微波湿化学法制备Sb_2Te_3和Sb_2Se_3纳米材料研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热电材料是可以实现热能和电能的直接转换特殊意义的功能材料,近年来随着相关理论特别是纳米技术的发展,热电材料的研究进展迅速。理论分析表明,由于更强的量子禁闭效应,与二维的纳米薄膜材料相比,一维纳米热电材料(纳米棒、纳米管等)可望获得更为优异的热电性能。碲化铋系V-VIA族化合物半导体材料是当前应用最广的热电材料之一,目前对其纳米薄膜超晶格的制备及热电性能的研究已取得重要进展,目前报道的最高ZT值为2.4,而有关碲化铋系一维纳米热电材料的制备及形态控制等问题还没有完全解决。湿化学法应用于热电材料的制备已经有了较多报道,且取得了不错的成果。微波加热与湿化学方法相结合制备纳米热电材料在最近几年开始引起研究人员的重视,本文主要采用微波湿化学方法从事纳米热电材料制备的研究,微波作为特殊的能量源,大大缩短了反应时间,提高了反应效率,由于微波加热十分均匀,能有效消除温度梯度的影响,同时有可能使沉淀相瞬间内萌发形核,获得均匀尺寸的超细粉体。本课题成功制备出了Sb2Te3纳米片和纳米棒及Sb2Se3纳米棒,研究了多种因素对Sb2Te3和Sb2Se3纳米材料合成及形态的影响,对今后的研究工作提供了较好的借鉴意义。
     通过合理设计实验方案,30min就可以成功制备出单相的Sb2Te3纳米片, pH值是决定能否制备出Sb2Te3单相纳米片的关键因素,提高pH值可以明显缩短获得单相材料所需反应时间。测试结果表明所获得的产物成分均一,不加表面活性剂时为规则的正六边形的纳米片状,当加入表面活性剂十二烷基硫酸钠时出现破碎的枯叶状形态,当加入十二烷基磺酸钠作为表面活性剂时开始出现一维纳米棒,且随表面活性剂量的增加纳米棒的数量不断增加,对可能的反应机理和晶体生长机理进行了分析。
     选用与前面不同的实验方案成功制备出了纳米Sb2Se3材料,研究表明KBH4在Sb2Se3的制备过程中起到了关键作用,反应60min时可以制备出单相高纯度的Sb2Se3纳米材料,FESEM观察发现其形貌为截面为四边形的棒状结构,尺寸并不均匀。加入十二烷基磺酸钠后,Sb2Se3尺寸明显变得更加均匀,且棒的边缘逐渐变圆滑,有些已经变为圆棒,表面活性剂对粉末形貌的改变起到了关键作用,基本达到了我们预期的目的,我们对可能的反应机理和结晶生长机理进行了分析。
Thermoelectric materials, which could be used to achieve the direct transfer between thermal energy and electric energy, are new functional materials with peculiar significance.With the development of nanotechnologies and relevant theories, their thermoelectric performance has been improving rapidly in recent years. Due to their stronger quantum confinement effect, it has been expected that one-dimensional thermoelectric nanomaterials(nanorod, nanotube, nanoline, etc) have more excellent performance than two-dimensional nano films. Currently Bi2Te3-based bulk materials are one of the most widely used thermoelectric materials, and a remarkable progress with ZT=2.4 has been reported in Bi2Te3/Sb2Te3 nano-superlattice system. However, preparation and morphology control to Bi2Te3-based one-dimensional thermoelectric nanomaterials have not been solved. Wet-chemical methods have been tried for preparation bismuth telluride based materials by many researchers, and some successful results have been reported. As a special and effective energy source, microwave heating can greatly reduce the reaction time, and improve the reaction efficiency, furthermore the effect of microwave heating is could eliminate temperature gradient and heat uniformly, so it can be helpful to quick nucleation, and it is easy to get uniform nanomaterials. In this thesis, microwave heating has been combined with wet-chemical method to synthesis bismuth telluride based one-dimensional nanomaterials, and nanorods of both Sb2Te3 and Sb2Se3 compounds have been prepared successfully. Reaction parameters and experimental conditions have been fixed and optimized, and this will be helpful to the future research.
     Without addition of surfactants, single-phase hexagonal Sb2Te3 nanoflakes have been synthesized within 30 minutes, and it has been found that the pH value is the key factor to the experiments, reaction duration could greatly reduced with increasing the pH value of the reactants. .Adding sodium dodecyl sulfate to the reaction system, the morphology of Sb2Te3 products changes and looks like broken leaves, and then some one-dimension Sb2Te3 nanorods were synthesized while dodecyl sulfonic acid sodium salt was used as surfactants. Increasing the surfactant amount of dodecyl sulfonic acid sodium salt, the fraction of Sb2Te3 nanorods increased as well. A possible reaction mechanism and crystal growth mechanism have been suggested.
     KBH4 is a key factor to the synthesis of Sb2Se3 nanorod. Without addition of surfactants, single phase Sb2Se3 nanomaterials could be synthesized within 60 minutes, they were inhomogeneous quadrangular nanorods. With addition of dodecyl sulfonic acid sodium salt as surfactants, we found Sb2Se3 products became more homogeneous in size and some changed to round rods. Evidently the surfactants were the key factor which brought this change. A possible reaction mechanism and crystal growth mechanism were proposed.
引文
[i] A.F.Volkov, R.Seviour. Phase-coherent effects in multiterminal superconductor/normal metal mesoscopic structures. Physica C, 2001, 352: 11-18.
    [ii] B. Lenoir, A. Dauscher, P. Poina.et al. Electrical performance of skutterudites solar thermoelectric generators . Applied Thermal Engineering, 2003, 23: 1407-1415.
    [iii] H. Scherrer, L. Vikhor, B. Lenoir. et al. Solar thermoelectric generator based on skutterudites. Journal of Power Sources, 2003, 115: 141-148.
    [iv] T.J. Seebeck. Magnetic polarization of metals and minerals . Abhandlungen der Deustchen Akademi der Wissenschaften zu Berlin.1822, 2650-2655.
    [v] J.C. Peltier. Nouvelles expériences sur la caloricitédes courantsélectriques . Ann. Chim. 1834, LV1, 371-385.
    [vi] W. Thomson . On a mechanical theory of thermoelectric currents. Proceedings of the Royal society of Edinburgh. 1851, 91-93.
    [vii] Fleurial J P,Borshchevsky A, Caillat T et al. High figure of merit in Ce-filled skutterudites. 15thInternational Conference on Thermoelectrics[C]. Pasadena:IEEE, 1996: 91-95.
    [viii] Rama Venkatasubramanian, Edward Siivola, Thomas Colpittset al. Thin-film thermoelectric devices with high room-temperature figures of merit. Nature [J] , 2001, 413(10): 597-602.
    [ix] Zhong Guangxue(钟广学) et al. Refrigerating Semiconductor Apparatus and Application(半导体致冷器件及其应用)[M].Beijing:1989:190-205.
    [x] Morelli D T, Meisner G P. Low temperature propertities of the filled skutterudite CeFe4Sb12[J ] . J Appl Phys , 1995 , 77(8) : 3777 - 3781.
    [xi] Disalvo F J . Thermoelectric cooling and power generation. Science. 1999, 285: 703-706.
    [xii] E. Koukharenko, N. Frety, V. G. Shepelevich, et al., Thermoelectric properties of Bi2Te3 material obtained by the ultrarapid quenching process route. J. Alloys Compd. 2000, 299: 254 - 257.
    [xiii] U. Miura, Y. Sato, K. Fukuda, et al., Texture and thermoelectric properties of hot-extruded Bi2Te3 compound. Mater. Sci. Eng. A. 2000, 277:244 -249.
    [ xiv ] Y. Deng, X. S. Zhou, G. D. Wei, et al. Solvothermal preparation and characterization of nanocrystalline Bi2Te3 powder with different morphology. J. Phys. Chem. Solids. 2002, 63: 2119 - 2121.
    [xv] Bennett G L. CRC Handbook of Thermoelectrics[M]. New York : CRC Press,1995: 515-537.
    [xvi] DiSalvo F J. Thermoelectric cooling and power generation[J]. Science, 1999, 285: 703-706.
    [xvii]宿太超,马红安,朱品文,等.高温高压下Bi2Te3掺杂PbTe的热电性能.吉林大学学报(工学板),2008,38(1):66-69.
    [xviii] T. Caillat, A. Borshchevsky, J.-P. Fleurial. Properties of single crystalline semiconducting CoSb3. J. Appl. Phys., 1996, 80: 4442-4449.
    [xix] L.D. Chen. Recent advances in filled Skutterudite system. in Proceeding of the 21th International Conference on Thermoelectrics, ICT, Proceedings 2002, IEEE[C], USA: Piscataway, 42-47.
    [xx] T. Morelli, G. P. Meisner. Low temperature properties of the filled skutterudite CeFe4Sb12. J. Appl. Phys. 1995, 77: 3777-3781.
    [xxi]唐新峰,陈立东,后藤孝,等.填充式Skutterudite化合物:BayFexCo4-xSb12的多步固相反应合成及结构.物理学报. 2000, 49(11): 2196-2199.
    [xxii] J.Y. Peng, J.Y. Yang, T.J. Zhang, et al. Preparation and characterization of Fe substituted CoSb3 Skutterudite by mechanical alloying and annealing. Journal of Alloys and Compounds, 2004, 381: 313-316.
    [xxiii] J.Y. Yang, Y.H. Chen, J.Y. Peng, et al. Phase transformation and Ni substituted CoSb3 Skutterudite synthesis during solid state reaction. Material Science Forum, 2005, 475-479: 857-860.
    [xxiv] Terasaki , Y. Sasago , K. Uchinokura. Large thermoelectric power in NaCo2O4 single crystals. Phys. Rev. B , 1997 , 56(20).
    [xxv] Y. Ando ,K. Sagawa ,N.Miyamoto ,T. Kawata ,I. Terasaki. Specific-heat evidence of strong electron correlations in the thermoelectric material (Na,Ca)Co2O4. Phys. Rev.B , 1999 , 60(15): 10580-10583.
    [xxvi ] A. C.Masset et al . Misfit-layered cobaltite with an anisotropic giant magnetoresistance :Ca3Co4O9. Physical Review B ,2000 ,62(1) :166-175.
    [xxvii] Y.Miyazaki ,K. Kudo ,M. A Koshima ,Y. Ono ,Y. Koike ,T. Kajitani . Jpn. J . Appl . Phys. 2000, 39 :525-531.
    [xxviii] F. K O NIG. Cryst. Res. Technol.1998,33(2):219-232.
    [xxix]顾永明,郭燕明.生长速度对N型和P型Bi-Te热电材料性能的影响.上海大学学报(自然科学版), 1999, 5(4):311-306.
    [xxx] D. Eyidi, D. Maier, O. Eibl, et al. Chemical composition and crystal lattice defects of Bi2Te3 Peltier device structures. phys.stat. sol. (a) ,2001 187,(2): 585–600.
    [xxxi] D. Perrin, M. Chitroub, S. Scherrer,et al. Study of the n-type Bi2Te2.7Se0.3 doped with bromine impurity. Journal of Physics and Chemistry of Solids, 2000,61 :1687–1691.
    [xxxii] V.S. Zemskov, A.D. Belaya, U. S. Beluy et al. Growth and investigation of thermoelectric properties of Bi–Sb alloy single crystals. Journal of Crystal Growth, 2000, 212:161-166.
    [ xxxiii ] Yuma Horio, Toshiharu Hoshi. Amorphous Thermoelectric Alloys and thermoelectric Couple Using Same, U.S.Patent, 1998; 10, 5:726-729.
    [xxxiv] J.Y. Yang , T. Aizawa , A. Yamamoto et al. Thermoelectric properties of n-type(Bi2Se3)x(Bi2Te3)1?x prepared by bulk mechanical alloying and hot pressing. J Alloys Comps, 2000; 312 : 326–330.
    [xxxv] J.Y. Yang, X.A. Fan, et al., Consolidation and thermoelectric properties of n-type bismuth telluride based materials by mechanical alloying and hot pressing. Journal of Alloys and Compounds, 2006, 416 : 270–273.
    [xxxvi] J.Y. Yang, T. Aizawa, A. Yamamoto, et al. Effects of interface layer on thermoelectric properties of a pn junction prepared via the BMA-HP method. Mater. Sci. Eng. B, 2001, 85: 34-37.
    [xxxvii] J. Yang , T. Aizawa , A. Yamamoto et al. Thermoelectric properties of p-type (Bi2Te3)x(Sb2Te3)1?x prepared via bulk mechanical alloying and hot pressing. J Alloys Comps, 2000; 309:225–228.
    [xxxviii] Junyou Yang,Rougang Chen, et al., Thermoelectric properties of silver-doped n-type Bi2Te3-based material prepared by mechanical alloying and subsequent hot pressing. Journal of Alloys and Compounds, 2006, 407: 330–333.
    [xxxix] T.Tokiai, K.Koumoto. Microstructure development and thermoelectric properties of Bi2Te3 ceramics fabricated by PIES method. 17th international Conference on Thermoelectrics. 1998.
    [xl] P.W. Zhu, X. Jia, H.Y. Chen, W.L. A new method of synthesis for thermoelectric materials: HPHT. Solid State Communications. 2002, 123(1-2): 43–47.
    [xli] Taichao Su, Pinwen Zhu, Hongan Ma, Electrical transport and high thermoelectric properties of PbTe doped with Bi2Te3 prepared by HPHT. Solid State Communications. 2006, 138(12): 580–584.
    [xlii] J. M. Simard, D. Vasilevskiy, S. Influence of composition and texture on the thermoelectric and mechanical properties of extruded (Bi/sub 1-x/Sb/sub x/)/sub 2/(Te/sub1-y/Se/suby/)/sub3/ alloys. Turenne 22nd International Conference on Thermoelectrics , 2003: 13-18.
    [xliii] S.J. Hong , B.S. Chun. Microstructure and thermoelectric properties of extruded n-type 95%Bi2Te3–5%Bi2Se3 alloy along bar length. Materials Science and Engineering A, 2003, 356: 345-351.
    [xliv] S.J. Hong, S.H. Lee, B.S. Chun. Thermoelectric properties of newly fabricated n-type 95%Bi2Te3–5%Bi2Se3 alloys by gas atomizing and extrusion process. Materials Science and Engineering B, 2003, 98: 232-238.
    [xlv] N. Keawprak, Z.M. Sun, H. Hashimoto, et al. Effect of sintering temperature on the thermoelectric properties of pulse discharge sintered (Bi0.24Sb0.76)2Te3 alloy. J Alloys Comps, 2005,397:236-244.
    [xlvi] J. Jiang, L.D. Chen, S.Q. Bai, et al. Fabrication and thermoelectric performance of textured n-type Bi2(Te,Se)3 by spark plasma sintering. Materials Science and Engineering B,2005 117: 334–338.
    [xlvii] S. Gharnaty, N. Eisner. Development of Quantum Well Thermelectric Device, ICT, Proceeding 18th International Conference on Thermoelectrics 1999, pp. 485-488
    [xlviii] Dresselhaus M S , Dresselhaus G, Sun X, et al. Lowdimensional thermoelectric materials [J ] . Phys Solid State , 1999 , 41 (5) : 679 -682.
    [xlix] Hicks L D , et al. Effects of quantum well structures on the thermoelectric figure of merit. Phys Rev B , 1993 ,47 (19) :12727-12731.
    [l] Balandin A , et al. J Appl Phys , 1998 , 84 :6149
    [li] Broido D A , Reinecke T L . Effect of superlattice structure on the thermoelectric figure of merit. Phys Rev . B51,1995 :13797-13800.
    [lii]石尧文,乔冠军,金志浩.热电材料研究进展稀有金属材料与工程2005年1月
    [liii] Heremans J,et al. Thermoelectric power of bismuth nanowires [J]. phys Rev B,1999,59(19):12579-12583.
    [liv] Huber T E,Onakoya O. Constitutional supercooling and the growth of 200 nm Bi–Sb wire array composites[J]. J Appl Phys,2002,92(3):1337.
    [lv] Dresselhaus M S,Lin Y M. Advances in 1D and 2D thermoelectric materials. 18th International Conference on Thermoelectric USA:IEEE,1999:92-99.
    [lvi] Cronin S B , Lin Y M , Koga T , et al. Thermoelectric investigation of bismuth nanowires. 18th International Con2ference on Thermoelect rtics USA:IEEE, 1999. 554-557.
    [lvii] Behnke J F , Prieto A M. Electrodeposition of CoSb3 nanowires. 18th International Conference on Thermoelect ric USA : IEEE , 1999:451-453.
    [lviii] Prieto A M , Sander M S , Stacy A M. International Symposium on Circuit s and Systems , 2001 , 4 :Z1411
    [lix]李敬峰.立体微型器件的微制造技术及其在微机电系统(MEMS)的应用.无机材料学报,2002 ,17 (4) :657-664.
    [lx]谢振,杨君友,樊希安,朱文,鲍思前,段兴凯.湿化学方法制备纳米Bi2Te3系热电材料的研究进展[J] .材料导报,2006,20(专辑Ⅶ): 33-35. [ lxi ] H.T. Zhang, X.G. Luo, C.H. Wang, Y.M. Xiong, S.Y. Li, X.H. Chen. Characterization of nanocrystalline bismuth telluride(Bi2Te3) synthesized by a hydrothermal method [J]. Journal of Crystal Growth, 2004,265:558–562.
    [lxii] Hongmei Cui, Hong Liu, Xia Li, et al. Synthesis of Bi2Se3 thermoelectric nanosheets and nanotubes through hydrothermal co-reduction method [J]. Journal of Solid Chemistry , 2004, 177:4001-4006.
    [lxiii] Debao Wang,Dabin Yu,Maosong Mo,Xiaaming Liu,YitaiQian. Preparation and characterization of wire-like Sb2Se3 and flake-like Bi2Se3 nanocrystals [J]. Journal of Crystal Growth , 2003, 253:445-451.
    [lxiv] Guodan Wei,Yuan Deng,Yuan-Hua Lin,Ce-Wwn Nan. Solvothermal synthesis of porous tellurium nanotubes [J].Chemical Physics Letters , 2003, 372:590-594.
    [lxv] Hong Liu,Hongmei Cui,Feng Han,Xia Li,Jiyang Wang,and R.I.Boughton. Growth of Bi2Se3 Nanobelts Synthesized through a Co-Reduction Method under Ultrasonic Irradiation at Room Temperature. [J].Crystal Growth & Design 2005,5(5):1711-1714.
    [lxvi] Xue-Hong Liao,Hui Wamg,Jun-Jie Zhu,Hong-Yuan Chen. Preparation of Bi2S3 nanorods by microwave irradiation. [J].Materials Research Bulletin, 2001, 36:2339-2346.
    [lxvii] Cui Zhao,Xuebo Cao,Xianmei Lan. Microwave-enhanced rapid and green synthesis of well crystalline Sb2Se3 nanorods with a flat cross section. [J].Materials Letters, 2007, 61 :5083-5086.
    [lxviii]滕业方.微波技术在化学领域中的应用及其机理探讨.化工与材料[J],2007,5:36-37.
    [lxix] Saskia A. G. Microwave chemistry. [J].Chemical Society Reviews 1997, 26: 233 - 238.
    [lxx]张寒琦,金钦汉,微波化学[J],大学化学,2001,16:32 - 36.
    [lxxi] Xu X C, Yang W S, Liu J, e1 al. Synthesis of a high-permeance NaA zeolile membrane by microwave healing[J]. Adv Mater. 2000, 3: 195 - 197.
    [lxxii]薛叙明,精细有机合成技术[M].化学工业出版社,2005,1:39-40.
    [lxxiii]倪春梅,盛凤军.微波合成技术及在有机合成中的应用[J].广州化工,2004,32( 2): 11-14.
    [lxxiv]沈剑平,李悦,孙铁,等.酸处理对β沸石结构和酸性的影响[J].高等学校化学学报,1995,6:943-947.
    [lxxv]矫庆佑,徐家宁,徐文国. ZSM- 35分子筛的合成及模板效应的研究[J].应用化学,1994,11: 84-89.
    [lxxvi]吴会军,朱冬生,向兰.有机溶剂热法合成纳米材料的研究与发展[J].化工新型材料. 2005,33 (8):1-4.
    [lxxvii] Y.Sun, Y, Xia. Shape-Controlled Synthesis of Gold and Silver Nanoparticles.[J]. Science ,2002,298:2176-2179.
    [lxxviii] N.R.Jana, L.Gearheart, C.J.Murphy. Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio.[J].Chem.Commun.,2001:617-618.
    [lxxix] H.Shi,L.Qi,J.Ma,H.Cheng,polymer-Directed Synthesis of Penniform BaWO4 Nanostructures in Reverse Micelles[J]. J.Am.Chem.Soc, 2003, 125:3450-3451.
    [ lxxx ] S.Yu , H.Colfen , M.Antonietti. The Conbination of Colloid-Controlled Heterogeneous Nucleation and Polymer-Controlled Crystallization:Facile Synthesis of Separated,Uniform High-Aspect-Ratio Single-Crystalline BaCrO4 Nanofibers[J]. Adv.Mater, 2003,15:133-135.
    [lxxxi] Zhang, D.;Qi,L.;Ma, J.;Cheng, H.;Synthesis of Submicrometer-Sized Hollow Silver Spheres in Mixed Polymer-Surfactant Solutions [J]. Adv.Mater, 2002, 14:1499-1502.
    [lxxxii] L.Qi, H.Colfen, M.Antonietti. Crystal Design of Barium Sulfate using Double-Hydrophillic Block Copolymers[J]. Angew.Chem.Int.Ed, 2000,39 :604-607.
    [lxxxiii] Debao Wang, Caixia Song, Xun Fu, Xin Li. Growth of one-dimensional Sb2S3 and Sb2Se3 crytals with straw-tied-like architectures [J]. Journal of Crystal Growth , 2005, 281:611-615.
    [lxxxiv] T.Sun, X.B.Zhao, T.J.Zhu, J.P.Tu. Aqueous chemical reduction synthesis of Bi2Te3 nanowires with surfactant assistance [J]. Materials Letters, 2006, 60:2534-2537.
    [lxxxv]胡淑红,赵新兵,等. Bi2Te3和Bi0.5Sb1.5Te3的机械合金化法制备及其热电性能中国有色金属学报2000年10月.
    [lxxxvi]吉晓华,纳米结构Bi2Te3基热电材料的合成与性能,博士学位论文,浙江大学图书馆,2005.
    [lxxxvii] Qiu-li Yuan, Qiu-lin Nie, De-xuan Huo. Preparation and characterization of the antimony telluride hexagonal nanoplates[J]. Current Applied Physics ,2008:xxx-xxx..
    [lxxxviii] Zhao, X. B; Ji, X. H; Zhang, Y. H, etc. Hydrothermal synthesis and microstructure investigation of nanostructured bismuth telluride powder. Appl. Phys. A. 2005, 80: 1567 - 1571.
    [lxxxix] K.F. Hsu, S. Loo, et al. Cubic AgPbmSbTe2+m: Bulk Thermoelectric Materials with High Figure of Merit. Science. 2004, 303: 818 .821.
    [xc]袁良生,金胜明,等.乙二醇还原制备镍粉的产物分布研究.化学通报,2005,68:1 - 6.
    [xci]谢振,微波湿化学方法制备纳米Bi2Te3/Bi2Se3系热电材料,硕士学位论文,华中科技大学图书馆,2007.
    [xcii] Wang D, Yu D, Mo M, et al. Preparation and characterization of wire-like Sb2Se3 and flake-like Bi2Se3 nanocrystals. J.Crystal Growth, 2003,253:445-451.
    [xciii]陈名海,高濂.多元醇法制备和表征Sb2Se3纳米线,无机材料学报,2005年11月,20(6):1343-1348.
    [xciv] Yuan Deng, Xi-song Zhou,et al. Solvothermal preparation and characterization of nanocrystalline Bi2Te3 powder with different morphology[J]. J. Phys. Chem. Solids, 2002, 63: 2119 - 2121.
    [xcv] Y.Yu, R.H.Wang,et al. High-Quality Ultralong Sb2Se3 Nanoribbons on a large Scale via a Simple Chemical Route[J]. J. Phys. Chem. B 2006,110,13415-13419.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700