Environmental,1993,3(1):37-44.
    [9] Kim S., Hwang S. J., Choi W. Visible light active platinum-ion-doped TiO2photocatalyst[J].The Journal of Physical Chemistry B,2005,109(51):24260-24267.
    [10] Umebayashi T., Yamaki T., Tanaka S., et al. Visible light-induced degradation of methyleneblue on S-doped TiO2[J]. Chemistry letters,2003,32(4):330-331.
    [11] Klosek S., Raftery D. Visible light driven V-doped TiO2photocatalyst and its photooxidationof ethanol[J]. The Journal of Physical Chemistry B,2001,105(14):2815-2819.
    [12] Ohno T., Tsubota T., Toyofuku M., et al. Photocatalytic activity of a TiO2photocatalyst dopedwith C4+and S4+ions having a rutile phase under visible light[J]. Catalysis Letters,2004,98(4):255-258.
    [13] Hsiao C. Y., Lee C. L., Ollis D. F. Heterogeneous photocatalysis: degradation of dilutesolutions of dichloromethane (CH2Cl2), chloroform (CHCl3), and carbon tetrachloride (CCl4)with illuminated TiO2photocatalyst[J]. Journal of Catalysis,1983,82(2):418-423.
    [14]孙丽萍,高山,赵辉, et al.纳米二氧化钛的晶型转变及光催化性能研究[J].功能材料,2004,35(005):632-634.
    [15] Muggli D. S., Ding L. Photocatalytic performance of sulfated TiO2and Degussa P-25TiO2during oxidation of organics[J]. Applied Catalysis B: Environmental,2001,32(3):181-194.
    [16] Bickley R. I., Gonzalez-Carreno T., Lees J. S., et al. A structural investigation of titaniumdioxide photocatalysts[J]. Journal of Solid State Chemistry,1991,92(1):178-190.
    [17] Tomkiewicz M. Scaling properties in photocatalysis[J]. Catalysis Today,2000,58(2-3):115-123.
    [18] Brus L. A simple model for the ionization potential, electron affinity, and aqueous redoxpotentials of small semiconductor crystallites[J]. The Journal of chemical physics,1983,79(5566).
    [19] Lee W., Gao Y., Dwight K., et al. Preparation and characterization of titanium (IV) oxidephotocatalysts[J]. Materials research bulletin,1992,27(6):685-692.
    [20] Liu Y., Dadap J., Zimdars D., et al. Study of interfacial charge-transfer complex on TiO2particles in aqueous suspension by second-harmonic generation[J]. The Journal of PhysicalChemistry B,1999,103(13):2480-2486.
    [21] Linsebigler A. L., Lu G., Yates Jr J. T. Photocatalysis on TiO2surfaces: principles,mechanisms, and selected results[J]. Chemical Reviews,1995,95(3):735-758.
    [22]钱春香,赵联芳,付大放, et al.温湿度和光强对水泥基材料负载纳米TiO2光催化氧化氮氧化物的影响[J].环境科学学报,2005,25(5):623-630.
    [23]罗洁,陈建山. TiO2光催化氧化降解印染废水的研究[J].工业催化,2004,12(6):36-38.
    [24]毛立群,杨建军.活性艳红X-3B水溶液的光化学与光催化协同脱色反应[J].催化学报,2001,22(002):181-184.
    [25]苏文悦,付贤智,魏可镁.溴代甲烷TiO2上的光催化降解研究[J].高等学校化学学报,2001,22(2):272-275.
    [26]范崇政,肖建平,丁延伟.纳米TiO2的制备与光催化反应研究进展[J].科学通报,2001,46(4):265-273.
    [27] Sclafani A., Palmisano L., Schiavello M. Influence of the preparation methods of titaniumdioxide on the photocatalytic degradation of phenol in aqueous dispersion[J]. Journal ofPhysical Chemistry,1990,94(2):829-832.
    [28] Watson S. S., Beydoun D., Scott J. A., et al. The effect of preparation method on thephotoactivity of crystalline titanium dioxide particles[J]. Chemical Engineering Journal,2003,95(1-3):213-220.
    [29] Nazeeruddin M. K., Kay A., Rodicio I., et al. Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate) ruthenium (II) charge-transfer sensitizers (X=Cl-, Br-, I-,CN-, and SCN-) on nanocrystalline titanium dioxide electrodes[J]. Journal of the AmericanChemical Society,1993,115(14):6382-6390.
    [30] Xu Y., Langford C. H. Photoactivity of titanium dioxide supported on MCM41, zeolite X,and zeolite Y[J]. The Journal of Physical Chemistry B,1997,101(16):3115-3121.
    [31]方晓明,瞿金清.液相沉淀法制备纳米TiO2粉体[J].中国陶瓷,2001,37(5):39-41.
    [32] Antonelli D. M., Ying J. Y. Synthesis of hexagonally packed mesoporous TiO2by a modifiedsol–gel method[J]. Angewandte Chemie International Edition in English,1995,34(18):2014-2017.
    [33] Luo H., Takata T., Lee Y., et al. Photocatalytic activity enhancing for titanium dioxide byco-doping with bromine and chlorine[J]. Chemistry of Materials,2004,16(5):846-849.
    [34]王剑波,张景来,刘平, et al.微乳液法制备纳米TiO2光催化剂的研究现状[J].中国粉体技术,2004,10(2):36-39.
    [35]范金山.微乳液法制备TiO2纳米粉体及其光催化性能研究[J].人工晶体学报,2006,35(2):347-350.
    [36] Sopyan I., Watanabe M., Murasawa S., et al. An efficient TiO2thin-film photocatalyst:photocatalytic properties in gas-phase acetaldehyde degradation[J]. Journal ofPhotochemistry and Photobiology A: Chemistry,1996,98(1):79-86.
    [37]张亚男,陈淼,梁山, et al.利用气相沉积法在模板中制备TiO2纳米管的研究[J].西北师范大学学报:自然科学版,2008,44(003):50-53.
    [38]向芸,杨世源,梁晓峰, et al.液相合成纳米TiO2的进展[J].硅酸盐通报,2006,25(3):96-99.
    [39]张庆今,胡晓洪,杨敏.液相沉淀法制备TiO2超微粉末的影响因素分析[J].华南理工大学学报:自然科学版,2008,7):
    [40]朱永法,张利,姚文清, et al.溶胶-凝胶法制备薄膜型TiO2光催化剂[J].催化学报,1999,20(3):362-364.
    [41]曹永强,龙绘锦,陈咏梅, et al.金红石/锐钛矿混晶结构的TiO2薄膜光催化活性[J].物理化学学报,2009,25(06):1088-1092.
    [42] Wu G., Wang J., Thomas D. F., et al. Synthesis of F-doped flower-like TiO2nanostructureswith high photoelectrochemical activity[J]. Langmuir,2008,24(7):3503-3509.
    [43]石金娥,闫吉昌,王悦宏, et al.不同形貌TiO2的水热合成及对苯酚的降解研究[J].高等学校化学学报,2006,27(8):1513-1517.
    [44] Pavasupree S., Jitputti J., Ngamsinlapasathian S., et al. Hydrothermal synthesis,characterization, photocatalytic activity and dye-sensitized solar cell performance ofmesoporous anatase TiO2nanopowders[J]. Materials research bulletin,2008,43(1):149-157.
    [45] Weng C. C., Hsu K. F., Wei K. H. Synthesis of arrayed, TiO2needlelike nanostructures via apolystyrene-block-poly (4-vinylpyridine) diblock copolymer template[J]. Chemistry ofMaterials,2004,16(21):4080-4086.
    [46]白焱,李永红.纳米TiO2光催化剂的研究进展[J].材料开发与应用,2005,20(002):37-41.
    [47]益帼,邓瑞红,聂基兰.微乳液法制备纳米TiO2粒子[J].有色金属,2007,59(1):46-48.
    [48]曹剑瑜,卢文庆,吴华强, et al.反相微乳法制备纳米TiO2粒子及w和反应物浓度对粒径的影响[J].南京师大学报:自然科学版,2005,28(002):59-63.
    [49]张晓冬,杨文胜.利用LB技术以寡聚DNA为模板构建CdS纳米结构[J].化学学报,2002,60(3):532-535.
    [50]陆书来,成国祥,蔡志江, et al.蛋白质模板印迹法制备纳米“孔穴”结构特异性生物材料[J].中国医学科学院学报,2004,25(5):640-644.
    [51]严晶晶.以蛋白质为模板制备二氧化钛纳米材料及机理探讨[D].南开大学,2010.
    [52]唐剑文,吴平霄,曾少雁, et al.二氧化钛可见光光催化剂研究进展[J].现代化工,2005,25(2):25-28.
    [53] Chatterjee D., Mahata A. Visible light induced photodegradation of organic pollutants on dyeadsorbed TiO2surface[J]. Journal of Photochemistry and Photobiology A: Chemistry,2002,153(1-3):199-204.
    [54] Sasaki T., Koshizaki N., Yoon J. W., et al. Preparation of Pt/TiO2nanocomposite thin films bypulsed laser deposition and their photoelectrochemical behaviors[J]. Journal ofPhotochemistry and Photobiology A: Chemistry,2001,145(1-2):11-16.
    [55] Sung-Suh H. M., Choi J. R., Hah H. J., et al. Comparison of Ag deposition effects on thephotocatalytic activity of nanoparticulate TiO2under visible and UV light irradiation[J].Journal of Photochemistry and Photobiology A: Chemistry,2004,163(1):37-44.
    [56] Iwasaki M., Hara M., Kawada H., et al. Cobalt ion-doped TiO2photocatalyst response tovisible light[J]. Journal of Colloid and Interface Science,2000,224(1):202-204.
    [57]魏凤玉,倪良锁.硼硫共掺杂TiO2的光催化性能及掺杂机理[J].催化学报,2007,28(10):905-909.
    [58]林华盛,张宁,陈超, et al.碳掺杂TiO2的制备及光电性质的研究[J].化工新型材料,2007,35(5):27-29.
    [59]任凌,杨发达,张渊明, et al.氮掺杂TiO2光催化剂的制备及可见光催化性能研究[J].无机化学学报,2008,24(4):541-546.
    [60]朱启安,王树峰,张平, et al.硫掺杂纳米TiO2可见光催化剂的制备及光催化活性[J].精细化工,2007,24(6):526-530.
    [61] Xiao Q., Si Z., Yu Z., et al. Characterization and photocatalytic activity of Sm3+-doped TiO2nanocrystalline prepared by low temperature combustion method[J]. Journal of Alloys andCompounds,2008,450(1-2):426-431.
    [62] Li J. G., Wang X., Watanabe K., et al. Phase structure and luminescence properties ofEu3+-doped TiO2nanocrystals synthesized by Ar/O2radio frequency thermal plasmaoxidation of liquid precursor mists[J]. The Journal of Physical Chemistry B,2006,110(3):1121-1127.
    [63] Mahalakshmi M., Arabindoo B., Palanichamy M., et al. Preparation, Characterization, andPhotocatalytic Activity of Gd3+Doped TiO2Nanoparticles[J]. Journal of nanoscience andnanotechnology,2007,7(9):3277-3285.
    [64] Dai K., Peng T., Chen H., et al. Photocatalytic degradation of commercial phoxim overLa-doped TiO2nanoparticles in aqueous suspension[J]. Environmental science&technology,2009,43(5):1540-1545.
    [65] Silva A. M. T., Silva C. G., Drazic G., et al. Ce-doped TiO2for photocatalytic degradation ofchlorophenol[J]. Catalysis Today,2009,144(1-2):13-18.
    [66] Wen C., Zhu Y. J., Kanbara T., et al. Effects of I and F codoped TiO2on the photocatalyticdegradation of methylene blue[J]. Desalination,2009,249(2):621-625.
    [67] Sakai Y. W., Obata K., Hashimoto K., et al. Enhancement of visible light-inducedhydrophilicity on nitrogen and sulfur-codoped TiO2thin films[J]. Vacuum,2008,83(3):683-687.
    [68]周艺,黄可龙,朱志平, et al.酸催化溶胶-凝胶法Eu2+, Gd3+共掺杂TiO2的制备及光催化活性[J].无机材料学报,2008,23(5):1085-1088.
    [69] Zainullina V., Zhukov V., Korotin M., et al. Effect of doping by boron, carbon, and nitrogenatoms on the magnetic and photocatalytic properties of anatase[J]. Physics of the Solid State,2011,53(7):1353-1361.
    [70] Vinodgopal K., Kamat P. V. Enhanced rates of photocatalytic degradation of an azo dye usingSnO2/TiO2coupled semiconductor thin films[J]. Environmental science&technology,1995,29(3):841-845.
    [71] Vinodgopal K., Bedja I., Kamat P. V. Nanostructured semiconductor films for photocatalysis.Photoelectrochemical behavior of SnO2/TiO2composite systems and its role in photocatalyticdegradation of a textile azo dye[J]. Chemistry of Materials,1996,8(8):2180-2187.
    [72] Pan J. H., Lee W. I. Preparation of highly ordered cubic mesoporous WO3/TiO2films andtheir photocatalytic properties[J]. Chemistry of Materials,2006,18(3):847-853.
    [73] Ke D., Liu H., Peng T., et al. Preparation and photocatalytic activity of WO3/TiO2nanocomposite particles[J]. Materials Letters,2008,62(3):447-450.
    [74] Yin Y., Jin Z., Hou F. Enhanced solar water-splitting efficiency using core/sheathheterostructure CdS/TiO2nanotube arrays[J]. Nanotechnology,2007,18(495608.
    [75] Gao X. F., Sun W. T., Hu Z. D., et al. An Efficient Method To Form Heterojunction CdS/TiO2Photoelectrodes Using Highly Ordered TiO2Nanotube Array Films[J]. The Journal ofPhysical Chemistry C,2009,113(47):20481-20485.
    [76]文晨,方维海. TiO2光催化剂在污水处理中的应用[J].环境污染治理技术与设备,2003,4(003):68-71.
    [77] Li X., Li F. Study of Au/Au3+-TiO2photocatalysts toward visible photooxidation for waterand wastewater treatment[J]. Environmental science&technology,2001,35(11):2381-2387.
    [78]王晓强,张剑平,朱惟德, et al.纳米Ti02-xNx光催化剂的特性及其在净化空气功能性内墙涂料中的甲醛分解动力学研究[J].涂料工业,2006,36(8):1-3.
    [79] Ibá ez J. A., Litter M. I., Pizarro R. A. Photocatalytic bactericidal effect of TiO2onEnterobacter cloacae:: Comparative study with other Gram (-) bacteria[J]. Journal ofPhotochemistry and Photobiology A: Chemistry,2003,157(1):81-85.
    [80] Sunada K., Watanabe T., Hashimoto K. Bactericidal activity of copper-deposited TiO2thinfilm under weak UV light illumination[J]. Environmental science&technology,2003,37(20):4785-4789.
    [81] Zhao W., Ma W., Chen C., et al. Efficient Degradation of Toxic Organic Pollutants withNi2O3/TiO2-xBxunder Visible Irradiation[J]. Journal of the American Chemical Society,2004,126(15):4782-4783.
    [82] Nagaveni K., Sivalingam G., Hegde M., et al. Photocatalytic degradation of organiccompounds over combustion-synthesized nano-TiO2[J]. Environmental science&technology,2004,38(5):1600-1604.
    [83]陈超,龙明策,蔡伟民, et al.在可见光照射下金属离子改性二氧化钛水溶胶对甲基橙的降解[J].净水技术,2011,30(2):50-54.
    [84]朱玉婵,汪德兵,万里, et al.二氧化钛纳米管阵列制备和光催化降解亚甲基蓝[J].广州化工,2010,38(011):81-82.
    [85]杨水金,王敏,杨赟. TiO2借自然光催化罗丹明B溶液降解脱色的研究[J].北京化工大学学报(自然科学版),2010,37(5):
    [86] García A., Matos J. Photocatalytic Activity of TiO2on Activated Carbon Under Visible Lightin the Photodegradation of Phenol[J]. Open Materials Science Journal,2010,4(2-4).
    [87]王后锦,吴晓婧,王亚玲, et al.二氧化钛纳米管阵列光电催化同时降解苯酚和Cr(VI)[J]. Chinese Journal of Catalysis,2011,32(4):
    [88]彭人勇,刘淑娟,赵玉美.活性炭纤维负载TiO2光催化降解甲醛的影响因素[J].环境工程学报,2009,3(007):1294-1298.
    [89] Yang G., Hu P., Cao Y., et al. Fabrication of Porous TiO2Hollow Spheres and TheirApplication in Gas Sensing[J]. Nanoscale research letters,2010,5(9):1437-1441.
    [90] Woo Chun S., Yeol Jang J., Won Park D., et al. Selective oxidation of H2S to elemental sulfurover TiO2/SiO2catalysts[J]. Applied Catalysis B: Environmental,1998,16(3):235-243.
    [91] Kim B., Kim D., Cho D., et al. Bactericidal effect of TiO2photocatalyst on selectedfood-borne pathogenic bacteria[J]. Chemosphere,2003,52(1):277-281.
    [92]刘鹏,童叶翔,杨绮琴.纳米技术在表面覆盖层中的应用[J].电镀与涂饰,2005,24(12):54-57.
    [93]徐瑞芬,刘晓玲,张鹏.纳米层包覆TiO2粒子复合乳胶涂料的光催化和耐老化性能研究[J].化工新型材料,2006,34(2):34-36.
    [94]张智宏,林西平,汪信, et al.纳米技术与纳米材料(V)—防晒化妆品中的纳米二氧化钛[J].日用化学工业,2003,33(5):333-336.
    [95] Ohko Y., Ando I., Niwa C., et al. Degradation of bisphenol A in water by TiO2photocatalyst[J]. Environmental science&technology,2001,35(11):2365-2368.
    [96] Liu H., Ma H., Li X., et al. The enhancement of TiO2photocatalytic activity by hydrogenthermal treatment[J]. Chemosphere,2003,50(1):39-46.
    [97] Gaya U. I., Abdullah A. H. Heterogeneous photocatalytic degradation of organiccontaminants over titanium dioxide: a review of fundamentals, progress and problems[J].Journal of Photochemistry and Photobiology C: Photochemistry Reviews,2008,9(1):1-12.
    [98] Nakamura R., Tanaka T., Nakato Y. Mechanism for visible light responses in anodicphotocurrents at N-doped TiO2film electrodes[J]. The Journal of Physical Chemistry B,2004,108(30):10617-10620.
    [99] Irie H., Watanabe Y., Hashimoto K. Carbon-doped anatase TiO2powders as a visible-lightsensitive photocatalyst[J]. Chemistry letters,2003,32(8):772-773.
    [100] Jimmy C. Y., Yu J., Ho W., et al. Effects of F-doping on the photocatalytic activity andmicrostructures of nanocrystalline TiO2powders[J]. Chemistry of Materials,2002,14(9):3808-3816.
    [101] Asahi R., Morikawa T., Ohwaki T., et al. Visible-light photocatalysis in nitrogen-dopedtitanium oxides[J]. Science,2001,293(5528):269-271.
    [102] Zaleska A., Sobczak J. W., Grabowska E., et al. Preparation and photocatalytic activity ofboron-modified TiO2under UV and visible light[J]. Applied Catalysis B: Environmental,2008,78(1-2):92-100.
    [103]龙绘锦,孟庆巨,元晶, et al. B离子掺杂TiO2催化剂(TiO(2-x)Bx)光催化活性的研究[J].化学学报,2008,66(6):657-661.
    [104]于爱敏,武光军,严晶晶, et al.水热法合成可见光响应的B掺杂TiO2及其光催化活性[J].催化学报,2009,30(002):137-141.
    [105] Lin L., Lin W., Zhu Y., et al. Phosphor-doped titania—A novel photocatalyst active invisible light[J]. Chemistry letters,2005,34(3):284-285.
    [106] Yuan X. L., Zhang J. L., Anpo M., et al. Synthesis of Fe3+doped ordered mesoporous TiO2with enhanced visible light photocatalytic activity and highly crystallized anatase wall[J].Research on Chemical Intermediates,2010,36(1):83-93.
    [107] Zhu J., Chen F., Zhang J., et al. Fe3+-TiO2photocatalysts prepared by combining sol-gelmethod with hydrothermal treatment and their characterization[J]. Journal of photochemistryand photobiology. A, Chemistry,2006,180(1-2):196-204.
    [108] Li G. S., Zhang D. Q., Yu J. C. A new visible-light photocatalyst: CdS quantum dotsembedded mesoporous TiO2[J]. Environmental science&technology,2009,43(18):7079-7085.
    [109] Liqiang J., Xiaojun S., Baifu X., et al. The preparation and characterization of La dopedTiO2nanoparticles and their photocatalytic activity[J]. Journal of Solid State Chemistry,2004,177(10):3375-3382.
    [110] Chi B., Victorio E. S., Jin T. Synthesis of Eu-doped photoluminescent titania nanotubes via atwo-step hydrothermal treatment[J]. Nanotechnology,2006,17(2234.
    [111] Li W., Frenkel A., Woicik J., et al. Dopant location identification in Nd3+-doped TiO2nanoparticles[J]. Physical Review B,2005,72(15):155315.
    [112] Wang Y., Cheng H., Zhang L., et al. The preparation, characterization, photoelectrochemicaland photocatalytic properties of lanthanide metal-ion-doped TiO2nanoparticles[J]. Journal ofmolecular catalysis A: chemical,2000,151(1):205-216.
    [113] Xie Y., Yuan C. Visible-light responsive cerium ion modified titania sol and nanocrystallitesfor X-3B dye photodegradation[J]. Applied Catalysis B: Environmental,2003,46(2):251-259.
    [114] Chen D., Yang D., Wang Q., et al. Effects of boron doping on photocatalytic activity andmicrostructure of titanium dioxide nanoparticles[J]. Industrial&Engineering ChemistryResearch,2006,45(12):4110-4116.
    [115] Choi Y., Umebayashi T., Yoshikawa M. Fabrication and characterization of C-doped anataseTiO2photocatalysts[J]. Journal of Materials Science,2004,39(5):1837-1839.
    [116] Sathish M., Viswanathan B., Viswanath R., et al. Synthesis, characterization, electronicstructure, and photocatalytic activity of nitrogen-doped TiO2nanocatalyst[J]. Chemistry ofMaterials,2005,17(25):6349-6353.
    [117] Ohno T. Preparation of visible light active S-doped TiO2photocatalysts and theirphotocatalytic activities[J]. Water science and technology: a journal of the InternationalAssociation on Water Pollution Research,2004,49(4):159.
    [118] Ho W., Jimmy C. Y., Lee S. Synthesis of hierarchical nanoporous F-doped TiO2spheres withvisible light photocatalytic activity[J]. Chemical communications,2006,10):1115-1117.
    [119] Siddiquey I. A., Furusawa T., Sato M., et al. Control of the photocatalytic activity of TiO2nanoparticles by silica coating with polydiethoxysiloxane[J]. Dyes and Pigments,2008,76(3):754-759.
    [120] Song M., Bian L., Zhou T., et al. Surface [zeta] potential and photocatalytic activity of rareearths doped TiO2[J]. Journal of Rare Earths,2008,26(5):693-699.
    [121] Xiao Q., Si Z., Zhang J., et al. Photoinduced hydroxyl radical and photocatalytic activity ofsamarium-doped TiO2nanocrystalline[J]. Journal of Hazardous Materials,2008,150(1):62-67.
    [122] Zhou M., Yu J., Liu S., et al. Effects of calcination temperatures on photocatalytic activity ofSnO2/TiO2composite films prepared by an EPD method[J]. Journal of Hazardous Materials,2008,154(1-3):1141-1148.
    [123] Li X., Xiong R., Wei G. Preparation and photocatalytic activity of nanoglued Sn-dopedTiO2[J]. Journal of Hazardous Materials,2009,164(2-3):587-591.
    [124] Li J., Lu N., Quan X., et al. Facile method for fabricating boron-doped TiO2nanotube arraywith enhanced photoelectrocatalytic properties[J]. Industrial&Engineering ChemistryResearch,2008,47(11):3804-3808.
    [125] Liang C., Liu C., Li F., et al. The effect of Praseodymium on the adsorption andphotocatalytic degradation of azo dye in aqueous Pr3+-TiO2suspension[J]. ChemicalEngineering Journal,2009,147(2-3):219-225.
    [126] Ma R., Sasaki T., Bando Y. Alkali metal cation intercalation properties of titanatenanotubes[J]. Chemical communications,2005,7):948-950.
    [127] Xu A. W., Gao Y., Liu H. Q. The preparation, characterization, and their photocatalyticactivities of rare-earth-doped TiO2nanoparticles[J]. Journal of Catalysis,2002,207(2):151-157.
    [128] Stengl V., Bakardjieva S., Murafa N. Preparation and photocatalytic activity of rare earthdoped TiO2nanoparticles[J]. Materials Chemistry and Physics,2009,114(1):217-226.
    [129] Deng L., Chen Y., Yao M., et al. Synthesis, characterization of B-doped TiO2nanotubeswith high photocatalytic activity[J]. Journal of Sol-Gel Science and Technology,2010,53(3):535-541.
    [130] Zaleska A., Grabowska E., Sobczak J. W., et al. Photocatalytic activity of boron-modifiedTiO2under visible light: The effect of boron content, calcination temperature and TiO2matrix[J]. Applied Catalysis B: Environmental,2009,89(3-4):469-475.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700