四乙酰化木犀草素药动学及抗心肌缺血作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究选择具有显著舒张血管作用的黄酮类化合物---木犀草素为研究对象,为提高木犀草素的生物利用度,研究了木犀草素乙酰化衍生物的定向合成工艺、药理活性和药动学行为,为木犀草素的开发提供依据。
     1.采用乙酰化定向合成方法,以木犀草素和乙酰氯为原料合成了三乙酰化木犀草素(TRALT)和四乙酰化木犀草素(TEALT).反应条件为:木犀草素和乙酰氯的物料比为1:4,溶剂为吡啶和丙酮(1:1,v/v),常温反应6h,反应产物混合物经柱层析分离得到两个化合物,经HPLC归一化法检测纯度均达到98%以上。经IR,1HNMR,MS鉴定,确定为三乙酰化木犀草素和四乙酰化木犀草素。
     2.为了研究木犀草素、三乙酰化木犀草素和四乙酰化木犀草素的药理活性强弱,对3个化合物进行了大鼠胸主动脉环舒张作用和大鼠常压密闭抗缺氧作用的对比研究。
     在舒张血管实验中,考察了木犀草素、三乙酰化木犀草素和四乙酰化木犀草素在内皮完整和内皮不完整情况下对去甲肾上腺素(NA)诱导的大鼠胸主动脉收缩的舒张作用。结果表明木犀草素对NA诱导的血管收缩具有舒张作用,且这种作用具有浓度依赖性,无内皮依赖性。三乙酰化木犀草素和四乙酰化木犀草素呈现相同的作用趋势,其中四乙酰化木犀草素的舒张血管作用在三者中最显著。
     在动物常压密闭抗缺氧实验中,考察了木犀草素、三乙酰化木犀草素和四乙酰化木犀草素对小鼠耐缺氧作用的影响。结果表明3个受试化合物的平均存活时间(min)均长于阳性药物地奥心血康(22.9±2.5)(P<0.05),且四乙酰化木犀草素组小鼠的平均存活时间(29.3±3.0)显著长于木犀草素组(23.0±3.5)和三乙酰化木犀草素组(24.9±3.4)(P<0.05)。
     根据上述体内、体外药理活性实验结果,进一步选择四乙酰化木犀草素作为研究对象,进行四乙酰化木犀草素抗心肌缺血作用、木犀草素和四乙酰化木犀草素在大鼠体内药动学比较研究。
     3.采用静脉注射垂体后叶素致大鼠急性心肌缺血和冠脉结扎致大鼠心肌梗塞药理模型从血流动力学、心肌收缩和舒张性能等方面考察了四乙酰化木犀草素对心肌缺血的防治作用,并辅助以调节血脂和活血化瘀实验,评价四乙酰化木犀草素的药理作用。实验结果表明:其一,四乙酰化木犀草素能够明显降低心肌缺血大鼠Ⅱ导联心电图ST段及T波的异常抬高;减慢心率(HR),降低平均动脉压(MAP)和左心室收缩峰压(LVSP)升高幅度,改善心肌缺血时的血流动力学状态;并且降低左心室舒张末期压力(LVEDP),升高左室内压最大下降速率(-dp/dtmax),对左室内压最大上升速率(+dp/dtmax)无明显影响。其二,四乙酰化木犀草素能降低冠脉结扎致心肌大鼠ST段和T波的异常抬高;减慢心率(HR),降低平均动脉压(MAP)和左心室收缩峰压(LVSP);对左室内压最大上升速率(+dp/dtmax)无明显影响,降低左心室舒张末期压力(LVEDP),升高左室内压最大下降速率(-dp/dtmax);能降低冠脉结扎致心肌缺血大鼠心肌梗塞范围和心肌耗氧指数(MVO2I,降低血清中CK, LDH, MDA含量,升高SOD活性和NO水平;其三,四乙酰化木犀草素能降低高血脂大鼠血清中总胆固醇(TC)、甘油三酯(TG)、低密度脂蛋白(LDL)水平,同时升高高密度脂蛋白(HDL)水平。其四,四乙酰化木犀草素能明显降低急性血瘀大鼠高、中切全血粘度(ηb),高切全血还原粘度(ηrv),红细胞聚集指数(AI)。
     以上结果表明,四乙酰化木犀草素能改善心肌缺血时的血流动力学状态,减少回心血量,改善心肌舒张性能,不影响心肌的收缩性能,降低心肌耗氧量;提高心肌抗氧化酶活性来对抗自由基损伤,保护和稳定心肌细胞,改善心肌功能;同时它还具有调血脂作用和降低急性血瘀模型动物的血液粘稠度,改善血液流变状态,从多方面发挥抗心肌缺血作用。
     4.建立了测定大鼠血浆中木犀草素和四乙酰化木犀草素的HPLC方法。木犀草素和四乙酰化木犀草素均在0.04-1.6μg.mL-1浓度范围内线性关系良好(r=0.9997和r=0.9990),方法回收率分别为96.1%(RSD%=2.4%)和93.3%(RSD%=2.3%)。采用本研究建立的方法,对木犀草素和四乙酰化木犀草素在大鼠血浆中的药动学进行了比较研究。结果表明大鼠灌胃木犀草素(3Omg.kg-1)后,其血浆浓度经时变化过程符合二室模型,Tmax为0.47 h, Cmax为895 ng.mL-1,AUC0→t为3443ng.h.mL-1,t1/2为3.7 h。大鼠灌胃四乙酰化木犀草素(30mg.kg-1)后,其血浆浓度经时变化过程符合二室模型,Tmax为0.51 h, Cmax为1666ng.mL-1,AUC0→t为4937ng.h.mL-1,t1/2为4.38 h。结果表明四乙酰化木犀草素吸收时间无显著变化,但吸收量显著增加,体内排泄趋于减慢,呈现良好的生物利用度。
     综上所述,本研究将药物化学、药理学、药物分析学相结合,考察了四乙酰化木犀草素的抗大鼠心肌缺血作用和体内药动学行为,为四乙酰化木犀草素的开发提供依据。
Tri-acetyl-luteolin (TRALT) and tetra-acetyl-luteolin (TEALT) were oriented synthesized to improve the pharmacokinetics of luteolin and were examined their pharmacological effects by observing the relaxation effects of luteolin(LT), TEALT and TRALT on norepinephrine (NA)-induced contractions in the aorta rings isolated from rats with or without endothelium. The results showed that they all attenuated the contraction in a concentration-dependent manner and in an endothelium-independent manner.Effect of vasodilation of tetra-acetyl-luteolin is the strongest one among them.Moreover, the anti-anoxia activity of luteolin and its acetylated derivates were observed. the mean survival times of rats in three treated groups is longer than the positive drug control group(22.9±2.5), and the survival time of the rats treated by tetra-acetyl-luteolin(29.3±3.0) was significantly longer than luteolin(23.0±3.5) and its tri-acetyl-luteolin groups(24.9±3.4)(P< 0.05). Hence, we selected tetra-acetyl-luteolin to investigate the pharmacokinetics and pharmacodynamics of anti-myocardial ischemia of rats in vivo.
     To investigate the pharmacodynamic efficacy and mechanism of Tetra-acetyl-luteolin on the experimental animal model of acute myocardial infarction (AMI) through hemodynamics, myocardial contractility and dilatity. The rat model of acute myocardial infarction (AMI) was induced by Piturin (Pit) injection, the influence on blood-lipids in hyperlipidemia rats and hemorheological parameters in acute hypostasis rats were also studied. The results are①In rats with AMI by Piturin injection, Tetra-acetyl-luteolin desent significantly the raised ST segment and T wave in ECG leadⅡ, slowed down significantly HR and lowered significantly the raised BP, LVSP and LVEDP, increased-dp/dtma-, but no obvious influence on+dp/dtmaX.②In rats ligated the left desend branch of cornary artery, Tetra-acetyl-luteolin desent significantly the raised ST segment and T wave in ECG lead II, slowed down HR and lowered BP, LVEDP, LVSP and MVO2I, increased-dp/dtmax, but no obvious influence on+dp/dtmax.It reduced the myocardial infarction size and lowered serum LDH, CK, MDA and increased serum SOD, NO.③Tetra-acetyl-luteolin lowered significantly serum TC, TG, LDL and increased HDL in hyperlipidemia rats fed with hyperlipidemia food.④Tetra-acetyl-luteolin lowered whole blood viscosity, whole blood reduction viscosity and AI of acute hypostasis rats. The results indicated Tetra-acetyl-luteolin could improve hemodynamics and myocardial dilatity in AMI animal model, did not influence myocardial contractility maredly and decreased myocardial oxygen consumption. It could improve myocardial enzyme activity and energy metabolism in AMI. Those mentioned above are the main mechanism of Tetra-acetyl-luteolin against AMI,simultaneously it could regulate blood lipids in acute hyperlipidemia rats and lower whole blood viscosity, improve hemorheology in acute hypostasis rats, and tetra-acetyl-luteolin may protect myocardium from ischemia injury.
     Accurate and reproducible HPLC methods were developed and validated for the determination of concentrations of luteolin (LT) and tetra-acetyl-luteolin (TALT) in rat plasma. The linear calibration curves were obtained in the concentration range of 0.04-1.6μg.mL-1 (r=0.9997 and r=0.9990) with a lower limit of quantification (LLOD) of 0.04μg.mL-1. The average recoveries were 96.1%(RSD%=2.4%) and 93.3%(RSD%= 2.3%), respectively.
     The pharmacokinetics of luteolin and tetra-acetyl-luteolin was investigated by HPLC method. The plasma concentration-time curves of luteolin and tetra-acetyl-luteolin could both be evaluated by the two compartment model. Luteolin's Tmax, Cmax,AUC, t1/2 were 0.47 h,895ng.mL-1. and 3443 ng.h.mL-1,3.70 h, respectively; tetra-acetyl-luteolin's Tmax, Cmax,AUC, t1/2 were 0.51 h,1666ng.mL-1,4937 ng.h.mL"1,4.38h respectively.
     Above all, tetra-acetyl-luteolin showed potent effect of anti-myocardial ischemia of rats in vivo, and had good pharmacokinetic profiles, which provide the basis for developing it further.
引文
[1]Habtemariam S. Flavonoids as inhibitors or enhancers of the cytotoxicity of tumor Necrosis factor-alpha in L-929 tumor cells. Journal of Natural Products,1997,60(8):775-778
    [2]HuCQ, ChenK, ShiQ, et al. Anti-AIDs agents, acacetin7-O-β-D-galactopyranoside, an anti-HIV principle from chrysanthemum morifolivm and a structure activity correlation with some related flavonoids. Journal of Natural Products,1994,57(1):42-51
    [3]LeeY, HowardLR, VillalonB. Flavonoids and antioxidant activity of fresh pepper(Capsicum annum) Cuhivars. Jounal of Food Science,1995,60(3):483-476
    [4]Day AJ, Dupont MS, Ridley S, et al. Deglycosylation of flavonoid and isoflavonoid glycosides by human small intestine and liver β-glucosidase activity. FEBS Letter,1998,436:71-75
    [5]Day AJ, Canada FJ, Diaz JC, et al. Dietary flavonoid and isoflavone glycosides are hydrolysed by the lactase site of lactase phlorizin hydrolase. FEBS Letter,2000,468:166-170
    [6]Graefe EU, Wittig J, Mueller S, et al. Pharmacokinetics and bioavailability of quercetin glycosides in humans. The Journal of Clinical Pharmacology,2001,41:492-499
    [7]Walle T. Absorption and metabolism of flavonoids. Free Radical Biology and Medicine,2004,36: 829-837
    [8]Walle T, Browning AM, Steed LS, et al. Flavonoid glucosides are hydrolyzed and thus activated in the oral cavity in humans. Nutrition Journal,2005,135:48-52
    [9]Manch C, Donovan JL. Pharmacokinetics and metabolism of dietary flavonoids in humans. Free Radical Research,2004,38:771-785
    [10]Walle T, Walle UK, Halushka PV. Carbon dioxide is the major metabolite of quercetin in humans. Nutrition Journal,2001,131:2648-2652
    [11Chow HHS, Cai Y, Alberts DS, et al. Phase I pharmacokinetic study of tea polyphenols following single-dose administration of pigallocatechin gallate and polyphenol E. Cancer Epidemiology, Biomarkers & Prevention,2001,10:53-58
    [12]Warden BA, Smith LS, Beecher GR, et al. Catechins are bioavailable in men and women drinking black tea throughout the day. Nutrition Journal,2001,131:1731-1737
    [13]Hong J, Lambert JD, Lee S-H, et al. Involvement of multidrug resistance-associated proteins in regulating cellular levels of (-)-epigallocatechin-3-gallate and its methyl metabolites. Biochemical and Biophysical Research Communications,2003,310:222-227
    [14]Vaidyanathan JB, Walle T. Cellular uptake and efflux of the tea flavonoid (-)-epicatechin-3-gallate in the human intestinal cell line Caco-2. Journal of Pharmacology and Experimental Therapeutics, 2003,307:745-752
    [15]Walton MC, Mcghie TK, Reynolds GW, et al. The flavonol quercetin-3-glucoside inhibits cy anidin-3-glucoside absorption in vitro. Journal of Agricultural and Food Chemistry,2006,54: 4913-4920
    [16]Soars MG, Riley RJ, Findlay KAB, et al. Evidence for significant differences in microsomal drug glucuronidation by canine and human liver and kidney. Drug Metabolism and Disposition,2001,29: 121-126
    [17]Wen X, Walle T. Methylated flavonoids have greatly improved intestinal absorption and metabolic stability. Drug Metabolism and Disposition,2006,34:1786-1792
    [18]Doostdar H, Burke MD, Mayer RT. Bioflavonoids:selective substrates and inhibitors for cytochrome P450 CYP1A and CYP1B1. Toxicology,2000,144:31-38
    [19]Duarte SILVA I, Rodrigues AS, Gaspar J, et al. Metabolism of galangin by rat cytochromes P450: relevance to the genotoxicity of galangin. Mutation Research,1997,393:247-257
    [20]Nielsen SE, Breinholt V, Justesen U, et al. In vitro biotransformation of flavonoids by rat liver microsomes. Xenobiotica,1998,28:389-401
    [21]Otake Y, Hsieh F, Walle T. Glucuronidation versus oxidation of the flavonoid galangin by human liver microsomes and hepatocytes. Drug Metabolism and Disposition,2002,30:576-581
    [22]Wen X, Walle T. Methylation protects dietary flavonoids from rapid hepatic metabolism. Xenobiotica.2006,36:387-397
    [23]Walle T, Hsieh F, Delegge MH, et al. High absorption but very low bioavailability of oral resveratrol in humans. Drug Metabolism and Disposition,2004,32:1377-1382
    [24]Walle T, Walgren RA, Walle UK, et al. Understanding the bioavailability of flavonoids through studies in Caco-2 cells In:Flavonoids in Health and Disease[P]. New York, USA. Rice-Evans CA, Packer L (Eds), Marcel Dekker, Inc.,2003,349-361
    [25]Lambert JD, Hong J, Kim DH, et al. Piperine enhances the bioavailability of the tea polyphenol (-)-epigallocatechin-3-gallate in mice[J]. Nutrition Journal,2004,134:1948-1952
    [26]Cao F, Guo J-X, Ping Q-N, et al. Prodrugs of scutellarin:ethyl, benzyl and N,N-diethylglycolamide ester synthesis, physicochemical properties, intestinal metabolism and oral bioavailability in the rats[J]. European Journal of Pharmaceutical Sciences,2006,29:385-393
    [27]Landis-Piwowar KR, Kuhn DJ, Wan SB, et al. Evaluation of proteasome-inhibitory and apoptosis-inducing properties of novel (-)-EGCG analogs and their prodrugs[J]. International Journal of Molecular Medicine,2005,15:735-742
    [28]Lambert JD, Sang S, Hong J, et al. Peracetylation as a means of enhancing in vitro bioactivity and bioavailability of epigallocatechin-3-gallate[J]. Drug Metabolism and Disposition,2006,34: 2111-2116
    [29]Mulholland PJ, Ferry DR, Anderson D, et al. Pre-clinical and clinical study of QC12, a water-soluble, pro-drug of quercetin[J], Annals of Oncology,2001,12:245-248
    [30]Nielisn ILF, Chee WSS, Poulsen L, et al. Bioavailability is improved by enzymatic modification of the citrus flavonoid hesperidin in humans:a randomized, double-blind, crossover trial[J]. Nutrition Journal,2006,136:404-408
    [31]Kale R, Saraf M, Juvekar A, et al. Decreased B16F10 melanoma growth and impaired tumour vascularization in BDF1 mice with quercetin-cyclodextrin binary system[J]. Journal of Pharmacy and Pharmacology,2006,581:1351-1358
    [32]Yuan ZP, Chen LJ, Fan LY, et al. Liposomal quercetin efficiently suppresses growth of solid tumors in murine models[J]. Clinical Cancer Research,2006,12:3193-3199
    [33]Kayoko Shimoia, Hisae Okadaa, Michiyo Furugoria. Study on interaction of luteolin and luteolin-7-O-β-D-glucoside with bovine serum albumin[J]. FEBS Letters.1998,43(2):220-224
    [34]A. Zarzuelo, I. Jimenez, M.J. Gamez, et al. Effects of luteolin 5-O-β-rutinoside in streptozotocin-induced diabetic rats[J]. Life Science,1996,58(4):2311-2316
    [35]郝文辉,孙志忠,高金胜,等.木犀草素的半合成方法[P].发明专利申请号:200310107712,公开号:1544427
    [36]陈新,梅以成,高相森,等.R-(+)-硫辛酸及钠盐的化学合成[P].发明专利申请号:200410004790,公开号:1666987
    [35]Bakhtiyor F, Rasulevab, Nasrulla D, et al. A quantitative strucrure-activety relationship(QSAR)study of the antioxdant activity of flavonoids[J]. QSAR & Combinatorial Science,2005,64(9):1056-1065
    [37]Y. H. Park, X.R. Xu, C.Y. Chiou. Effect of hydroxy groups natural flavones on ocular blood flow of rabbits[J]. Journal of Ocular Pharmacology,2004,20(3):189-200
    [38]龙春,高志强,陈凤鸣,等.黄酮类化合物的结构-抗氧化活性关系研究[J].重庆文理学院学报(自然科学版),2006,5(2):13-17
    [39]杨大坚,李月明,陈士林,等.葛根素衍生物及其医学用途[P].中国,发明专利申请号:200410096209,公开号:CN1763030A
    [40]K. Yasukawa, M. Takido, M. Takeuchi, et al. Flavonol glycosides from Lysimachia congestiflora[J]. Chemical & Pharmaceutical Bulletin,1989,37(6):1071-1073
    [41]G. Odontuya, J. R. S. Hoult, P. J. Houghton. Structure-activity relationship for antiinflammatory effect of luteolin and its derived glycosides[J]. Phytotherapy Research,2005,19(5):782-786
    [42]P.C. Ferriola, V. Cody, E. Middleton Jr.. Proteinkinase C inhibition by plant flavonids. Kinetic mechanisms and structure activity relationships[J]. Biochemical Pharmacology,1989,38(3): 1617-1624
    [43]K. Shimoi, S. Masuda, B. Shen, et al. Metabolic fate of luteolin and its functional activity at focal site[J]. Mutation Research,1996,350(2):153-161
    [44]汪秋安,周冰,单杨.天然黄酮类化合物的抗氧化活性和提取技术研究进展[J].化工生产与技术,2004,11(5):29-33
    [45]陈新谦,金有豫..新编药物学(第14版)[M].人民卫生出版社,1998,271-276
    [46]HuaH, GuoY. Development in pharmacological research of flavonoids[J]. Guangdong pharmaceutical Joumal,1999,9(4):10-14
    [47]BalminF. An extract of soyflour influences serum cholesterol and thyroid hormones in rats and hamsters[J]. Journal of Nutrition,1996,126(12):3046-3053
    [48]ZhuQL, LuXR.Development in Pharmacological and clinical apply research of Puerarin[J]. Chinese Traditional and Herbal Drugs,1997,28(11):693-696
    [49]DuanCG, LiHW, XuLN. The affection of brain tiny surroundings of Syrian hamster[J]. Chinese Medical Jounal,1991,71(9):516-517
    [50]ZhuXM, ZhaoZD.The Progress of Prevention and cure atherosclerosis research by green tea polyphenols from tea extracts[J]. Clinical Focus,1996,11(9):416-418
    [51]SongZJ, LiuW, LiangNC, et al. Effect of disodium quercetindi sulfate on the Formation of f-action Pig Platelet induced thrombin[J]. Chinese Traditional and Herbal Drugs,1997,28(8):477-479
    [52]ChanEC, PannangPetehP, WoodmanOL. Relaxation to flavones and flavonols in rat isolated thoracic aorta:mechanism of action and structure-activity relationships[J]. Journal of Cardiovascular Pharmacology,2000,35(2):326-328
    [53]Hougee S, Sanders A, Faber J, et al. Decreased pro-inflammatory cytokine production by LPS-stimulated PBMC upon in vitro incubation with the flavonoids apigenin, luteolin or chrysin, due to selective elimination of monocytes/macrophages[J]. Biochemical Pharmacology, 2005,69(2):241-248
    [54]Tormakangas L, Vuorela P, Saario E, et al. In vivo treatment of acute Chlamydia pneumoniae infection with the flavonoids quercetin and luteolin and an alkyl gallate, octyl gallate, in a mouse model[J]. Biochemical Pharmacology,2005,70(8):1222-1230
    [55]Gutierrez-Venegas G, Kawasaki-Cardenas P, Arroyo-Cruz SR, et al. Luteolin inhibits lipopolysaccharide actions on human gingival fibroblasts[J]. European Journal of Pharmacology, 2006,541(2):95-105
    [56]Kim SH, Shin KJ, Kim D, et al. Luteolin inhibits the nuclear factor-kappa B transcriptional activity in Rat-1 fibroblasts[J]. Biochemical Pharmacology,2003,66(6):955-963
    [57]张毅,王旭光.木犀草素的体外抗炎机制研究[J].广州中医药大学学报,2007,24(3):231-234
    [58]Manju V, Balasubramaniyan V, Nalini N. Rat colonic lipid peroxidation and antioxidant status:the effects of dietary luteolin on 1,2-dimethylhydrazine challenge[J]. Cellular & Molecular Biology Letters,2005,10(3):535-551
    [59]肖大凯,覃燕梅,莫丽儿,等.木犀草素对卵巢癌细胞株转移能力的影响[J].中国病理生理杂志,2006,22(6):1199-1202
    [60]Brusselmans K, Vrolix R,Verhoeven G, et al. Induction of cancer cell apoptosis by flavonoids is associated with their ability to inhibit fatty acid synthase activity[J]. Journal of Biological Chemistry, 2005,280(7):5636-5645
    [61]Shi RX, Ong CN, Shen HM. Protein kinase C inhibition and x-linked inhibitor of apoptosis protein degradation contribute to the sensitization effect of luteolin on tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in cancer cells[J]. Cancer Research,2005,65(17): 7815-7823
    [62]Chowdhury AR, Sharma S, Mandal S, et al. Luteolin, an emerging anti-cancer flavonoid, poisons eukaryotic DNA topoisomerase I[J]. Biochemical Journal,2002,366(2):653-661
    [63]Leung HW, Kuo CL, Yang WH, et al. Antioxidant enzymes activity involvement in luteolin-induced human lung squamous carcinoma CH27 cell apoptosis[J]. European Journal of Pharmacology,2006, 534(3):12-18
    [64]蒋惠娣,汝海龙,王霄霞,等.木犀草素对大鼠主动脉的舒张作用及相关机制研究[J].中国药学杂志,2005,40(6):427-430
    [65]Kim JH, Jin YR, Park BS, et al. Luteolin prevents PDGF-BB-induced proliferation of vascular smooth muscle cells by inhibition of PDGF beta-receptor phosphorylation[J]. Biochemical Pharmacology.2005,69(12):1715-1721
    [66]Kozakai T, Yamanaka A, Ichiba T, et al. Luteolin inhibits endothelin-1 secretion in cultured endothelial cells[J]. Bioscience, Biotechnology and Agrochemistry,2005,69 (8):1613-1621
    [67]Bagli E, Stefaniotou M, Morbidelli L, et al. Luteolin inhibits vascular endothelial growth factor-induced angiogenesis; inhibition of endothelial cell survival and proliferation by targeting phosphatidylinositol 3'-kinase activity[J]. Cancer Research,2004,64(21):7936-7946
    [68]Kim JH, Jin YR, Park BS, et al. Luteolin prevents PDGF-BB-induced proliferation of vascular smooth muscle cells by inhibition of PDGF beta-receptor phosphorylation[J]. Biochemical Pharmacology,2005,69(12):1715-1721
    [69]Das M, Ram A, Ghosh B. Luteolin alleviates bronchoconstriction and airway hyperreactivity in ovalbumin sensitized mice[J]. Inflammation Research,2003,52(3):101-106
    [70]Wu WW, Liu BL, Tang N. Topical application of luteolin inhibits dry skin pruritus in mice[J]. Chinese Journal of Natural Medicine,2005,3(3):173-182
    [71]Van Meeteren ME, Hendriks JJ, Dijkstra CD,et al. Dietary compounds prevent oxidative damage and nitric oxide production by cells involved in demyelinating disease[J]. Biochemical Pharmacology, 2004,67(5):967-975
    [72]Verbeek R, van Tol EA, van Noort JM. Oral flavonoids delay recovery from experimental autoimmune encephalomyelitis in SJL mice[J]. Biochemical Pharmacology,2005,70(2):220-228
    [73]赵稳兴,陈忠明,候辉,等.木犀草素降低CCl4诱导的大鼠肝纤维化[J].世界华人消化杂志,2002,10(7):779-782
    [74]龚国清,钱之玉,周曙.木犀草素对实验性肺纤维化大鼠组织中TGF-β1 mRNA表达的影响[J].中国药理学通报,2005,21(12):1466-1469
    [75]Tewtrakul S, Miyashiro H, Nakamura N,et al. HIV-1 integrase inhibitory substances from Coleus parvifolius[J]. Phytotherapy Research,2003,17(3):232-239
    [76]Yi L, Li Z, Yuan K,et al. Small molecules blocking the entry of severe acute respiratory syndrome coronavirus into host cells[J]. Journal of Virology,2004,78(20):11334-11339
    [77]Das BB, Sen N, Roy A, et al. Differential induction of Leishmania donovani bi-subunit topoi- somerase I-DNA cleavage complex by selected flavones and camptothecin:activity of flavones against camptothecin-resistant topoisomerase I[J]. Nucleic Acids Research,2006,34(4):1121-1132
    [78]Hiremath SP, Badami S, Hunasagatta SK, et al. Antifertility and hormonal properties of flavones of Striga orobanchioides[J]. European Journal of Pharmacology,2000,391(2):193-197
    [79]陈敏珠,冯仁俊,顾雅珍,等.木犀草素的药动学[J].中国药理学通报,1986,2(5):15-20
    [80]潘兰英,李丽萍,蒋惠娣.大鼠口服菊花提取物后血浆中木犀草素及芹菜素测定方法的研究[J].中国药学杂志,2007,42(3):374-378
    [81]Shimoi K, Okada H, Furugori M,et al. Intestinal absorption of luteolin and luteolin 7-O-beta-glucoside in rats and humans[J]. FEBS Letters,1998,438(3):220-224
    [82]Shimoi K, Saka N, Kaji K, et al. Metabolic fate of luteolin and its functional activity at focal site[J]._Biofactors, 2000,12(4):181-186
    [83]王灵杰,郑彩虹.木犀草素羟丙基-p-环糊精包合物的制备及其鉴定[J].中国现代应用药学,2006,23(6):477-479
    [84]李锦莲,李秀玲,于德成,等.木犀草素-β-环糊精包合物的研究[J].中国新药杂志,2004,13(6):524-526
    [85]纪庆娥,韦耀良.心血管系统药物异黄酮化合物的合成[J].药学学报,1989,24(12):906-912
    [86]李永福,纪庆娥.2-氨基异黄酮化合物的合成[J].药学学报,1897,9(3):302-309
    [87]李德有,高志军,纪庆娥.异黄酮衍生物的合成Ⅰ.7-甲氧基-3'-N,N-二烷胺甲基-4'-烃基异黄酮的合成[J].中国药物化学杂志,1991,2(2):62-68
    [88]杨大坚,李月明,陈士林,等.葛根素衍生物及其医学应用[P].中国,发明专利申请号:200410096209.9,公开号:CN1763030A
    [89]Woodman OL, Meeker WF, Boujaoude M. Vasorelaxant and antioxidant activity of flavonols and flavones:structure-activity relationships[J]. Journal of Cardiovascular Pharmacology,2005,46(3): 302-309
    [90]Woodman OL, Chan ECh. Vascular and anti-oxidant actions of flavonols and flavones [J]. Clinical and Experimental Pharmacology and Physiology,2004,31(11):786-790
    [91]Jackman KA, Woodman OL, Chrissobolis S, Sobey CG. Vasorelaxant and antioxidant activity of the isoflavone metabolite equol in carotid and cerebral arteries[J]. Brain Research.2007,1141:99-107
    [92]Jackman KA, Woodman OL, Obey CG. Isoflavones, equol and cardiovascular disease: pharmacological and therapeutic insights[J]. Current Medicinal Chemistry,2007,14(26): 2824-2830
    [93]Qin CX, Chen X, Hughes RA, et al. Understanding the Cardioprotective Effects of Flavonols: Discovery of Relaxant Flavonols without Antioxidant Activity[J]. The Journal of Medicinal Chemistry.,2008,51(6):1874-1884
    [94]苏静怡.心血管疾病的病理生理基础和发病机制[M].北京医科大学和中国协和医科大学联合出版社,1994,144-172
    [95]Forman MB. Pathogenesis and Madification of Myocordial reperfusion injury[M].New york:Elsevier scence publishing Co.Inc,1991,349-370
    [97]苏静怡,唐朝枢.缺血-再灌注损伤的普遍性及其临床意义[J].北京医科大学学报,1990,22(2):149-151
    [98]Heusch G, Rose J, Ehring T, et al. Cardioprotection by ACE inhibitors in myocardial ischemia/ reperfusion[J]. Drugs,1997,54(5):31-41
    [99]Przyklenk K, Kloner RA. Cardioprotection by ACE-inhibitors in acute myocardial idchemia[J]. Basic Research in Cardiology,1993,88(1):139-154
    [100]周红勤,胡婵,孙明,等.镁对急性心肌梗死溶栓并发再灌注心律失常的抑制作用[J].临床心血管病杂志,2000,16(4):156-157
    [101]许荣廷,王涓冬,邢介玲,等.中西药联合防治急性心肌梗死溶栓再灌注心律失常的临床研究[J].中国中西医结合急救杂志,2001,8(3):166-167
    [102]Jonassen AK, Aasum E, Riemersma RA, et al. Glucose-insulin-potassium reduces infarct size when admindtered during reperfusion[J]. Cardiovascular Drugs and Therapy,2000,14(6):615-623
    [103]刘福林,周玉娟,武变英.1,6-二磷酸果糖对心肌缺血-再灌注损伤保护作用的临床研究[J].湖南医科大学学报,1998,23(5):476-478
    [104]中国科学院上海药物所植物化学研究室编译.黄酮化合物鉴定手册[M].科学出版社,1981,23
    Brusselmans K, Vrolix R, Verhoeven G and Swinnen JV. Induction of cancer cell apoptosis by flavonoids is associated with their ability to inhibit fatty acid synthase activity. Journal of Biological Chemistry 2005; 280:5636-5645.
    Chen HQ, Jin ZU, Wang XJ, Xu XM, Deng L and Zhao JW. Luteolin protects dopaminergic neurons from inflammation-induced injury through inhibition of microglial activation. Neuroscience Letters 2008; 448:175-179.
    Ferriola PC, Cody V and Middleton E. Protein kinase C inhibition by plant flavonoids. Kinetic mechanisms and structure-activity relationships. Biochemical Pharmacology 1989;38:1617-1624.
    Hougee S, Sanders A, Faber J, Graus YM, van den Berg WB, Garssen J, Smit HF and Hoijer MA. Decreased pro-inflammatory cytokine production by LPS-stimulated PBMC upon in vitro incubation with the flavonoids apigenin, luteolin chrysin, due to selective elimination of monocytes/macrophages. Biochemical Pharmacology 2005;69:241-248.
    Leung HW, Kuo CL, Yang WH, Lin CH and Lee HZ. Antioxidant enzymes activity involvement in luteolin-induced human lung squamous carcinoma CH27 cell apoptosis. European Journal of Pharmacology 2006;534:12-18.
    Lv PC, Li HQ, Xue JY, Shi L and Zhu HL. Synthesis and biological evaluation of novel luteolin derivatives as antibacterial agents. European Journal of Medicinal Chemistry 2009;44:908-914.
    Manju V and Nalini N. Protective role of luteolin in 1,2-dimethylhydrazine induced experimental colon carcinogenesis. Cell Biochemistry and Function 2007;25:189-194.
    Samejima K, Kanazawa K, Ashida H and Danno G. Luteolin:a strong antimutagen against dietary carcinogen, Trp-P-2, in peppermint, sage, and thyme. Journal of Agricultural and Food Chemistry 1995;43:410-414.
    Seelinger G, Merfort I and Schempp CM. Anti-oxidant, anti-inflammatory and anti-allergic activities of luteolin. Planta Medica 2008;74:1667-1677.
    Shimoi K, Okadaa H, Furugoria M, Godaa T, Takasea S, Suzukib M, Harab Y, Yamamotoc H and Kinaea N. Intestinal absorption of luteolin and luteolin 7-O-L-glucoside in rats and humans. FEBS Letters 1998;438:220-224.
    Shimoi K, Saka N, Nozawa R, Sato M, Amano I, Nakayama T, and Kinae N. Deglucuronidation of a flavonoid, luteolin monoglucuronide, during inflammation. Drug metabolism and disposition 2001;29:1521-1524.
    Woodman OL, Meeker WF, Boujaoude M. Vasorelaxant and antioxidant activity of flavonols and flavones:structure-activity relationships. Journal of Cardiovascular Pharmacology and Therapeutics 2005;46:302-309.
    Yang DJ, Li YM, Chen SL and Chen XZ. Puerarin derivatives and their medical uses. China patent:200410096209.9.
    Yang SF, Yang WE, Chang HR, Chu SC and Hsieh YS. Luteolin induces apoptosis in oral squamous cancer cells. Journal of Dental Research 2008;87:401-406.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700