基于原子力显微术对干细胞分化与黑色素瘤细胞凋亡的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细胞的分化是个体发育的一个重要阶段,胚层细胞的分化导致组织形成、器官发生和系统建成,细胞的异常分化会导致癌变。细胞的衰老和凋亡也与人体健康有着极为密切的关系。为了深入了解正常细胞的分化和肿瘤细胞的凋亡,探索细胞分化与凋亡的作用过程和机制,本研究以猪脂肪前体细胞、猪精原干细胞(SSCs)、小鼠黑色素瘤细胞B16为模型,采用原子力显微术(AFM)、激光共聚焦显微术(LSCM)、流式细胞术(FCS)、透射电子显微术(TEM)、CCK-8法及Western-blot等方法,对分化及凋亡过程中细胞的表面形貌、内部结构、力学性能和相关蛋白进行检测,获得了以下具有创新性的成果:
     1.深入探讨脂肪前体细胞向成熟脂肪细胞分化前后细胞在纳米水平的变化,应用AFM扫描发现细胞核周围出现孔洞,膜表面变得光滑,粗糙度减小颗粒大小降低,膜表面粘附力由(146.33+11.23)PN降低到(119.95+8.67)PN。硬度与杨氏模量方面也降低了约20%,分化后的成熟脂肪细胞膜流动性更强,更易变形。本研究首次获得脂肪前体细胞分化前后细胞的超微结构和力学性能,为理解体内能量平衡和肥胖疾病的发生及诊断提供新的实验依据。
     2.首次运用AFM研究SSCs的多能性,分析SSCs向脂肪细胞分化后细胞形貌及内部结构、分子的变化。成脂诱导后,SSCs由立体球形变为扁平不规则的圆盘状,贴壁性能提高,内部出现大量脂滴,膜表面粗糙度及颗粒大小增加。粘附力由(47.31士19.75)PN增加至(64.64±1.44)PN,硬度、杨氏模量均升高。TEM扫描得到细胞内部线粒体、内质网及空泡大量增多。完全分化后,成熟脂肪细胞内部特异性分子PPARy与C/EBPa出现。总结来说,我们从定性及定量两个角度表征了SSCs成脂分化所产生的一系列变化。
     3.以B16细胞为研究对象分析替莫唑胺(TMZ)对其致凋亡作用,发现TMZ对能有效抑制B16细胞的生长,50μMTMZ作用细胞时,凋亡率达到最大为34.6%。随着药物浓度的增加,细胞膜及细胞核都产生不可逆损伤,细胞膜电位、内部Ca2+浓度和Caspase-3蛋白含量也发生相应的变化。此工作首次推断TMZ对B16细胞膜和核的毒性,可能是药物造成细胞死亡的一个机制。
     综上所述,本课题采用原子力显微术为基础对细胞形貌、超微结构及力学性能变化进行探测,结合生物技术手段对分化及凋亡过程表征,可以直观的看到在这两个重要阶段中细胞的变化,为生命活动的深入研究提供方法和依据。
The cellular differentiation is an important stage in individual development and growth. The differentiation of endoderm cell leads to tissue and system formation and organogenesis. The abnormal differentiation of cell can cause cancer. Senescence and apoptosis of cell also has a very close relationship with human health. In order to better understand and explore the process and mechanism of normal cell differentiation and tumor cell apoptosis, we use atomic force microscopy (AFM), laser scanning confocal microscopy (LSCM), flow cytometry (FCS), transmission electron microscopy (TEM), CCK-8, western-blot and other methods to study the cells. The surface morphology, internal structure, mechanical properties and the related protein of adipocyte precursor cells, porcine spermatogonial stem cells and mouse melanoma cells were detected during the process of cell differentiation or apoptosis. The following results were obtained:
     1. The changes of surface structure of adipocyte precursor cells were examined during differentiation. There were some holes around the nucleus. The cellular surface became smooth and the roughness of the membrane and the particle size were all decreased. The adhesion force was reduced from (146.33±11.23) PN to (119.95±8.67) PN. The stiffness and Young's modulus of cellular membrane were also reduced about 20%. The results indicate that mature adipocytes are more fluid and stronger deformation. This is the first time to obtain the changes of cellular ultrastructure and mechanical properties after differentiation of adipocyte precursor cells and the results provide new experimental evidence to understand the energy balance and obesity occurrence and diagnosis.
     2. The pluripotent of SSCs was firstly studied by AFM. After the SSCs differentiated to adipocytes, the roughness, particle size, adhesion force, stiffness and Young's modulus of the membrane were all increased. The cellular morphology was changed from round spheroid to long spindle. The number of intracellular mitochondria, endoplasmic and vacuoles were also increased to provide energy, which was required with the formation of adipocytes. After the complete differentiation, the mature adipocytes'specific molecule PPARy and C/EBPa appeared. These qualitative and quantitative results can improve understanding of stem cells pluripotent.
     3. After analysis of temozolomide (TMZ) on the apoptosis of B16 cells, the results demonstrated that TMZ could significantly suppress the proliferation of B16 cells in a dose-dependent manner. The TMZ concentration of 0-50μM induced apoptosis and 100-200μM induced cell death. With the concentration of TMZ increase, changes in morphology and nucleus were irreversibly damaged. The membrane potential, intercellular Ca2+ concentration and caspase-3 protein content were accordingly changed. Our study firstly deduced that the cellular membrane and nucleus toxicity may be the mechanism of B16 cell apoptosis.
     In summary, we use AFM to detect cell morphology, ultrastructure and mechanical properties. Then combined with biotechnology, we characterized the process of differentiation and apoptosis. These visual data provide basis to in-depth study of life activities.
引文
[1]白春礼.扫描隧道显微术及其应用[M].上海科学技术出版社,1992.
    [2]Binnig G, Rohrer H. Scanning tunneling micro scope [J]. Helv Phys Acta,1982,55 (3):726-735.
    [3]Binnig G, Quate CF, Cerber C. Atomic force micro scope [J]. Phys Rev Lett,1986,56 (9):930-933.
    [4]A. Raab, W. Han, D. Badt, S. J. Smith-Gill, S. M. Lindsay, H. Schindler, P. Hinterdorfer. Antibody recognition imaging by force microscopy[J]. Nat Biotechnol,1999,17:901-905.
    [5]T. Ando, N. Kodera, E. Takai, D. Maruyama, K. Saito, A. Toda. A high-speed atomic force microscope for studying biological macromolecules[J]. PNAS,2001,98:12468-12472.
    [6]Gerald Kada, Ferry Kienberger, Peter Hinterdorfer. Atomic force microscopy in bionanotechnology[J]. Nanotoday,2008,3(1-2):12-19.
    [7]张虎,张冬仙,黄峰.原子力显微镜在液相环境中的应用研究[J].光学仪器,2003,25(3):7-11.
    [8]张虎,章海军,张冬仙,黄峰.液相型原子力显微镜的研制及其应用[J].光子学报,2004,33(10):1273-1276.
    [9]Lehenkari PP, Charras GT, Nykanen A, Horton MA. Adapting atomic force microscopy for cell biology[J]. Ultramicroscopy,2000,82(1-4):289-295.
    [10]Schaper A, Starink JP, Jovin TM. The scanning force microscopy of DNA in air and in npropanol using new spreading agents[J]. FEBS Lett,1994,355(1):91-95.
    [11]Baldwin PM, Frazier RA, Adler J, Glasbey TO, Keane MP, Roberts CJ, Tendler SJB, Davies MC, Melia CD. Surface imaging of thermally sensitive particulate and fibrous materials with the atomic force microscope:a novel sample preparation method[J]. J Microsc,1996, 184(2):75-80.
    [12]G. Li, N. Xi, DH Wang. Probing membrane proteins using atomic force microscopy [J]. Cell Biochem,2006,97:1191-1197.
    [13]Bustamante C, Vesenka J, Tang CL, Rees W, Guthold M, Keller R. Circular DNA molecules imaged in air by scanning force microscopy [J]. Biochemistry,1992,31(1):22-26.
    [14]SS Wong, AT Woolley, E Joselevich, CL Cheung, CM Lieber. Covalently-functionalized single-walled carbon nanotube probe tips for chemical force microscopy. Am[J]. Chem. Soc, 1998,120:8557-8558.
    [15]Melling M, Hochmeister S, Blumer R, Schilcher K, Mostler S, Behnam M, Wilde J, Karimian-Teherani D. Atomic force microscopy imaging of the human trigeminal ganglion[J]. Neuroimage,2001,14(6):1348-1352.
    [16]朱杰,孙润广.单细胞结构与功能的原子力显微镜研究[J].生命科学仪器,2005.3(2):15-19.
    [17]陈宜张,林其谁.生命科学中的单分子行为及细胞内实时检测[M].科学出版社,2005.
    [18]Creighton T. Proteins:Structures and molecular properties[M]. W. H. Freeman,1993.
    [19]Luthi R, Meyer E, Howald L, Haefke H, Anselmetti D, Dreier M, Ruetschi M, Bonner T, Overney RM, Frommer J, Guntherodt HJ. Progress in noncontact dynamic force microscopy [J]. J Vac Sci Technol B,1994,12(31):1673-1676.
    [20]Hansma PK, Cleveland JP, Radmacher M, Walters DA, Hillner PE, Bezanilla M, Fritz M, Vie D, Hansma HG, Prater CB, Massie J, Fukunag L, Gurley J, Elings V. Tapping mode atomic force microscopy in liquids[J]. Appl Phys Letter,1994,64(13):1738-1740.
    [21]Parot P, Dufrene YF, Hinterdorfer P, Le Grimellec C, Navajas D, Pellequer JL, Scheuring S. Past, present and future of atomic force microscopy in life sciences and medicine[J]. J Mol Recognit,2007,20:418-431.
    [22]Cross SE, Jin YS, Rao J, Gimzewski JK. Nanomechanical analysis of cells from cancer patients[J]. Nature Nanotechnology,2007,2:780-783.
    [23]Lam WA, Rosenbluth MJ, Fletcher DA. Chemotherapy exposure increases leukemia cell stiffness[J]. Blood,2007,109:3505-3508.
    [24]Rico F, Roca-Cusachs P, Sunyer R, Farre R, Navajas D. Cell dynamic adhesion and elastic properties probed with cylindrical atomic force microscopy cantilever tips[J]. Journal of Molecular Recognition,2007,20:459-466.
    [25]Trache A, Trzeciakowski J, Gant A, Cote G, Sun Z, Wilson E, Meininger GA. Influence of cell stiffness on adhesion force between alpha-5 beta-1 integrin and fibronectin in intact cells using atomic force microscopy [J]. Biophysical Journal,2004,86:477-482.
    [26]Muller DJ, Janovjak H, Lehto T, Kuerschner L, Anderson K. Observing structure, function and assembly of single proteins by AFM[J]. Prog Biophys Mol Biol,2002,79:1-43.
    [27]Butt HJ, Cappella B, Kappl M. Force measurements with the atomic force microscope: Technique, interpretation and applications[J]. Surface Science Reports,2005,59:1-152.
    [28]Brochu H, Vermette P. Young's Moduli of Surface-Bound Liposomes by Atomic Force Microscopy Force Measurements [J]. Langmuir,2008,24(5):2009-2014.
    [29]Dimitriadis EK, Horkay F, Maresca J, Kachar B, Chadwick RS. Determination of elastic moduli of thin layers of soft material using the atomic force microscope[J]. Biophys J, 2002,82(5):2798-810.
    [30]彭章泉,唐智勇,汪尔康.化学力显微镜针尖修饰技术研究新进展[J].分析化学,2000,28(5):644-648.
    [31]Thomas Ludwig, Robert Kirmse, Kate Poole. Ulrich S. Schwarz. Probing cellular microenvironments and tissue remodeling by atomic force microscopy [J]. Eur J Physiol. 2008,456:29-49.
    [32]Engel A, Lyubchenko Y, Mueller D. Atomic force microscopy:a powerful tool to observe biomolecules at work[J]. Trends Cell Biol,1999,9:77-80.
    [33]Heinz WF, Hoh JH. Spatially resolved force spectroscopy of biological surfaces using the atomic force microscope[J]. Trends Biotechnol,1999,17:143-150.
    [34]Guanglu Ge, Dong Han, Danying Lin, Weiguo Chu, Yunxu Sun, Lei Jiang, Wanyun Ma, Chen Wang. MAC mode atomic force microscopy studies of living samples, ranging from cells to fresh tissue[J]. Ultramicroscopy,2007,107:299-307.
    [35]Solares SD. Single biomolecule imaging with frequency and force modulation in tapping-mode atomic force microscopy [J]. J Phys Chem B,2007,111:2125-2129.
    [36]Solares SD. Eliminating stability and reducing sample damage through frequency and amplitude modulation in tapping-mode atomic force microscopy [J]. Meas Sci Technol, 2007,18:592-600.
    [1]Hu R, He ML, Hu H. Characterization of calcium signaling pathways in human preadipocytes[J]. J Cell Physiol,2009,220(3):765-770.
    [2]Moller DE, Flier JS. Insulin resistance:mechanisms, syndromes and implication[J]. N Engl J Med,1991,325(13):938-948.
    [3]Spiegalman BM, Choy L, Hotamisligil GS, Graves RA, Tontonoz P. Regulation of adipocyte gene expression in differentiation and syndromes of obesity/diabetes [J]. J Biol Chem,1993, 268(10):6823-6826.
    [4]李长红.脂肪组织生长的调节[J].国外医学,1998,18(3):123-126.
    [5]Hiroyuki Nobusue, Koichiro Kano. Establishment and characteristics of porcine preadipocyte cell lines derived from mature adipocytes[J]. J Cell Biochem,2010,109(3):542-552.
    [6]张罕星,朱晓彤,束刚,周桂炫,高萍,高淑静,张长明,江青艳,陈瑶生.猪肌肉脂肪前体细胞与皮下脂肪前体细胞分化过程中基因差异表达分析[J].中国农业科学,2008,41(11):3760-3768.
    [7]刘海峰,王翔,李学伟,张利娟,张煦.猪脂肪前体细胞的原代培养及诱导分化[J].四川农业大学学报,2009,27(2):214-217.
    [8]Lee GYH, Lim CT. Biomechanics approaches to studying human diseases[J]. Trends Biotechnol,2007,25(3):111-118.
    [9]Lim CT, Zhou EH, Li A, Vedula SRK, Fu HX. Experimental techniques for single cell and single molecule biomechanics [J]. Mater Sci Eng C. Biom Supramol Systems,2006, 26(8):1278-1288.
    [10]Crick SL, Yin FCP. Assessing micromechanical properties of cells with atomic force microscopy:Importance of the contact point[J]. Biomech Model Mechanobiol,2007, 6(3):199-210.
    [11]胡明铅,王炯坤,蔡继业,吴杨哲,王小平.应用原子力显微镜分析苯甲酸钠生物毒性[J].生物工程学报,2008,24(8):1428-1432.
    [12]蔡小芳,蔡继业,董世松,邓华,胡明铅.应用原子力显微镜分析正常淋巴细胞和Jurkat细胞的形态和机械性质[J].生物工程学报,2009,25(7):1107-1112.
    [13]Hinterdorfer P, Dufrene YF. Detection and localization of single molecular recognition events using atomic force microscopy[J]. Nat Methods,2006,3(5):347-355.
    [14]Hsieh CH, Lin YH, Lin S, Tsai-Wu JJ, Herbert Wu CH, Jiang CC. Surface ultrastructure and mechanical property of human chondrocyte revealed by atomic force microscopy [J]. Osteoarthritis Cartilage,2008,16(4):480-488.
    [15]Pelling AE, Sehati S, Gralla EB, Valentine JS, Gimzewski JK. Local nano-mechanical motion of the cell wall of Saccharomyces cerevisiae[J]. Science,2004, 305(5687):1147-1150.
    [16]Vimal Pandey, Malepillil Vavachan Vijayakumar, Ruchika Kaul-Ghanekar, Hitesh Mamgain, Kishore Paknikar, Manoj Kumar Bhat. Atomic force microscopy, biochemical analysis of 3T3-L1 cells differentiated in the absence and presence of insulin[J]. Biochim Biophys Acta, 2009,1790(1):57-64.
    [17]Dimitriadis EK, Horkay F, Maresca J, Kachar B, Chadwick RS. Determination of elastic moduli of thin layers of soft material using the atomic force microscope[J]. Biophys J,2002, 82(5):2798-2810.
    [18]Brochu H, Vermette P. Young's moduli of surface-bound liposomes by atomic force microscopy force measurements[J]. Langmuir,2008,24(5):2009-2014.
    [1]Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM. Embryonic stem cell lines derived from human blastocysts[J]. Science,1998, 282(5391):1145-1147.
    [2]Brinster RL. Male germ line stem cells:from mice to men[J]. Science,2007, 316(5823):404-405.
    [3]Meng X, Lindahl M, HyvEnen ME, Parvinen M, Roojj DGD, Hess MW, Raatikainen-Ahokas A, Sainio K, Rauvala H, Lakso M, Pichel J, Westphal H, Saarma M, Sariola H. Regulation of cell fate decision of undifferentiated spermatogonia by GDNF[J]. Science,2000,287(5457):1489-1493.
    [4]Ogawa T, Dobrinski I, Avarbock MR, Brinster RL. Transplantation of male germ line stem cells restores fertility in infertile mice[J]. Nat Med,2000,6(1):29-34.
    [5]Feng LX, Ravindranath N, Dym M. Stem cell factor/c-kit up-regulates cyclin D3 and promotes cell cycle progression via the phosphoinositide 3-kinase/p70 S6 kinase pathway in speimatogonia[J]. J Biol Chem,2000,275(33):25572-25576.
    [6]Guan K, Nayernia K, Maier LS, Wagner S, Dressel R, Lee JH, Nolte J, Wolf F, Li M, Engel W, Hasenfuss G. Pluripotency of spermatogonial stem cells from adult mouse testis[J]. Nature,2006,440(7088):1199-1203.
    [7]Conrad S, RenningerM, Hennenlotter J, Wiesner T, Just L, Bonin M, Aicher W, Buhring HJ, Mattheus U, Mack A, Wagner HJ, Minger S, Matzkies M, Reppel M, Hescheler J, Sievert KD, Stenzl A, Skutella T. Generation of pluripotent stem cells from adult human testis[J]. Nature,2008,456(7220):344-349.
    [8]Guan K, Wolf F, Becker A, Engel W, Nayernia K, Hasenfuss G. Isolation and cultivation of stem cells from adult mouse testes[J]. Nature protocols,2009,4(2):143-145.
    [9]Nina Kossack, Juanito Meneses, Shai Shefi, HN Nguyen, S Chavez, C Nicholas, J Gromoll, PJ Turek, RA Reijo-Pera. Isolation and characterization of pluripotent human spermatogonial stem cell-derived[J]. Cell stem cell,2009,27:138-149.
    [10]Simon L, Ekman GC, Kostereva N, Zhang Z, Hess RA, Hofmann MC, Cooke PS. Direct transdifferentiation of stem progenitor spermatogonia into reproductive and nonreproductive tissues of all germ layers[J]. Stem cells,2009,27:1666-1675.
    [11]Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J]. Cell,2006,126(4):663-676.
    [12]Dufrene YF. Atomic force microscopy, a powerful tool in microbiology[J]. J Bacteriol, 2002,184(19):5205-5213.
    [13]Dufrene YF. Using nanotechniques to explore microbial surfaces[J]. Nature Reviews Microbiology,2004,2(6):451-460.
    [14]Suresh S. Biomechanics and biophysics of cancer cells[J]. Acta Biomater,2007, 3(4):413-438.
    [15]Greenleaf WJ, Woodside MT, Block SM. High-resolution, single-molecule measurements of biomolecular motion[J]. Annu Rev Biophys Biomol Struct,2007,36:171-190.
    [16]Afrin R, Yamada T, Ikai A. Analysis of force curves obtained on the live cell membrane using chemically modified AFM probes[J]. Ultramicroscopy,2004,100(3-4):187-195.
    [17]Rabinovich YI, Daosukho S, Byer KJ, El-Shall HE, Khan SR. Direct AFM measurements of adhesion forces between calcium oxalate monohydrate and kidney epithelial cells in the presence of Ca2+ and Mg2+ ions[J]. J Colloid Interface Sci,2008,325(2):594-601.
    [18]Bremmell KE, Evans A, Prestidge CA. Deformation and nano-rheology of red blood cells: an AFM investigation[J]. Colloids Surf B Biointerfaces,2006,50(1):43-48.
    [19]Rosenbluth MJ, Lam WA, Fletcher DA. Force microscopy of nonadherent cells:a comparison of leukemia cell deformability[J]. Biophys J,2006,90(8):2994-3003.
    [20]Sirghi L, Ponti J, Broggi F, Rossi F. Probing elasticity and adhesion of live cells by atomic force microscopy indentation[J]. Eur Biophys J,2008,37(6):935-945.
    [21]Touhami A, Othmane A, Ouerghi O, Ouada HB, Fretigny C, Jaffrezic-Renault N. Red blood cells imaging and antigen-antibody interaction measurement[J]. Biomol Eng,2002, 19(2-6):189-193.
    [22]Kim SJ, Kim S, Shin H, Uhm CS. Intercellular interaction observed by atomic force microscopy [J]. Ultramicroscopy,2008,108(10):1148-1151.
    [23]Mingqian Hu, Jiongkun Wang, Jiye Cai, Yangzhe Wu, Xin Wang. Nanostructure and force spectroscopy analysis of human peripheral blood CD4+ T cells using atomic force microscopy[J]. Biochem Biophys Res Commun,2008,374(1):90-94.
    [24]Mingqian Hu, Jianan Chen, Jiongkun Wang, Xun Wang, Shuyuan Ma, Jiye Cai, Chenyong Chen, Zhengwei Chen. AFM- and NSOM-based force spectroscopy and distribution analysis of CD69 molecules on human CD4+ T cell membrane[J]. J Mol Recognit,2009, 22(6):516-520.
    [25]Wojcikiewicz EP, Koenen RR, Fraemohs L, Minkiewicz J, Azad H, Weber C, Moy VT. LFA-1 binding destabilizes the JAM-A homophilic interaction during leukocyte transmigration[J]. Biophys J,2009,96(1):285-293.
    [26]Zhang X, Craig SE, Kirby H, Humphries MJ, Moy VT. Molecular basis for the dynamic strength of the integrin alpha4betal/VCAM-1 interaction[J]. Biophys J,2004, 87(5):3470-3478.
    [27]Puech P H, Poole K, Knebel D, Muller D J. A new technical approach to quantify cell-cell adhesion forces by AFM[J]. Ultramicroscopy,2006,106(8-9):637-644.
    [28]Lee S, Mandic J, Van Vliet KJ. Chemomechanical mapping of ligand-receptor binding kinetics on cells [J]. PNAS,2007,104(23):9609-9614.
    [29]Baumgartner W, Hinterdorfer P, Ness W, Raab A, Vestweber D, Schindler H, Drenckhahn D. Cadherin interaction probed by atomic force microscopy [J]. Proc Natl Acad Sci U S A, 2000,97(8):4005-4010.
    [30]Li F, Redick SD, Erickson HP, Moy VT. Force measurements of the alpha5betal integrin-fibronectin interaction[J]. Biophys J,2003,84(2-1):1252-1262.
    [31]Wojcikiewicz EP, Zhang X, Chen A, Moy VT. Contributions of molecular binding events and cellular compliance to the modulation of leukocyte adhesion[J]. J Cell Sci,2003, 16(12):2531-2539.
    [32]Wojcikiewicz EP, Zhang X, Moy VT. Force and Compliance Measurements on Living Cells Using Atomic Force Microscopy (AFM) [J]. Biol Proced Online,2004,6:1-9.
    [33]Crick SL, Yin FCP. Assessing micromechanical properties of cells with atomic force microscopy:Importance of the contact point[J]. Biomech Model Mechanobiol,2007, 6(3):199-210.
    [34]Zhang X, Wojcikiewicz E, Moy VT. Force Spectroscopy o f the Leukocyte Function-Associated Antigen-1/Intercellular Adhesion Molecule-1 Interaction[J]. Biophys J, 2002,83(4):2270-2279.
    [35]Jin Y, Wang KM, Tan WH, Wu P, Wang Q, Huang HM, Huang SS, Tang ZW, Guo QP. Monitoring molecular beacon/DNA interactions using atomic force microscopy[J]. Analytical Chemistry,2004,76(19):5721-5725.
    [36]Wojcikiewicz EP, Abdulreda MH, Zhang XH, Moy VT. Force spectroscopy of LFA-1 and its ligands, ICAM-1 and ICAM-2[J]. Biomacromolecules,2006,7(11):3188-3195.
    [37]Lee J, Kim HK, Rho JY, Han YM, Kim J. The human OCT-4 isoforms differ in their ability to confer self-renewal [J]. J Biol Chem,2006,281(44):33554-33565.
    [38]Suo G, Han J, Wang X, Zhang J, Zhao Y, Zhao Y, Dai J. Oct4 pseudogenes are transcribed in cancers[J]. Biochem Biophys Res Commun,2005,337(4):1047-1051.
    [39]Pain D, Chirn GW, Strassel C, Kemp DM. Multiple retropseudogenes from pluripotent cell-specific gene expression indicates a potential signature for novel gene identification[J]. J Biol Chem,2005,280(8):6265-6268.
    [40]Wrobel KH, Bickel D, Kujat R. Configuration and distribution of bovine spermatogonia[J]. Cell Tissue Res,1995,279:277-289.
    [41]Jose R, Ann H, Howard D. Isolation and transplantation of spermatogonia in sheep[J]. Theriogenology,2006,66:2091-2103.
    [42]Oatley JM, de Avila DM, Reeves JJ, Mclean DJ. Tissue explant culture supports survival and proliferation of bovine spermatogonial stem cells [J]. Biology of Reproduction,2004, 70:625-631.
    [43]Mito KS, Masanori T, Seiji T, Jiyoung L, Hiroko M, Shinichiro C, Aurelia R, Norio N, Reinhard F, Takashi S. Homing of mouse spermatogonial stem cells to germline niche depends on β1-Integrin[J]. Cell Stem Cell,2008,3:533-542.
    [44]Kubota H, Avarbock MR, Brinster RL. Spermatogonial stem cells share some, but not all, phenotypic and functional characteristics with other stem cells[J]. PNAS,2003, 100:6487-6492.
    [45]Takashi S, Mary RA, Ralphl B. B1-and a6-integrin are surface markers on mouse spermatogonial stem cells. PNAS,1999,96:5504-5509.
    [1]A Srtasser, AW Harris, T Jacks, S Cory. DNA damage can induce apoptosis in proliferating lymphoid via p53-independent mechanisms inhibitbable by Bcl-2[J]. Cell,1994,79(2):329-339.
    [2]Cotter TG, Glynn JM, Echeverri F, Green DR. The induction of apoptosis by chemotherapeutic agents occurs in all phases of the cell cycle[J]. Anticancer Res,1992,12(3): 773-779.
    [3]Barry MA, Behkne CA, Eastman A. Activation of programmed cell death (apoptosis) by cisolatin, other anticancer drugs, toxins and hyperthermia[J].Biochem pharmacol,1990, 40(10):2353-2362.
    [4]Mobley LW, Agrawal SK. Role of calcineurin in calcium-mediated hypoxic injury to white matter[J]. Spine J,2003,3:11-18.
    [5]Vihinen PP, Hernberg M, Vuoristo MS, Tyynela K, Laukka M, Lundin J, Ivaska J, Pyrhonen S. A phase Ⅱ trial of bevacizumab with dacarbazine and daily low-dose interferon-alpha2 as first line treatment in metastatic melanoma[J]. Melanoma Res.2010,20(4):318-325.
    [6]Balivada S, Rachakatla RS, Wang H, Samarakoon TN, Dani RK, Pyle M, Kroh FO, Walker B, Leaym X, Koper OB, Tamura M, Chikan V, Bossmann SH, Troyer DL. A/C magnetic hyperthermia of melanoma mediated by iron (0)/iron oxide core/shell magnetic nanoparticles: a mouse study [J]. BMC Cancer,2010,10:119-125.
    [7]Torabian SZ, de Semir D, Nosrati M, Bagheri S, Dar AA, Fong S, Liu Y, Federman S, Simko J, Haqq C, Debs RJ, Kashani-Sabet M. Ribozyme-mediated targeting of IκBγ inhibits melanoma invasion and metastasis [J]. Am J Pathol,2009,174(3):1009-1016.
    [8]Metelitsa A I, Dover DC, Smylie M, de Gara CJ, Lauzon GJ. Apopulation-based study of cutaneousmelanoma in Alberta, Canada (1993-2002) [J]. J Am Acad Dermatol,2010, 62(2):227-232.
    [9]Pruthi DK, Guilfoyle R, Nugent Z, Wiseman MC, Demers AA. Incidence and an atomic presentation of cutaneous malignant melanoma in central Canada during a 50 year period: 1956 to 2005[J]. J Am Acad Dermatol,2009,61(1):44-50.
    [10]Middleton MR, Grob JJ, Aaronson N, Fierlbeck G, Tilgen W, Seiter S, Gore M, Aamdal S, Cebon J, Coates A, Dreno B. Henz M, Schadendorf D, Kapp A, Weiss J, Fraass U, Statkevich P, Muller M, Thatcher N. Randomized phase Ⅲ study of temozolomide versus dacarbazine in the treatment of patients with advanced metastatic malignant melanoma[J]. J Clin Oncol,2000,18:158-166.
    [11]Kaufmann R, Spieth K, Lehfer H, Garbe C, Dummer R, Mauch C, Schuler G, Landthaler M, Volkenandt M, Stade B. Temozolomide in combination with interferon alfa versus temozolomide alone in patients with advanced metastatic melanoma:a randomized, phase Ⅲ, multicenter study from the Dermatologic Cooperative Oncology Group[J]. J Clin Oncol, 2005,23:9001-9007.
    [12]Bieling P, Laan L, Schek H, Munteanu EL, Sandblad L, Dogterom M, Brunner D, Surrey T. Reconstitution of a microtubule plus-end tracking system in vitro [J]. Nature,2007, 450(7172):1100-1105.
    [13]Sallmann S. Juttler E, Prinz S. Petersen N, Knopf U, Weiser T, Schwaninger M. Induction of interleukin-6 by depolarization of neurons[J]. J Neurosci,2000,20(23):8637-8642.
    [14]Bortner CD, Gomez-Angelats M, Cidlowski JA. Plasma membrane depolarization without repolarization is an early molecular event in anti-Fas-induced apoptosis[J]. J Biol Chem, 2001,276(6):4304-4314.
    [15]Franco R, Bortner CD, Cidlowski JA. Potential roles of electrogenic ion transport and plasma membrane depolarization in apoptosis[J]. J Membr Biol,2006,209(1):43-58.
    [16]Antonella Muscella, Nadia Calabriso, Carla Vetrugno, Francesco Paolo Fanizzi, Sandra Angelica De Pascali, Carlo Storelli, Santo Marsigliante. The platinum (Ⅱ) complex [Pt (O, O'-acac) (y-acac) (DMS)] alters the intracellular calcium homeostasis in MCF-7 breast cancer cells [J]. Biochemical Pharmacology,2011,81:91-103.
    [17]Yoko Sakanashi, Keisuke Oyama, Hiroko Matsui, TB Oyama, TM Oyama, Yumiko Nishimura, Hitomi Sakai, Yasuo Oyama. Possible use of quercetin, an antioxidant, for protection of cells suffering from overload of intracellular Ca2+:A model experiment[J]. Life Sciences,2008,83:164-169.
    [18]Chipuk JE, Green DR. Do inducers of apoptosis triggers caspase independent cell death?[J]. Nat. Rev. Mol. Cell Biol,2005,6:268-275.
    [19]Ricci JE, Gottlieb RA, Green DR. Caspase-mediated loss of mitochondrial function and generation of reactive oxygen species during apoptosis[J]. J. Cell Biol,2003,160 (1):65-75.
    [20]McDonald ER 3rd, El-Deiry WS. Cell cycle control as a basis for cancer drug development J]. Int J Oncol,2000,16(5):871-886.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700