苎麻谷氨酰胺合成酶基因的克隆和超量表达研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮素是植物生长发育所必需的矿质营养元素,直接影响着植物的生长和发育,决定着作物产量的高低和品质的优劣。谷氨酰胺合成酶(GS)作为高等植物氮代谢途径中氮素初始同化中的关键酶,是一切无机氮素进入高等植物体内的“门户”,影响着植物氮素营养的吸收、同化及利用效率,对作物的生长发育,及产量、品质等农艺性状具有决定性作用。高等植物中谷氨酰胺合成酶分为胞液型(GS1)和质体型(GS2)两类:GS2主要同化NO-3还原而来及光呼吸过程所释放的氨;GS1主要同化从土壤吸收的和由NO-3还原而来的氨,及再同化从植物体内各个氮循环途径所释放的氨。苎麻(Boehmeria nivea L.)作为古老的纤维作物,近年来因其叶片中蛋白质及必须氨基酸含量较高、嫩茎叶营养价值与苜蓿相近、营养结构合理、年生物产量大等,被作为植物蛋白饲料原料而大量利用;同时,苎麻具有植株生长速度快、对氮素需求量大等特点。但是,国内外与苎麻氮代谢及生长特性相关的研究几乎为零,也没有进行苎麻氮代谢途径中功能基因的发掘,相关功能的研究和利用,从而阻碍了研究者对苎麻饲用及生长特性在本质上的了解,同时,也不利于苎麻中优良功能基因的发掘和利用。因此,本文以植物氮代谢途径中关键基因GS为研究对象,首次从苎麻中克隆获得GS基因家族中的4个基因,并利用生物信息学对苎麻BnGS基因序列和结构进行了分析,利用实时荧光定量PCR技术,分析了苎麻GS基因在不同组织和发育阶段的表达模式,同时,利用ClustalW和MEGA软件对GS基因进行序列比对和系统进化分析;另一方面,本文利用同源重组技术,构建了苎麻BnGS1-2基因的超量植物表达载体,并利用农杆菌侵染烟草叶片,成功获得转基因烟草植株,同时,研究了超量表达苎麻BnGS1-2基因后,转基因烟草植株对氮素的同化和利用效率,为了解苎麻GS基因的功能,及利用苎麻BnGS基因改良植物氮素利用效率和农艺性状的研究提供新的基因资源。本文主要研究结果如下:
     (1)首次从苎麻栽培品种“中苎1号”中克隆获得苎麻GS基因家族中的4个基因,其中两个属于胞液型GS,命名为BnGS1-1和BnGS1-2;另外两个为质体型GS基因,命名为BnGS2-1和BnGS2-2,同时选取9株“中苎1号”自交后代,利用内切酶TaqⅠ酶切位点对两个质体型BnGS2基因进行TaqⅠ酶酶切鉴定,结果表明BnGS2-1和BnGS2-2为一对等位基因。
     (2)利用生物信息学对苎麻GS基因序列和结构特征进行分析,结果表明BnGS1-1基因序列全长1205bp,含一个1071bp的开放阅读框(ORF),编码356个氨基酸残基多肽;BnGS1-2基因序列全长1222bp,起始密码子位于第123-125bp,终止密码子位于1102-1104bp,编码356个氨基酸残基多肽;两个BnGS2等位基因序列全长1340bp,含一个1293bp的ORF区,编码430个氨基酸残基多肽;通过序列比对发现BnGS2等位基因ORF区11个位点核苷酸存在差异,导致编码的多肽在195、382两个位点上的氨基酸存在替换现象;苎麻BnGS基因家族编码的多肽序列含有beta-Grasp和catalytic两个保守功能域,均属于Gln-synt结构域,同时,BnGS2基因编码的多肽序列含有一段信号肽;所克隆的苎麻BnGS基因家族编码的多肽序列在56、92、249和297位点上的氨基酸残基分别为天冬氨酸、半胱氨酸、组氨酸和谷氨酸,苎麻BnGS2等位基因在306和371两个位点上都为半胱氨酸残基。
     (3)利用EMBOSS和MEGA软件对苎麻BnGS基因家族进行序列比对和系统进化分析,发现苎麻BnGS基因在蛋白质序列上的相似性为77.25-91.57%,在核苷酸序列上的相似性为71.15-79.37%,并且BnGS1两个基因之内要比BnGS1与BnGS2之间的相似性高。通过对苎麻和其它物种GS基因系统进化分析表明,BnGS1-2基因在进化上起源于双子叶植物,而BnGS1-1基因却被聚类在单子叶植物分支上,同时,苎麻BnGS1-2和BnGS2与苜蓿(Medicago sativa),大豆(Glycine max)和豌豆(Phaseolus vulgaris)等具有较近的亲缘关系。
     (4)利用实时荧光定量PCR分析苎麻BnGS基因在不同部位和发育阶段的表达模式,结果表明BnGS1-1、BnGS1-2和BnGS2在苎麻叶片、茎、根、韧皮部及木质部中都有表达,但在不同的部位不同的BnGS基因的表达水平却呈现明显的差异。BnGS2基因主要的表达部位为叶片,同时,随着发育阶段的不同,相对表达量也呈现明显的不一样,表达量最高的时期为出苗期和纤维发育期;BnGS1-1基因在叶子、根和韧皮部中的相对表达量明显比茎及木质部高,但是在成熟阶段叶片中BnGS1-1的mRNA水平呈显著下降;韧皮部、木质部和茎中的BnGS1-2基因,在纤维发育时期被大量的诱导,表明苎麻BnGS1-2基因可能在纤维的发育过程中起着关键的作用。另一方面,BnGS1-1和BnGS1-2基因在苎麻整个生长过程中,在根部的表达量都呈现较高的水平。因此,苎麻不同的BnGS基因通过在特定部位表达量水平的调节,从而调控苎麻生长发育过程中对氮素营养的需要。
     (5)本文利用同源重组技术将苎麻BnGS1-2基因转入pBI121植物表达载体特定位点,构建了能超量表达BnGS1-2基因的植物表达载体。在农杆菌(Agrobacterium tumefaciens)LBA4404的介导下,通过叶盘法将构建的超量表达载体转入烟草中。通过Kana筛选和基因组DNA PCR验证,获得转基因烟草植株。利用Q-PCR对转基因植株T1进行分析,结果显示BnGS1-2在转基因植株中检测到表达,转基因烟草中GS酶活性是野生型的1-2倍。超量表达BnGS1-2基因能显著增加转基因烟草植株的株高、鲜重和叶面积,因此,超量表达BnGS1-2基因能促进烟草植株的生长;另一方面,转基因植株体内水溶性蛋白与野生型烟草相比呈现极显著性升高,增长率达92.02%,总氮含量有所提高,但并没有达到显著性水平,同时,转基因植株体内游离NH+4含量显著下降,而游离NO-3含量与野生型相一致,因此,超量表达BnGS1-2基因,能够促进转基因烟草植株对氮素的吸收和利用,提高氮代谢效率,从而能够保证植株快速生长对氮素营养的需求。总之,本研究为苎麻GS基因功能的研究和应用提供一个理论和物质基础。
The mineral nutrients nitrogen is essential for higher plants growth, development and a majorlimiting factor in crops yield and quality. Glutamine synthetase (GS) plays fundamental roles in higherplants nitrogen primary assimilation and is regarded as the “hinge” over which inorganic nitrogen isconverted into organic form and transformed into plants. GS isoenzymes have essential effects to thenitrogen absorption, assimilation and use efficiency. Therefore, GS isoenzymes have critical functionsin growth and development, yield and quality of crops. According to their localization with the cell, GSisoforms include cytosolic (GS1) and plastid (GS2). The cytosolic isforms correlate with assimilation ofNH+4reduced from NO-3and re-assimilation of NH+4released from various metabolic pathways andGS2mainly exist in leaves with abundant chloroplast for incorporation of ammonium fromphotosynthesis and photorespiration. Ramie (Boehmeria nivea L.) is world-famous for its excellent fiberand commonly known as “China grass”. Simultaneously, ramie is regarded as ingredients for forageprotein due to equal nutritional value with alfalfa (Medicago sative), high protein and amino acidcontent, reasonable nutrition component and high biomass. In addition, ramie has special characteristicof growth having high rapid growth rate with4-6cm per day at vegetative stage. However, there haslittle or no physiology and molecular document been invested in understanding of ramie nitrogenassimilation and metabolism, and no functional genes in ramie nitrogen pathway have been excavatedand utilized. With the aim of gaining new insights in this area, especially at molecular levels, the focusof our study was first isolation and characterization of ramie GS gene families, and comparativelyanalyzed of GS gene families sequences, GS gene families expression pattern at different tissues anddevelopment stages and higher plants GS phylogeny. In addition, the over-expression plant vector oframie BnGS1-2gene was constructed according to homologous recombination technology andtransgenic tobacco was obtained by “leaf-disk” transformation method. Therefore, the investigation ofthe effects of BnGS1-2over-expression in improving the nitrogen absorption, assimilation and useefficiency provided theoretical basis at molecular level for ramie GS function and nitrogen assimilationpathway, and material basis for utilization of ramie GS genes. The main study results were indicated asfollows:
     (1)Four genes of ramie GS gene families were first isolated from cultivator “Zhongzhu No.1”,two genes encoding cytosolic GS1and the other two encoding plastid GS2, named BnGS1-1, BnGS1-2,BnGS2-1, BnGS2-2, respectively. In addition, the two isolated BnGS2were allele genes, identified byTaq Ⅰ digestion of target genes in self-bred progenies, from ramie cultivator “Zhongzhu No.1”.
     (2)Sequence and structural analysis showed that the cDNAof BnGS1-1gene with length of1205bp including a1071bp ORF region encoded polypeptide of356amino acids; the cDNA of BnGS1-2gene also encoded356amino acid polypeptide with length of1222bp including a1071bp ORF region.Two BnGS2allele genes encoded polypeptides of430amino acids with1340bp length including a 1293bp ORF region and a transit peptide. The diversity of nucleotide in11sites between BnGS2allelegenes resulting into amino acid residues substitution at site195and382. Four genes of ramie BnGSgene families contained beta-Grasp and catalytic functional domains which were belonged to Gln-syntdomain and conservative with other plants GS. The residues in site56,92,249,297of ramie BnGSgenes and in306,371of BnGS2allele genes were Asp, Cys, His, Glu, Cys and Cys respectively.
     (3)Comparison of nucleotide and amino acid sequences showed that all ramie BnGS genefamilies shared very similar percentage in identity ranging from77.25-91.57%at protein sequence andat nucleotide levels with71.15-79.37%. The phylogenic analysis showed discrepant evolutionrelationship of ramie cytosolic GS genes with BnGS1-1grouped into monocots and BnGS1-2was asister to dicots. Simultaneously, the ramie BnGS1-2and BnGS2genes were similar with alfalfa(Medicago sativa), soybean (Glycine max) and bean (Phaseolus vulgaris) in phylogenic relationship.
     (4)The expression patterns of ramie BnGS gene families at different tissues and developmentstages were investigated by fluorescence quantitative real-time PCR. The cytosolic and plastid BnGSgenes exhibited non-organ-specificity expression patterns but displayed very different transcriptionalconcentration. The main transcriptional tissue of BnGS2was leaves and gene expression levels variedalong with different development stages. BnGS1-1relative expression levels in leaves, roots and phloemwere higher than those in stems and xylem at all development stages. However, transcriptional levelswere remarkable reduced in leaves at mature stage. BnGS1-2relative expression levels weresignificantly triggered specifically in the phloem and xylem suggesting it has a primary role in ramiefiber development. On the other hand, BnGS1-1and BnGS1-2displayed high relative expression levelsin roots at all development stages. Therefore, the specificity in expression intensity rather than organ oframie different BnGS genes, may be a main factor to regulate nitrogen assimilation and metabolism inthe process of growth and development.
     (5)The ramie BnGS1-2gene was ligated properly with plant expression vector pBI121toconstruct plant over-expression vector according to homologous recombination technology. Theover-expression vector was transferred into tobacco through Agrobacterium tumefaciens LBA4404using “leaf-disk” transformation method. Transgenic plants were obtained by Kana screening and DNAPCR determination. Q-PCR analysis showed BnGS1-2mRNA was detected in all transgenic tobacco T1plants. The GS enzyme activity in transgenic plant was detected at1-2times higher than wild type. Thetransgenic plants with over-expression BnGS1-2gene were significantly enhanced plant height, freshweight and leaf area suggesting BnGS1-2over-expression is able to promote the growth of transgenicplants. In addition, compared with wild type, the soluble protein of transgenic plants was remarkableenhanced up to92.02%, the total nitrogen content increased but did not reach significant level. TheBnGS1-2transgenic plants also exhibited an remarkable reduce of NH+4content, while the NO-3contentstill maintained the same levels with wild type. These results suggested that BnGS1-2over-expressionenable the transgenic plants to facilitate the nitrogen absorption, assimilation and use efficiency tosustain plants fast-growing demand for nitrogen nutrition. Therefore, the ramie BnGS1-2would be anexcellent gene resource for improvement of plants nitrogen utilization efficiency and crops agronomic traits.
引文
[1]陈英剑,胡成进,赵苗青. SYBR Green实时荧光定量PCR技术平台的建立.实用医药杂志,2004,11:997-999.
    [2]管闪青.甜瓜谷氨酰胺合成酶基因的克隆及其表达分析研究[硕士学位论文].上海:上海交通大学,2007.
    [3]郭婷,佘玮,肖呈祥,等.饲用苎麻研究进展.作物研究,2012,26(6):730-733.
    [4]韩娜,葛荣朝,赵宝存,等.植物谷氨酰胺合成酶研究进展.河北师范大学学报(自然科学版),2004,28(4):407-410.
    [5]洪云,李津,汪和睦,等.实时荧光定量PCR技术进展.国际流行病学传染病学杂志,2006,33(3):161-163.
    [6]胡瑞波,范成明,傅永福.植物实时荧光定量PCR内参基因的选择.中国农业科技导报,2002,11(6):30-36.
    [7]姜涛.苎麻饲用资源产量与品质性状的研究[硕士学位论文].北京:中国农业科学院,2008.
    [8]姜涛,熊和平,喻春明,等.苎麻在饲料中的研究及开发应用.中国麻业科学,2008,29(3):53-55.
    [9]揭雨成,康万利,邢虎成,等.苎麻饲用资源筛选.草业科学,2009,26(9):30-33.
    [10]李春秀,齐力旺,王建华,等.毛白杨纤维素合成酶基因(PtoCesA1)克隆,序列分析及植物表达载体的构建.中国生物工程杂质,2006,26(2):49-52.
    [11]李泽松,林清华,张楚富,等.不同氮源对水稻幼苗根氨同化酶的影响.武汉大学学报(自然科学版),2002,46(6):729-732.
    [12]刘震,刘金祥,张世伟.刈割对豆科牧草的影响.草业科学,2008,25(8):79-84.
    [13]刘永华,朱祝军,魏国强.不同光强下氮素形态对蕃茄谷氨酰胺合成酶和光呼吸的影响.植物生理学通讯,2004,40(6):680-682.
    [14]陆彬彬,周卫.温度对水稻谷氨酰胺合成酶和NADH-谷氨酸合酶表达的影响.武汉大学学报,2002,48(2):239-242.
    [15]陆景陵.植物营养学.北京:中国农业大学出版社,2002.
    [16]马雄风,喻春明,唐守伟,等.苎麻Actin1基因克隆及其在韧皮部纤维不同发育阶段的表达.作物学报,2010,36(1):101-108.
    [17]秦学,曹翠玲,梁宗锁. NaHSO3对小麦生殖生长时期氮素代谢的影响.土壤通报,2005,36(6):913-916.
    [18]王学奎.氮钙光对小麦谷氨酰胺合成酶和氮同化的影响[博士学位论文].武汉:华中农业大学,2000.
    [19]王云华,欧吉权,王志强,等.黄瓜子叶发育过程中谷氨酰胺合成酶同工酶的变化.武汉大学学报(理学版),2005,51(4):517-520.
    [20]王志强,王春丽,欧吉权,等. NaHSO3对盐胁迫下小麦幼苗氮同化酶及脯氨酸含量的影响.武汉植物学研究,2006,24(6):546-550.
    [21]王忠.植物生理学.北京:中国农业出版社,2000.
    [22]魏国威,林清华,张楚富,等.南瓜种子萌发及子叶发育时谷氨酰胺合成酶和其它氨同化酶的变化.武汉植物学研究,2002,20(3):236-240.
    [23]熊和平.苎麻多功能开发潜力及利用途径.中国麻作,2001,23(1):22-25.
    [24]熊和平.麻类作物育种学.北京:中国农业科学技术出版社,2008.
    [25]熊和平,喻春明,王延周.饲料用苎麻新品种中饲苎1号的选育研究.中国麻作,2005,27(1):1-2.
    [26]印莉萍,柴晓清,刘祥林,等.叶绿体发育和光对小麦叶谷氨酰胺合成酶基因表达的影响.植物学报,1994,36(8):597-602.
    [27]喻春明.我国苎麻育种研究进展及发展趋势.中国麻业科学,2007,29(2):86-88.
    [28]喻春明.苎麻多功能深度开发利用系列报道之二:苎麻作为牲畜饲料的利用价值及潜力.中国麻业科学,2001:23(2):23-26.
    [29]袁永泽,林清华,张楚富,等.蔗糖对水稻幼苗叶片谷氨酰胺合成酶和1,5-二磷酸核酮糖羧化酶加氧酶的影响.武汉植物学研究,2002,20(3):219-222.
    [30]张吉,王云华,袁永泽,等.丝瓜种子萌芽及子叶生长过程中谷氨酰胺合成酶同工酶的变化.武汉大学学报(理学版),2004,50(4):511-514.
    [31]张力建,陈晋峰,柯杨,等.荧光实时定量PCR检测NSCLC中PEPF基因表达状态的研究.中国肺癌杂志,2006,9(2):177-181.
    [32]赵林,李保平,孟玲.施肥和刈割对紫花苜蓿和黑麦草苗期竞争的研究.草业学报,2008,17(3):151-155.
    [33]邹礼平,高和平,钟亚琴,等.番茄八氢番茄红素合成酶基因的克隆及超量表达载体构建.孝感学院学报,2008,28(6):16-19.
    [34]朱捷,杨成君,王军.荧光定量PCR技术及其在科研中的应用.生物技术通报,2009,2:73-76.
    [35] Agata G, Domenica N, Angelica G, et al. The glutamine synthetase (GS2) genes in relation to grainprotein content of durum wheat. Functional and Integrative Genomics,2011,11:665-670.
    [36] Aharon R, Shahak Y, Wininger S, et al. Overexpression of a plasma membrane aquaporin intransgenic tobacco improves plant vigor under favorable growth conditions but not under droughtor salt stress. The Plant Cell,2003,15(2):439-447.
    [37] Alburquerque N, Egea J, Burgos L, et al. The influence of polyamines on apricot ovarydevelopment and fruit set. Annals of Applied Biology,2006,149:27-33.
    [38] Amarante L, Lima J D, Sodek L. Growth and stress conditions cause similar changes in xylemamino acids for different legume species. Environmental and Experimental Botany,2006,58:123-129.
    [39] Andrew J G, Pankaj K, Alyson K T. Identification and expression analyses of cytosolic glutaminesynthetase genes in barley (Hordeum vulgare L.). Plant and Cell Physiology,2013,54(4):492-505.
    [40] Andrews M, Lea P J, Raven J A, et al. Can genetic manipulation of plant nitrogen assimilationenzymes result in increased crop yield and greater N-use efficiency? An assessment. Annals ofApplied Biology,2004,145:25-40.
    [41] Avila C, Suaarez M F, mez-Maldonado J O, et al. Spatial and temporal expression of two cytosolicglutamine synthetase genes in scots pine: functional implications on nitrogen metabolism duringearly stages of conifer development. The Plant Journal,2001,25(1):93-102.
    [42] Balley J, Barker G, O’Sullivan H, et al. Mining for single nucleotide polymorphisms and insertion/deletion in maize expressed sequence tag data. Plant Physiology,2003,132(1):84-91.
    [43] Bellucci M, Ederli L, Marchis D F, et al. Transformation of Lotus corniculatus plants withEscherichia coli asparagine synthetase A: effect on nitrogen assimilation and plant development.Plant Cell, Tissue and Organ Culture,2004,78:139-150.
    [44] Bernard S M, Moller A L B, Dionisio G, et al. Gene expression, cellular localization and functionof glutamine synthetase isozymes in wheat (Triticum aestivum L.). Plant Molecular Biology,2008,67:89-105.
    [45] Bertrand H, Sheila F M, Pierre G, et al. Cytosolic glutamine synthetase in higher plants. EuropeanJournal of Biochemistry,1984,138:63-66.
    [46] Bhattramakki D, Dolan M, Hanafey M, et al. Insertion-deletion polymorphisms in3’-regions ofmaize genes occur frequently and can be used as highly informative genetic markers. PlantMolecular Biology,2002,48(5-6):539-547.
    [47] Biesiadka J, Legocki A B. Evolution of the glutamine synthetase gene in plants. Plant Science,1997,128:51-58.
    [48] Blackwell R D, Murray A J S, Lea PJ, et al. The value of mutants unable to carry outphotorespiration. Photosynthesis Research,1988,16:155-176.
    [49] Brears T, Liu C, Knight T J, et al. Ectopic overexpression of asparagine synthetase in transgenictobacco. Plant Physiology,1993,103:1285-1290.
    [50] Bradfors M M. A rapid and sensitive method for the quantitation of microgram quantities of proteinutilizing the principle of protein binding. Analytical Biochemistry,1976,72:248-254.
    [51] Brechlin P, Unterhalt A, Tischner R, et al. Cytosolic and chloroplastic glutamine synthetase ofsugarbeet (Beta vulgaris) respond differently to organ ontogeny and nitrogen source. PhysiologyPlantarum,2000,108:263-269.
    [52] Burton R A, Shirley N J, King B J, et al. The CesA gene family of barley. Quantitative analysis oftranscripts reveals two groups of co-expression genes. Plant Physiology,2004,134:224-236.
    [53] Bustin S A. Quantification of mRNA using real-time reverse transcription PCR RT-PCR: trendsand problems. Journal of Molecular Endocrinology,2002,29:23-29.
    [54] Cai H M, Zhou Y, Xiao J H, et al. Overexpression glutamine synthetase gene modifies nitrogenmetabolism and abiotic stress responses in rice. Plant Cell Reports,2009,527-537.
    [55] Cataldo D A, Haroon M, Schrader L E, et al. Rapid colorimetric determination of nitrate in planttissue by nitration of salicylic. Communication in Soil Science and Plant Analysis,1975,6:71-80.
    [56] Carvalho H, Lima L, Lescure N, et al. Differential expression of the two cytosolic glutaminesynthetase genes in various organs of Medicao truncatula. Plant Science,2000,159:301-312.
    [57] Clemente M T, Marquez A J. Functional importance of Asp56from the alpha-polypeptide ofphaseolus vulgaris glutamine synthetase-an essential residue for transferase but not forbiosynthetic enzyme activity. European Journal of Biochemistry,1999a,264:453-460.
    [58] Clemente M T, Marquez A J. Site-directed mutagenesis of Cys-92from the alpha-polypeptide ofphaseolus vulgaris glutamine synthetase alters kinetic and structural properties and confersresistance to L-methionine sulfoximine. Plant Molecular Biology,1999b,40:835-845.
    [59] Clemente M T, Marquez A J. Site-directed mutagenesis of Cys-92from the alpha-polypeptide ofphaseolus vulgaris glutamine synthetase reveals that this highly conserved residue is not essentialfor enzyme activity but it is involved in thermal stability. Plant Science,2000,67:189-197.
    [60] Clementi M, Menzo S, Bagnarelli P, et al. Quantitative PCR and RT-PCR in virology. PCRMethods Application,1993,2:191-196.
    [61] Cren M, Hirel B. Glutamine synthetase in higher plants: regulation of gene and protein expressionfrom the organ to the cell. Plant and Cell Physiology,1999,40:1187-1193.
    [62] Dechorgnat J, Nguyen C T, Armengaud P, et al. From the soil to the seeds: the long journey ofnitrate in plants. Journal of Experimental Botany,2011,62:1349-1359.
    [63] Deng Y W, Zhang Y D, Guan S Q, et al. Molecular cloning and characterization of nitrogen sourceresponsive GS1gene from melon. Biologia Plantarum,2011,55(1):61-67.
    [64] Dheda K, Huggett J F, Bustin S A, et al. Validation of housekeeping genes for normalizing RNAexpression in real-time PCR. Biotechniques,2004,37:112-119.
    [65] Downs C G, Borst W M, Hurst P L, et al. Isoforms of glutamine synthetase in asparagus spears: thecytososic enzyme increases after harvest. Plant Cell Environment,1994,17:1045-1052.
    [66] Eckes P, Schmitt P, Daub W, et al. Overproduction of alfalfa glutamine synthetase in transgenictobacco plants. Molecular and General Genetics,1989,217:263-268.
    [67] Fei H, Chaillou S, Hirel B, et al. Overexpression of a soybean cytosolic glutamine synthetae genelinked to organ specific promoters in pea plants grown in different concentration of nitrate. Planta,2003,216:467-474.
    [68] Fei H, Chaillou S, Hirel B, et al. Effects of the overexpression of a soybean cytosolic glutaminesynthetase gene (GS15) linked to organ-specific promoters on growth and nitrogen accumulation ofpea plants supplied with ammonium. Plant Physiology and Biochemistry,2006,44:543-550.
    [69] Fentem P A, Lea P J, Stewart G R. Action of inhibitors of ammonia assimilation on amino acidmetabolism in Hordeum vulgare L.(cv Golden Promise). Plant Physiology,1983,71:502-506.
    [70] Forde B G, Lea P J. Glutamate in plants: metabolism, regulation, and signalling. Journal ofExperimental Botany,2007,58:2339-2358.
    [71] Fuentes S I, Allen D J, Ortiz-Lopez A, et al. Over-expression of cytosolic glutamine synthetaseinereases Photosynthesis and growth at low nitrogen concentrations. Journal of ExperimentalBotany,2001,52:1071-1081.
    [72] Garnett T, Conn V, Kaiser B N. Root based approaches to improving nitrogen use efficiency inplants. Plant Cell Environment,2009,32:1272-1283.
    [73] Gallais A, Hirel B. An approach to the genetics of nitrogen use efficiency in maize. Journal ofExperimental Botany,2004,55:295-306.
    [74] Ginzinger D G. Gene quantification using real-time quantitative PCR: an emerging technology hitsthe mainstream. Experimental Hematology,2002,30:503-512.
    [75] Glass A D M, Jon E S, Leon V K. Studies of the uptake of nitrate in barley Ⅳ. Electrophysiology.Plant Physiology,1992,99:456-463.
    [76] Good A G, Shrawat A K, Muench D G. Can less yield more? Is reducing nutrient input into theenvironment compatible with maintaining crop production? Trends in Plant Science,2004:9,597-605.
    [77] Goodall A J, Kumar P, Tobin A K. Identification and expression analyses of cytosolic glutaminesynthetase genes in barley (Hordeum vulgare L.). Plant Cell Physiology,2013,54(4):492-505.
    [78] Gordon S A, Fleck A, Bell J. Optimal conditions for the estimation of ammonium by the Berthelotreaction. Annals of Clinical Biochemistry,1978,15:270-275.
    [79] Graan T, Ort D O. Quantitation of the rapid electron donors to P700, the functional plastoquinonepool, and the ratio of the photosystems in spinach chloroplasts. Journal of Biology Chemistry,1984,250:1403-1410.
    [80] Hayashi K, Hashimoto N, Daigen M, et al. Development of PCR-based SNP markers for rice blastresistance genes at the pizlocus. Theoretical and Applied Genetics,2004,108(7):1212-1220.
    [81] He Y J, Guo W Z, ShenX L, et al. Molecular cloning and characterization of a cytosolic glutaminesynthetase gene, a fiber strength-associated gene in cotton. Planta,2008,228(3):473-483.
    [82] Hirel B, Gouis L J, Ney B, et al. The challenge of improving nitrogen use efficiency in crop plants:towards a more central role for genetic variability and quantitative genetics within integratedapproaches. Journal of Experimental Botany,2007,58:2369-2387.
    [83] Hoff T, Truong H N, Caboche M. The use of mutants and transgenic plants to study nitrateassimilation. Plant Cell and Environment,1994,17:489-506.
    [84] Holmstrom K O, Somersalo S, Mandal A, et al. Improved tolerance to salinity and low temperaturein transgenic tobacco producing glycine betaine. Journal of Experimental Botany,2000,51(343):177-185.
    [85] Hoshida H, Tanaka Y, Hibino T, et al. Enhanced tolerance to salt stress in transgenic rice thatover-expresses chloroplast glutamine synthetase. Plant Molecular Biology,2000,43:103-111.
    [86] Huber S C, MacKintosh C, Kaiser W M. Metabolic enzymes as targets for14-3-3proteins. PlantMolecular Biology,2002,50:1053-1063.
    [87] Jain M, Nijhawan A, Tyagi A K, et al. Validation of housekeeping genes as internal control forstudying gene expression in rice by quantitative real-time PCR. Biochemical and BiophysicalResearch Communication,2006,345:646-651.
    [88] Kanazin V, Talbert H, See D, et al. Discovery and assay of single-nucleotide polymorphisms inbarley (Hordeum vulgare). Plant Molecular Biology,2002,48(5):529-537.
    [89] Katsumi H, Hajime S, Hiroshi K. Patterns of expression of the genes for glutamine synthetaseisoforms during somatic and zygotic embryo genesis in carrot. Plant and Cell Physiology,1998,39:418-424.
    [90] Kichey T, Gouis J L, Sangwan B, et al. Changes in the cellular and subcellular localization ofglutamine synthetase and glutamate dehydrogenase during flag leaf senescence in wheat (Triticumaestivum L.). Plant Cell Physiology,2005,46(6):964-974.
    [91] Kim B R, Nam H Y, Kim S U, et al. Normalization of reverse transcription quantitative-PCR withhousekeeping genes in rice. Biotechnology Letters,2003,25:1869-1872.
    [92] Kirby E G, Gallardo F, Man H M, et al. The overexpression of glutamine synthetase in transgenicpoplar: a review. Silva Genetica,2006,55:278-284.
    [93] Klein D. Quantification using real-time PCR technology: application and limitation. TRENDS inMolecular Medicine,2002,8(6):257-260.
    [94] Kumada Y, Benson D R, Hillemann D, et al. Evolution of the glutamine synthetase gene, one of theoldest existing and functioning genes. Proceedings of the National Academy of Sciences of theUSA,1993,90(7):3009-3013.
    [95] Lam H M, Coschigano K, Shultz C, et al. Use of Arabidopsis mutants and genes to study amideamino acid biosynthesis. Plant Cell,1995,7:887-898.
    [96] Lam H M, Coschigano K, Oliveira I C, et al. The molecular-genetics of nitrogen assimilation intoamino acids in higher plants. Annual Review of Plant Physiology and Plant Molecular Biology,1996,47:569-593.
    [97] Lam H M, Wong P, Chan H K, et al. Overexpression of the ASN1gene enhances nitrogen status inseeds of Arabidopsis. Plant Physiology,2003,132:926-935.
    [98] Lancien M, Martin M, Hsieh M H, et al. Arabidopsis glt1-T mutant defines a role forNADH-GOGAT in the non-photorespiratory ammonium assimilatory pathway. The Plant Journal,2002,29:347-358.
    [99] Lea P J, Azevedo R A. Nitrogen use efficiency.2. Amino acid metabolism. Annals of AppliedBiology,2007,151:269-275.
    [100] Lea P J, Sodek L, Parry M A J, et al. Asparagine in plants. Annals Applied Biology,2007,150:1-26.
    [101] Lea U S, Leydecker M T, Quillere I, et al. Posttranslational regulation of nitrate reductase stronglyaffects the levels of free amino acids and nitrate, whereas transcriptional regulation has only minorinfluence. Plant Physiology,2006,140:1085-1094.
    [102] Lee J M, Roche J R, Donaghy D J, et al. Validation of reference genes for quantitative RT-PCRstudies of gene expression in perennial ryegrass (Lolium perenne L.). BMC Molecular Biology,2010,11:8-23.
    [103] Li M G, Villemur R, Hussey P J, et al. Differential expression of six glutamine synthetase genes inZea mays. Plant Molecular Biology,1993,23,401-407.
    [104] Liepman A H, Olsen L J. Genomic analysis of amino transferases in Arabidopsis thaliana. CriticalReviews in Plant Sciences,2004,23:73-89.
    [105] Lillo C, Meyer C, Lea U S, et al. Mechanism and importance of post-translational regulation ofnitrate reductase. Journal of Experimental Botany,2004,55:1275-1282.
    [106] Loudet O, Chaillou S, Merigout P, et al. Quantitative trait loci analysis of nitrogen use efficiency inArabidopsis. Plant Physiology,2003,131:345-358.
    [107] Liu T M, Zhu S Y, Tang Q M, et al. De novo assembly and characterization of transcriptome usingIllumina paired-end sequencing and identification of CesA gene in ramie (Boehmeria nivea L.Gaud). BMC Genomics,2013,14:125-135.
    [108] Man H M, Boriel R, El-Khatib R, et al. Characterization of transgenic poplar with ectopicexpression of pine cytosolic glutamine synthetase under conditions of varying nitrogen availability.The New Phytologist,2005,167:31-39.
    [109] Martin A, Lee J, Kichey T, et al. Two cytosolic glutamine synthetase isoforms of maize arespecifically involved in the control of grain production. The Plant Cell,2006,18:3252-3274.
    [110] Masclaux-Daubresse C, Daniel-Vedele F, Dechorgnat J, et al. Nitrogen uptake, assimilation andremobilization in plants: challenges for sustainable and productive agriculture. Annals of Botany,2010,105:1141-1157.
    [111] Masclaux-Daubresse C, Reisdorf-Cren M, Pageau K, et al. Glutamine synthetase–glutamatesynthase pathway and glutamate dehydrogenase play distinct roles in the sink source nitrogen cyclein tobacco. Plant Physiology,2006,140:444-456.
    [112] Mattana M, Bertani A, et al. Expression of glutamine synthetase during the anaerobic germinationof Oryza sativa L.. Planta,1994,195:147-149.
    [113] Mickelson S, See D, Meyer F D, et al. Mapping of QTL associated with nitrogen storage andremobilization in barley (Hordeum vulgare L.) leaves. Journal of Experimental Botany,2003,54:801-812.
    [114] Miesak B H, Coruzzi G M. Molecular and physiological analysis of Arabidopsis mutants defectivein cytosolic or chloroplastic aspartate aminotransferase. Plant Physiology,2002,129:650-660.
    [115] Miflin B J, Habash D Z. The role of glutamine synthetase and glutamate dehydrogenase in nitrogenassimilation and possibilities for improvement in the nitrogen utilization of crops. Journal ofExperimental Botany,2002,53(370):979-987.
    [116] Migge A, Carrayol E, Hirel B, et al. Leaf-specific over-expression of plastidic glutaminesynthetase stimulates the growth of transgenic tobacco seedlings. Planta,2000,210:252-260.
    [117] Mikael R M. Jose M A, Martin B, et al. The real-time polymerase chain reaction. MolecularAspects of Medicine,2006,27:95-125.
    [118] Miller A J, Fan X R, Orsel M, et al. Nitrate transport and signalling. Journal of ExperimentalBotany,2007,58:2297-2306.
    [119] Miller A J, Snith S J. Nitrate transport and compartmentation in cereal root cells. Journal ofExperimental Botany,1996,47:843-854.
    [120] Montenegro M, Maldonado J M, Perez-Vicente R. Sunflower cytosolic-glutamine synthetase genesshowing similar organ-specificity patterns exhibit very different expression intensities byreverse-transcription polymerase chain reaction and Northern analysis. Protoplasma,1999,207:154-157.
    [121] Morales M, Roig E, Monforte A J, et al. Single-nucleotide polymorphisms detected in expressedsequence tags of melon (Cucumis Melo L.). Genome,2004,47(2):352-360.
    [122] Morey K J, Ortega J L, Sengupta-Gopalan C. Cytosolic glutamine synthetase in soybean isencoded by a multigene family, and the members are regulated in an organ-specific anddevelopmental manner. Plant Physiology,2002,128:182-193.
    [123] Mukhopadhyay A, Vij S, Tyagi A K. Overexpression of a zinc-finger protein gene from riceconfers tolerance to cold, dehydration, and salt stress in transgenic tobacco. Proceeding of theNational Academy of Sciences of the United States of America,2004,101(16):6309-6314.
    [124] Murooka Y, Mori Y, Hayashi M. Variation of the amino acid content of Arabidopsis seeds byexpressing soybean aspartate aminotransferase gene. Journal of Bioscience and Bioengineering,2002,94:225-230.
    [125] Nasu S, Suzuki J, Ohta R, et al. Search for and analysis of single nucleotide polymorphisms (SNPs)in rice (Oryza sativa, Oryza rufipogon) and establishment of SNP markers. DNA research,2002,9(5):163-171.
    [126] Nejidat A, Zhang G, Grinberg M, et al. Increased protein content in transgenic Arabidopsisthanliana over-expression nitrate reductase activity. Plant Science,130(1):41-49.
    [127] Novotny V, Englande A J, Wang X, et al. Use of agricultural chemicals in China, India, Thailangand the Philippines and their environmental and human impact. Boston, MA,2007.
    [128] Obara M, Kajiura M, Fukuta Y, et al. Mapping of QTLs associated with cytosolic glutaminesynthetase and NADH-glutamate synthase in rice(Oryza sativa L.). Journal of ExperimentalBotany,2001,52(359):1209-1217.
    [129] Obara M, Sato T, Sasaki S, et al. Identification and characterization of a QTL on chromosome2for cytosolic glutamine synthetase content and panicle number in rice. Theoretical and AppliedGenetics,2004,110:1-11.
    [130] Oliveira I C, Brears T, Knight T J, et al. Overexpression of cytosolic glutamine synthetase relationto nitrogen, light, and photorespiration. Plant Physiologists,2002,129(3):1170-1180.
    [131] Ortega J L, Temple S J, Sengupta-Gopalan C. Constitutive over-expression of cytosolic glutaminesynthetase (GS1) gene in transgenic alfalfa demonstrate that GS1may be regulated at the level ofRNA stability and protein turnover. Plant physiology,2001,126:109-121.
    [132] Paczek V, Dubois F, Sangwan R, et al. Cellular and subcellular localization of glutamine synthetaseand glutamate dehydrogenase in graps gives new insights on the regulation of carbon and nitrogenmetabolism. Planta,2002,216:245-254.
    [133] Pascula M B, Jing Z P, Kirby E G, et al. Response of transgenic polar overexpression cytosolicglutamine synthetase to phosphinothricin. Phytochemistry,2008,69:382-389.
    [134] Paula A M M, Ligia M L, Isabel M S, et al. Expression of the plastidlocated glutamine synthetaseof Medicago truncatula. Plant Physiology,2003,132(1):390-399.
    [135] Peterman T K, Goodman H M. The glutamine synthetase gene family of Arabidopsis thaliana:light-regulation and differential expression in leaves, roots and seeds. Molecular and GeneralGenetics,1991,230:145-154.
    [136] Quraishi U M, Abrouk M, Murat F, et al. Cross-genome map based dissection of a nitrogen useefficiency ortho-metaQTL in bread wheat unravels concerted cereal genome evolution. The PlantJournal,2011,65:745-756.
    [137] Raun W R, Johnson G V. Improving nitrogen use efficiency for cereal production. AgronomyJournal,1999,91:357-363.
    [138] Robertson G P, Vitousek P M. Nitrogen in agriculture: balancing the cost of an essential resource.Annual Review of Environment and Resources,2009,34:97-125.
    [139] Seiffert B, Zhou Z, Wallbraun M, et al. Expression of a bacterial asparagine synthetase gene inoilseed rape (Brassica napus) and its effect on traits related to nitrogen efficiency. PhysiologiaPlantarum,2004,12:656-665.
    [140] Silveira J A G, Viegas R A, Rocha I M A, et al. Proline accumulation and glutamine synthetaseactivity are increased by salt-induced proteolysis in cashew leaves. Journal of Plant Physiology,2003,160(2):115-123.
    [141] Spielmeyer M, Ellis M H, Chandler P M. Semidwarf (sd-1),“green revolution” rice, contains adefective gibberellins20-oxidase gene. Proceedings of the National Academy of Sciences of theUSA,2002,99(13):9043-9048.
    [142] Stanford A C, Larsen K, Barker D G, et al. Differential expression within the glutamine synthetasegene family of the model Legume Medicago truncatula. Plant Physiology,1993,103:73-81.
    [143] Stitt M, Muller C, Matt P, et al. Steps towards an integrated view of nitrogen metabolism. Journalof Experimental Botany,2002,53:959-970.
    [144] Tabuchi M, Abiko T, Yamaya T. Assimilation of ammonium ions and reutilization of nitrogen inrice (Oryza sativa L.). Journal of Experimental Botany,2007,58:2319-2327.
    [145] Tabuchi M, Sugiyama T, Ishiyama K, et al. Severe reduction in growth and grain filling of ricemutants lacking OsGS1;1, a cytosolic glutamine synthetase1;1. The Plant Journal,2005,42:641-651.
    [146] Temple S J, Knight T J, Unkefer P J, et al. Modulation of glutamine synthetase gene expression intobacco by the introduction of an alfalfa glutamine synthetase gene in sense and antisenseorientation: molecular and biochemical analysis. Molecular General Genetics,1993,236:315-325.
    [147] Thellin O, Zorzi W, Lakaye B, et al. Housekeeping genes as internal standards: use and limits.Journal of Biotechnology,1999,75:290-295.
    [148] Tichopad A, Dilger M, Schwarz G, et al. Standardized determination of real-time PCR efficiencyfrom a single reaction set-up. Nucleic Acids Research,2003,31:20-22.
    [149] Tobin A K, Yamaya T. Cellular compartmentation of ammonium assimilation in rice and barely.Journal of Experimental Botany,2001,52(356):591-604.
    [150] Umemoto T, Aoki N. Single-nucleotide polymorphisms in rice starch synthase IIa that alter starchgelatinization and starch association of the enzyme. Functional Plant Biology,2005,32(9):763-768.
    [151] Unno H, Uchida T, Sugawara H, et al. Atomic structure of plant glutamine synthetase. BiologicalChemistry,2006,281:29287-29296.
    [152] Vincent R, Fraiser V, Chaillou S, et al. Over expression of a soybean gene encoding cytosolicglutamine synthetase in shoots of transgenic Lotus corniculatus L. plants triggers changes inammonium assimilation and plant development. Planta,1997,201:424-433.
    [153] Vitousek P M, Aber J D, Howarth R W, et al. Human alteration of the global nitrogen cycle:sources and consequences. Ecological Applications,1997,7:737-750.
    [154] Volkov R A, Panchuk I I, Schoffi F. Heat-stress-dependency and developmental modulation ofgene expression: the potential of house-keeping genes as internal standards in mRNA expressionprofiling using real-time RT-PCR. Journal of Experimental Botany,2003,54:2343-2349.
    [155] Von A N, Schutz E, Armstrong V W, et al. Rapid detection of prothrombotic mutations ofprothrombin (G20210A), factor V (G1691A), and methylenetetrahydrofolate reductase (C677T) byreal-time fluorescence PCR with the Light Cycler. Clinical Biochemistry,1999,45:694-696.
    [156] Wang X, Replogle A, Davis E L, et al. The tobacco Cel7gene promoter is auxin-responsive andlocally induced in nematode feeding sites of heterologous plants. Molecular Plant Pathology,2007,8:423-436.
    [157] Yamaya T, Obara M, Nakajima H, et al. Genetic manipulation and quantitative-trait loci mappingfor nitrogen recycling in rice. Journal of Experimental Botany,2002,53:917-925.
    [158] Zhu Y L, Song Q J, Hyten D L, et al. Single-nucleotide polymorphisms in soybean. Genetics,2003,163(3):1123-1134.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700