基于认知地图的移动机器人自主导航技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来机器人加快了融入人类日常生活的步伐,这对机器人提出新的要求:不但具备安全自主导航能力,而且更加智能化和方便与人类交流。然而机器人目前的现状与人们的期望相去甚远。如何使得机器人具备更深层次的认知能力,是目前最大的挑战。
     本文深入研究了移动机器人环境感知、自主导航及目标跟踪等问题。首先在生物认知地图的启迪下,在移动机器人主流传感器-里程计、视觉和激光测距仪基础上,学习生物导航的优点及概率导航的成功之处,提出了基于多传感器联合顺序粒子滤波的认知地图创建算法,将移动机器人对环境的学习,从感知层次提高到认知层次;在认知地图基础上,提出一种基于认知地图的移动机器人自主导航方法:即在认知地图下实现了全局定位、位置识别、避障路径规划、基于位置的导航及精确末段泊位问题;最后,为增加移动机器人的环境交互能力,在认知地图下,提出三种有效的环境监测及目标跟踪方法,为机器人与环境交互提供技术基础。
     本课题来源于国家自然科学基金“基于不精确性地图的移动机器人室内导航技术研究(No.60643005)”、国家863基金“分布式多机器人合作与竞争机制及其应用技术(No.2006AA04Z259)”。主要包括以下内容:
     第一,研究了视觉尺度不变性特征(Scale Invariant Feature Transform, SIFT)的匹配方法;提出一种基于DD-BBF(Double-Direction Best-Bin-First)的SIFT特征匹配方法,有效解决了三维重建的数据匹配问题;研究了激光测距仪的极坐标扫描匹配(Polar Coordinates Scan Matching, PCSM)算法,增强了地图创建的可靠性。
     第二,研究了移动机器人基于多传感器联合顺序粒子滤波的认知地图创建算法:对传统RBPF(Rao-Blackwellized particle filter)和传统FastSLAM(Fast Simultaneous localization and mapping)进行改进,创建了视觉-激光测距仪联合度量地图。在度量地图创建过程中,把度量地图划分为许多子地图,子地图组定义为位置,并生成拓扑地图;利用导师知识,对位置进行语义关联(label),最终生成包含语义层-拓扑层-度量层的认知地图。
     第三,研究了基于认知地图的移动机器人导航方法:即在认知地图下,实现了全局定位、位置识别、避障路径规划、基于位置的导航及精确末段泊位。本文提出基于认知地图的导航方法,使得机器人获得了灵活鲁棒的大范围精确导航能力。对移动人机器人实际应用具有良好的指导作用,对解决移动机器人导航问题提供了一个新思路。
     第四,研究了基于认知地图的移动机器人目标监测和跟踪技术,以移动机器人认知地图作为基础,针对移动机器人本体感知范围有限的问题,采用视频感知网络扩展移动机器人的环境监测能力,提出一种背景差分算法,有效解决了照明变化条件下的目标检测跟踪问题,并通过单应矩阵实现了视频感知网监测信息与移动机器人认知地图的标定;研究了基于视觉特征的目标跟踪方法;对于人的定位和跟踪,提出一种基于视觉-激光测距仪的异质传感器顺序滤波算法,有效的实现了同时机器人定位和人跟踪,为机器人与环境交互提供技术基础。最后,介绍了基于认知地图导航的移动机器人硬件和软件系统。
Robots are mending their pace to fuse into daily life of human being recently. Robots are expected to not only have ability of safe navigation but also are more intelligent and friendly to communicate with human being. But the state-of-the-art in mobile robotics is far behind expectation. The greatest challenge at the moment for mobile robotics is how to endow robots with the capacity to exhibit a greater degree of spatial awareness. The root-cause of the problem lies in the deficiency of semantic content in mobile robot representations. These problems form the core motivations of this thesis.
     The work presented here is an in-depth study of the problems of environment apperception, navigation and environment intercommunion. It studied the relative problems step by step. Inspired by biology cognitive mapping, a mobile robot cognitive mapping algorithm based on multi-sensor and joint-sequent particle filter is proposed by referring the strongpoint of biologic and probabilistic navigation and using the common sensors: odometer, vision and laser range finder. The algorithm can build a global, correlative, active map. Thirdly a navigation framework is presented based on the cognitive map: i.e. solving the problems of global localization, path planning and ending docking based on the cognitive map. Lastly three key technologies for intercommunion between the robot and the environment in the map are discussed which can build a reliable foundation for intercommunion between the robot and the environment.
     The problems studied in this paper derive from the National Natural Science Foundation of China“Research on Mobile Robot Indoor Navigation Technology Based an Inaccurate Map”, and the National 863 High-tech Research and Development Plan of China“Collaboration and Competition Mechanism for Distributed Multi-robots and its Application Techniques”. The contributions are discussed in detail as follows:
     Firstly, the SIFT(Scale Invariant Feature Transform) algorithm which is used to represent environment is discussed, and a DD-BBF(Double-Direction Best-Bin-First) based SIFT feature matching method is presented to solve the data matching problem in 3D reconstruction of space efficiently; A PCSM(Polar Coordinates Scan Matching) method is discussed for the robust laser data matching.
     Secondly, a mobile robot cognitive mapping algorithm based on multi-sensor and joint-sequent particle filter is studied.
     As to build the cognitive map, an improved RBPF(Rao-Blackwellized particle filter) and FastSLAM are used to implement a jointSLAM. A more precise vision-laser joint metric map is built by this method. When building the joint metric map, the map is partition into many groups of submaps by a special partition rule. Each submap group is defined as a place, and every place is encoded with semantic conception which comes from a tutor semantic sequence. When the semantic map is built, the cognitive map is founded at the same time.
     Thirdly, a navigation method based on cognitive map is studied to solve the problem of global localization, HMM based place recognition, path planning, place based navigation and precise docking. The highlight point of the method is that it can well instruct the real robot application, and endow mobile robots with the abilities of flexible and precise navigation in large scale environment. It also provide a new thought of solving the navigation problem.
     Finally, object surveillance and tracking method based on the cognitive map are discussed, and a vision network with new background subtraction for non-stationary scenes is used to extend the observation range of the mobile robot. A homography matrix is used to settle the calibration relationship between the robot and the vision network; a monocular vision based object following method is presented which uses SIFT to judge the distance and direction of the object; as to human localization and tracking, a heterogeneous sensor sequence filter based on laser-vision is presented to locate and track the people efficiently. These works can build a reliable foundation for intercommunion between the robot and the environment. lastly, the hardware and software of the system are introduced.
引文
1 N. Nilsson. A mobile automation: An application of artificial intelligence techniques. In proc Of IJCAI, 1969, 2(1):233-239
    2 Groen F, Spaan M, Vlassis N. Robot soccer: game or science. http://ww.robocup.org
    3 FIRA. FIRA RobotSot game rules. http://www.fira.net
    4 C. Stachniss. Exploration and Mapping with Mobile Robots. Ph.D Thesis for University of Freiburg. 2006:19-21
    5 Liying Su, Min Tan. A Virtual Centrifugal Force based Navigation Algorithm for Explorative Robotic Tasks in Unknown Environments. Robotics and Autonomous Systems. 2005, 51(4):261-274
    6 M. A. Salichs, L. Moreno. Navigation of Mobile Robots: Open Questions. Robotica. 2000, 18(3):227-234
    7 J. Leonard, H. F. Durrant-Whyte. Directed Sonar Sensing for Mobile robot Navigation. Advanced Robotics. 1992, 10(6):547-578
    8 R. Smith, M. Self, P. Chesseman. Estimating Uncertain Spatial Relationships in Robotics. Autonomous Robot Vehicles. Springer-Verlag, 1990:167-193
    9 B. Kuipers, Y. T. Byun A Robot Exploration and Mapping Strategy based on a Semantic Hierarchy of Spatial Representations. Robotics and Autonomous Systems, 1991, 8(1-2): 47-63
    10 J. Kleinberg. The Localization Problem for Mobile Robots. In Proc. of the 35th IEEE Symposium on Foundations of Computer Science, Los Alamitos, CA, 1994:521-531
    11 L. Kaelbling, M. Littman, and A. Cassandra. Planning and acting in partially observable stochastic domains. Artificial Intelligence. 1998,101 (1): 99-134
    12 M. Tomono. A Scan Matching Method using Euclidean Invariant Signature for Global Localization and Map Building. IEEE International Conference on Robotics & Automation, New Orieans, LA, 2004:866-871
    13 P. Besl, N. Mckay. A Method of Registration of 3-D Shapes. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1992, 14(2):239-256
    14厉茂海,洪炳熔.移动机器人的概率定位方法研究进展.机器人. 2005, 27(4):380-384
    15 J. Leonard, H. Durrant-Whyte. Mobile Robot Localization by Tracking Geometric Beacons. IEEE Transactions on Robotics and Automation. 1991, 7(3):376-382
    16 L. Moreno, M. Armingol, S. Garrido, et al. A Genetic Algorithm for Mobile Robot Localization Using Ultrasonic Sensors. Journal of Intelligent and Robotic Systems. 2002, 34:135-154
    17 S. J. Julier, J. K. Uhlmann.Unscented Filtering and Nonlinear Estimation. Proc of the IEEE Aerospace and Electronic Systems. 2004, 92(3):401-422
    18 W. Burgard, D. Fox, D. Hennig, T. Schmidt. Estimating the Absolute Position of a Mobile Robot Using Position Probability Grids. In Proc. of the National Conference on Artificial Intelligence (AAAI-1996), Oregon, 1996:896-901
    19 F. Dellaert, D. Fox, W. Burgard, S. Thrun. Monte Carlo localization for mobile robots. In Proc. of the IEEE International Conference on Robotics and Automation, Michigan, 1999:1322-1328
    20 A. Milstein, J. N. Sanchez, E. Wiamson. Robust Global Localization Using Clustered Particle Filtering. In Proc. of the National Conference on Artificial Intelligence (AAAI-2002), Edmonton, 2002: 581-586
    21 Ronghua Luo, Bingrong Hong. Coevolution Based Adaptive Monte Carlo Localization (CEAMCL). International Journal of Advanced Robotic Systems. 2004, 1(3): 183-190
    22 S. Thrun, D. Fox, W. Burgard, F. Dellaert. Robust Monte Carlo localization for mobile robots. Artificial Intelligence. 2001, 128(1-2):99-141
    23 D. Fox. Adapting the Sample Size in Particle Filters through KLD-Sampling. International Journal of Robotic Research. 2003, 22(2):985-1004
    24 P. Jensfelt, S. Kristensen. Active Global Localization for a Mobile Robot Using Multiple Hypothesis Tracking. IEEE Trans. Robotics Automation. 2001, 17(5):748-760
    25 P. Jensfelt. Approaches to Mobile Robot Loclization in Indoor Environment. Ph.D. thesis for Royal Institute of Technology, Sweden. 2001:69-101
    26 A. Amos, G. Wilfried. Analytic Path Planning Algorithms for Bipedal Robots without a Trunk. Journal of Intelligent and Robotic Systems. 2003, 36(2):109-127
    27 P. K. C. Wang. Optimal Path Planning Based on Visibility. Journal of Optimization Theory and Applications. 2003, 117(1):157-181
    28 L. Srikanthan. High-Speed Environment Representation Scheme for Dynamic Path Planning. Journal of Intelligent and Robotic Systems. 2001, 32(3):307-319
    29 X. Deng, A. Mirzaian. Competitive robot mapping with homogeneous markers. IEEE Trans. on Robotics and Automation. 2002, 12(4):532-542
    30 H. Christian, S. Gunther. Path Planning and Guidance Techniques for an Autonomous Mobile Cleaning Robot. Robotics and Autonomous Systems. 1995, 15(3):229-241
    31 N. Heungsik, K. Hyuntae, K. Seungwoo, et al. Cooperative Mobile Robots Using Fuzzy Algorithm. IEEE Int. Conf. on robotics and Automation, 1992: 796-802
    32 Y. Keron, J. Borenstein. Potential Field Methods and Their Inherent Limitations for Mobile Robot Navigation. Proc IEEE Int Conf Robot Automation, California, 1991:398-1404
    33 Zixing Cai, Zhihong Peng. Cooperative Coevolutionary Adaptive Genetic Algorithm in Path Planning of Cooperative Multi-Mobile Robot Systems. Journal of Intelligent and Robotics Systems. 2002, 33(1):61-71
    34 A. Czarnecki, T. Routen. Characteristics of Based Approach to Path Planning for Mobile Robots. Journal of Network and Computer Applications. 1997, 18(2):187-204
    35 Y. Simon, M. Max. Real-time Collision-Free Path Planning of Robot Manipulators using Neural Network Approaches. Autonomous Robots. 2000, 9(1):27-39
    36 P. Zavlangas, S. Tzafestas. Industrial Robot Navigation and Obstacle Avoidance Employing Fuzzy Logic. Journal of Intelligent and Robotic Systems. 2000, 27(1):23-30
    37 J. Mbede, W. Bosco. Fuzzy and Recurent Neural Network Motion Control among Dynamic Obstacles for Robot Manipulators. Journal of Intelligent and Robotic Systems. 2001, 30(2):155-177
    38 J. Borenstein, and Y. Koren. The Vector Field Histogram-Fast Obstacle Avoidance for mobile robots. IEEE Journal of Robotics and Automation. June 1991, 7(3):278-288
    39 R. Simmons. The Curvature Velocity Method for Local Obstacle Avoidance, Proceedings of the IEEE International Conference on Robotics and Automation, Piscataway, USA, 1996:2275-2282
    40 N. Ko, R. Simmons. The Lane-curvature Method for Local Obstacle Avoidance. Proceedings of the International Conference on Intelligent Robotics and Systems. Victoria, B C, Canada. 1998:1615-1621
    41 J. Fernandez. R. Sanz, J. Benayas, et al. Improving Collision Avoidance for Mobile Robots in Partially Known Environments: the Beam Curvature Method. Robotics and Autonomous Systems. 2004, 46(4):205-219
    42 J. Kotecha, P.M. Djuric. Gaussian sum particle filtering. IEEE Trans. Signal Processing, 2003, 51(10):2602-2612
    43 A. Moore. Very fast EM-based mixture model clustering using multi-resolution kd-trees. Advances in Neural Information Processing Systems, 1999: 543–549
    44 Schulz D, Burgard W, Fox D, Cremers A B. Tracking Multiple MovingTracking Multile Moving Objects with a Mobile Robot. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2001, 371-377
    45 Prassler E, Scholz J, Elfes A. Tracking Multiple Moving Objects for Real-Time Robot Navigation. Journal of Autonomous Robots, Special Issue on Perception for Mobile Agents. 2000, 8(2):105-116
    46 Wehner, R. Desert ant navigation: how miniature brains solve complex tasks. Journal of Comparative Physiology A: Sensory, Neural, and Behavioral Physiology, 2003, 189(9):579-588
    47 Lambrinos, D., M?ller, R., Labhart, T., Pfeifer, R. and Wehner, R. A mobile robot employing insect strategies for navigation. Robotics and Autonomous Systems, 2000, 30:39-64
    48 M?ller, R. Insect visual homing strategies in a robot with analog processing. Biological Cybernetics, 2000, 83:.231-243
    49 O. Lebeltel, P. Bessière, J. Diard, and E. Mazer. Bayesian robot programming. Autonomous Robots (in press), 2004, 16(1):234-240
    50 J. Leonard, H. Durrant-Whyte, and I. Cox. Dynamic map-building for an autonomous mobile robot. The International Journal of Robotics Research, 1992, 11(4):286-298
    51 S. Thrun. Probabilistic algorithms in robotics. AI Magazine, 2000, 21(4): 93-109
    52 C. Boutilier, T. Dean, and S. Hanks. Decision theoretic planning: Structural assumptions and computational leverage. Journal of Artificial Intelligence Research, 1999, 10:1-94
    53 L. R. Rabiner and B.-H. Juang. Fundamentals of Speech Recognition. Englewood Cliffs, New Jersey: Prentice Hall, 1993, ch. Theory and implementation of Hidden Markov Models, 1993, 321-389
    54 S. Roweis and Z. Ghahramani. A unifying review of linear Gaussian models. Neural Computation, 1999, 11(2)305-345
    55 P. Smyth, D. Heckerman, and M. I. Jordan. Probabilistic independence networks for hidden markov probability models. Neural Computation, 1997, 9(2):227-269
    56 S. Thrun, A. Bücken, W. Burgard, D. Fox, T. Fr?hlinghaus, D. Hennig. Map learning and high-speed navigation in RHINO. in AI-based Mobile Robots: Case Studies of Successful Robot Systems, D. Kortenkamp, R. Bonasso, and R. Murphy, Eds. MIT Press, 1998, 580-586
    57 W. Burgard, A. B. Cremers, D. Fox, D. H?hnel, G. Lakemeyer, D. Schultz, W. Steiner, and S. Thrun. Experiences with an interactive museum tour-guide robot.Artificial Intelligence, 1999, 114(1-2):3-55
    58 D. Fox, W. Burgard, F. Dellaert, and S. Thrun. Monte carlo localization: Efficient position estimation for mobile robots. in Proceedings of the AAAI National Conference on Artificial Intelligence, Orlando, FL, 1999
    59 A. Berthoz. The Brain’s Sense of Movement. Cambridge, MA: Harvard University Press, 2000
    60 M. Montemerlo and S. Thrun, Simultaneous localization and mapping with unknown data association using FastSLAM. Proc. IEEE Int. Conf. ICRA’2003, Taipei, 2003
    61 R. Smith, M. Self, and P. Cheeseman,“A stochastic map for uncertain spatial relationships,”in 4th Int. Symposium on Robotics Research. MIT Press, 1987
    62 P. Moutarlier and R. Chatila,“Stochastic multisensory data fusion for mobile robot location and environment modelling,”in 5th Int. Symposium on Robotics Research, Tokyo, Japan, 28-31 Aug. 1989: 85-94
    63 J. J. Leonard and H. F. Durrant-Whyte,“Simultaneous map building and localization for an autonomous mobile robot,”in IEEE/RSJ Int. Workshop on Intelligent Robots and Systems, vol. 3, Osaka, Japan, 3-5 Nov. 1991:1442-1447
    64 J. E. Guivant, E. M. Nebot. Optimization of the simultaneous localization and map-building algorithm for real-time implementation. IEEE Trans. Robotics and Automation. 2001, 17(3):242-257
    65 S. Thrun, Y. Liu, D. Koller, A. Y. Ng. Simultaneous localization and mapping with sparse extended information filters. International Journal of Robotics Research. 2004, 23(7):693-716
    66 T. Bailey. Mobile Robot Localisation and Mapping in Extensive Outdoor Environments. PhD thesis, University of Sydney, Australian Centre for Field Robotics, 2002
    67 M. Montemerlo, S. Thrun, D. Koller, B. Wegbreit. FastSLAM 2.0: An Improved Particle Filtering Algorithm for Simultaneous Localization and Mapping that Provably Converges. In Proc. of the Int. Joint Conference on Artificial Intelligence, Acapulco, Mexico, 2003:1151-1156
    68 C. Stachniss, G. Grisetti, and W. Burgard, Recovering Particle Diversity in a Rao-Blackwellized Particle Filter for SLAM after Actively Closing Loops, In Proc. of the IEEE International Conference on Robotics and Automation (ICRA), Barcelona,Spain, 2005:667-672
    69 D. Fox. Adapting the sample size in particle filters through KLD-Sampling. International Journal of Robotic Research, 2003, 22(2):985-1004
    70 A. Milstein, J. N. Sanchez,E. Wiamson. Monte Carlo localization for mobile robots. In Proc. of the National Conference on Artificial Intelligence (AAAI-2002), Edmonton, 2002: 581-586
    71 N. Karlsson, E. Bernardo, J. Ostrowski, et al. The vSLAM algorithm for robust localization and mapping. In IEEE Int. Conf. on Robotics and Automation (ICRA), Barcelona, Spain, 2005:24-29
    72 M. Montemerlo, S. Thrun, D. Koller, B. Wegbreit. FastSLAM 2.0: An Improved Particle Filtering Algorithm for Simultaneous Localization and Mapping that Provably Converges. In Proc. of the Int. Joint Conference on Artificial Intelligence, Acapulco, Mexico, 2003:1151-1156
    73 D. Lowe. Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision. 2004, 60(2):91-110
    74 P.J. Besl, N.D. McKay. A method for registration of 3D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(2): 239-256
    75 S. Rusinkiewicz and M. Levoy,“Efficient variants of the ICP algorithm,”in Proc. Third Int. Conf. 3-D Digital Imaging and Modeling, Quebec City, Que., Canada, 28 May-1 Jun. 2001, 145-152.
    76 I. J. Cox,“Blanche - an experiment in guidance and navigation of an autonomous robot vehicle,”IEEE Trans. Robotics and Automation, 1991, vol. 7, 2: 193-204
    77 F. Lu and E. Milios,“Robot pose estimation in unknown environments by matching 2D range scans,”J. Intelligent and Robotic Systems, 1997,vol. 18, 3: 249-275
    78 J. S. Gutmann and K. Konolige,“Incremental mapping of large cyclic environments,”in Proc. IEEE Int. Symposium on Computational Intelligence in Robotics and Automation, Monterey, CA, 8-9 Nov. 1999, 318-325
    79 B. Jensen and R. Siegwart,“Scan alignment with probabilistic distance metric,”in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Sendai, Japan, 28 Sep.-2 Oct. 2004, 2191-2196
    80 G. Weiss and E. V. Puttkamer,“A map based on laserscans without geometric interpretation,”in Proc. Int. Conf. Intelligent Autonomous Systems, Karlsruhe, Germany, 27-30 Mar. 1995, 403-407
    81 P. Biber,“The normal distributions transform: A new approach to laser scan matching,”in IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Las Vegas, NV, 27-31 Oct. 2003, 2743-2748
    82 A. Diosi and L. Kleeman. Laser scan matching in polar coordinates with application to SLAM. Dept. Electrical and Computer Systems Engineering, Monash University, Melbourne, Australia, Tech. Rep. MECSE-29-2005, 24 Jul. 2005
    83 A. Diosi, G. Taylor, and L. Kleeman. Interactive SLAM using laser and advanced sonar. In Proc. of ICRA'05. 18-22 April 2005, 1103 - 1108
    84 D. H?hnel, D. Schulz, and W. Burgard, Mobile Robot Mapping in Populated Environments, Journal of the Robotics Society of Japan, 2003, 7 (17), 579-598
    85 C. Stachniss, G. Grisetti, and W. Burgard, Recovering Particle Diversity in a Rao-Blackwellized Particle Filter for SLAM after Actively Closing Loops, In Proc. of the IEEE International Conference on Robotics and Automation (ICRA), 2005, 667-672
    86 Alberto Elfes. Sonar based real world mapping and navigation. IEEE Journal of Robotics and Automation, 3(3):249–265, June 1987
    87 W. Burgard, D. Fox, H. Jans, C. Matenar, and S. Thrun. Sonar-Based Mapping of Large-Scale Mobile Robot Environments using EM. In the proceedings of the International Conference on Machine Learning (ICML) 1999
    88 A. Elfes, H. Moravec. High Resolution Maps from Wide Angle Sonar. IEEE Int. Conf. Robotics and Automation, San Francisco, CA, 1985, 116-121
    89 A. Diosi, G. Taylor, and L. Kleeman. Laser scan matching in polar coordinates with application to SLAM. IEEE/RSJ International Conference on Intelligent Robots and Systems, 2005: 3317–3322
    90 V. Nguyen, A. Harati, N. Tomatis, A. Martinelli, R. Siegwart, Orthogonal SLAM: a Step toward Lightweight Indoor Autonomous Navigation, Proc. of The IEEE/RSJ IntenationalConference on Intelligent Robots and Systems (IROS), 2006
    91 A. Martinelli, A. Svensson, N. Tomatis and R. Siegwart. SLAM Based on Quantities Invariantof the Robot's Configuration. IFAC Symposyumon InteligentAutonomous Vehicles, 2004
    92 D. Kortenkamp, T. Weynouth. Topological Mapping for Mobile Robots Using a Combination of Sonar and Vision Sensing. Proc of the 12th National Conf on Artificial Intelligence.Menlo Park:AAAI Press,1994:979-984
    93 H. Choset and K. Nagatani. Topological simultaneous localization and mapping (SLAM): toward exact localization without explicit localization. IEEE Transactions on Robotics and Automation, Volume: 17 Issue: 2 , Apr 2001
    94 H. Shatkayand L.P. Kaelbling, Learning Topological Maps with Weak Local Odometric Information. In the Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI 1997), 1997
    95 Alberto Vale. Mobile Robot Navigation in Outdoor Environments: A Topological Approach. Ph.D thesis for University of Tecnica De Lisboa, Instituto Superior Tecnico, 2005: 145-155
    96 E.C. Tolman, Cognitive maps in rats and men, Psychological Review 1948,55:189–208
    97 Downs RM. Maps and mapping as metaphors for spatial representation. Spatial Representation and Behavior across the Life Span. L. S. Liben, A. H. Patterson and N. Newcombe. New York, NY, USA, Academic Press: 1981:143-166
    98 Todd E T. Virtually Lost in Virtual Worlds Wayfinding without a Cognitive Map. ACM Computer Graphics 1997.31(3)1133-1242
    99 Kitchin R M. Cognitive Maps: What are they and why study them?. Journal of Environmental Psychology, 1994,14:1-19
    100 Bennett A T.Do Animals have Cognitive Maps. The Journal of Experimental Biology, 1996, 199: 219-224
    101 Jacobs L F. The Evolution of the Cognitive Map.Brain, Behavior and Evolution, 2003, 62: 128-139
    102 Yeap WK, Jefferies ME. Computing a Representation of the Local Environment. Artificial Intelligence, 1999, 107(2):265-301
    103 Jefferies ME. Cognitive Maps: Understanding How Local Environments are Computed. Doctor of Philosophy, University of Otago, Dunedin, 1999
    104 see Jefferies, Weng, Baker & Mayo (2004)
    105 Jefferies M E, Weng W, Baker J T. Robot Cognitive Mapping - A Role for a Global Metric Map in a Cognitive Mapping Process. In M. E. Jefferies & W.-K. Yeap (Eds.), Robotics and Cognitive Approaches to Spatial Mapping, .2008,38: 664-672
    106 Kuipers B J. The spatial semantic hierarchy. Artificial Intelligence, 119(1-2), 2000,191-233
    107 Beeson P, MacMahon M, Modayil J, Provost J. Exploiting local perceptual models for topological map-building. In IJCAI-2003 Workshop on Reasoning with Uncertainty in Robotics (RUR-03), 2003. 15-22
    108 Kuipers B, Modayil J, Beeson P. Local metrical and global topological maps in the hybrid Spatial Semantic Hierarchy. In IEEE International Conference on Robotics and Automation (ICRA-04), 2004, 5:4845- 4851
    109 Beeson P, Jong N K, Kuipers B. Towards autonomous topological place detection using the Extended Voronoi Graph. In IEEE International Conference on Robotics and Automation (ICRA-05), 2005. 18-22
    110 Modayil J, Beeson P, Kuipers B. Using the topological skeleton for scalable global metrical map-building. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS-04), 2004. 1530– 1536
    111 Chown E, Kaplan S, Kortenkamp D. Prototypes, Location, and Associative Networks (PLAN): Towards a Unified Theory of Cognitive Mapping. Cognitive Science, 1995:19, 1-51
    112 Levenick J R. Knowledge representation and intelligent systems: from semantic networks to cognitive maps. Doctor of Philosophy, The University of Michigan, Ann Arbor, Michigan, 1985
    113 Chown E, Boots B. Learning Cognitive Maps: Finding Useful Structure in an Uncertain World. In M. E. Jefferies & W. K. Yeap (Eds.), Robot and Cognitive Approaches to Spatial Mapping. Berlin / Heidelberg: Springer Verlag, 2008
    114 Cuperlier N, Quoy M, Gaussier P. Neurobiologically inspired mobile robot navigation and planning. Frontiers in NeuroRobotics, 2007:1(1)
    115 Milford M J, Wyeth G. Hippocampal Models for Simultaneous Localisation and Mapping on an Autonomous Robot. In Australian Conference on Robotics and Automation. Brisbane, Australia, 2003
    116 Arleo A. Spatial Learning and Navigation in Neuro-mimetic Systems: Modeling the Rat Hippocampus. Doctor of Philosophy, Swiss Federal Institute of Technology, Lausanne, Switzerland, 2000
    117 Milford, M, Wyeth G. Spatial Mapping and Map Exploitation: A Bioinspired Engineering Perspective. In S. Winter, M. Duckham, L. Kulik & B. Kuipers (Eds.), Spatial Information Theory, 8th International Conference, COSIT 2007, 4736:203-221
    118 A.W. Moore, An introductory tutorial on kd-trees, Robotics Institute, Carnegie Mellon University, Pittsburgh, Technical Report No. 209, Computer Laboratory, University of Cambridge, 1991
    119 Beis J, Lowe D G. Shape indexing using approximate nearest-neighbour search in high-dimensional spaces. In Conference on Computer Vision and Pattern Recognition, Puerto Rico, 1997: 1000-1006
    120 G. Weiss, G. Wetzler and E. V. puttkamer. Keeping Track of Position and Orientation of Moving Indoor Systems by Correlation of Range-Finder Scans. Proc. of IROS’94, 1994: 595-601
    121 J. Weber, K. W. lorg and E. V. puttkamer. APR Global Scan Matching Using Anchor Point Relationships. Proc. of lAS-6, 2000
    122 P.J. Besl, N.D. McKay. A method for registration of 3D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(2): 239-256
    123 F. Lu, E. Milios. Robot pose estimation in unknown environments by matching
    2D range scans. J. of Intelligent and Robotics Systems, 1997, 20: 249-275
    124 J. S. Gutmann. Robuste Navigation autonomer mobiler Systeme. PhD thesis, Albert-Ludwigs-Universit?t Freiburg, 2000
    125 KaPlan S. Cognitive maps in PercePtion and thought. InR.M.DownsandD.Stea (eds.), Image and Environment.Chieago:Aldine.1973
    126刘娟.基于时空信息与认知模型的移动机器人导航机制研究.中南大学博士学位论文, 2003
    127 J?rg Conradt. A Distributed Cognitive Map for Spatial Navigation Based on Graphically Organized Place Agents. Doctor paper of SWISS FEDERAL INSTITUTE OF TECHNOLOGY (ETH) ZURICH, 2008
    128 Shrihari Vasudevan, Stefan G¨achter, Viet Nguyen, Roland Siegwart. Cognitive maps for mobile robots-an object based approach. Robotics and Autonomous Systems, 2007, 55:359-371
    129厉茂海.基于混合地图的移动机器人室内导航研究.哈尔滨工业大学博士学位论文, 2007
    130 H. Choset and J. Burdick. Sensor-based exploration: The hierarchical generalized Voronoi graph. The International Journal of Robotics Research, 2000, 19(2):96-125
    131 T. Edlinger and G. Wei?. Exploration, navigation and self-localization in an autonomous mobile robot. In Autonome Mobile Systeme, 1995
    132罗荣华.基于粒子滤波器的家庭机器人同时定位与地图创建研究.哈尔滨工业大学博士学位论文, 2005
    133 http://axon.bhs.mq.edu.au/PSY236/space/20path_int_error_2.jpg
    134 S. Thrun, M. Bennewitz, W. Burgard, et al. Minerva: A second-generation museum tour-guide robot. Proc. ICRA’99. 1999, 3: 1999-2005
    135 M.A. Fischler, R.C. Bolles. Random sample consensus: A paradigm for model fitting with application to image analysis and automated cartography. Commun. Assoc. Comp. Mach, 1981, 24(6): 381-395
    136 Torralba A, Murphy K, Freeman W, et al. Context-based vision system for place and object recognition. In: International Conference on Computer Vision, 2003, 273-282
    137 K. Konolige. A Gradient Method for Realtime Robot Control. IEEE International Conference on Intelligent Robots and Systems. 2000: 639-646
    138王建中,尹义龙.基于动态信息模型的LPN路径规划方法.计算机工程, 2006, 31(17): 66-68
    139 D. Fox, W. Burgard, S. Thrun. The Dynamic Window Approach to Collision Avoidance. IEEE and Automation Magazine, 1997, 4(1): 23-33
    140 Stanford University, Interactive Workspaces Project. http://graphics.stanford.edu/projects/iwork
    141 S. Nagaya, T. Miyajita. Object detection by time-correlation-based background Judgement method. IEICE Trans. D-II , 1996, 79(4):568-576
    142曾慧,邓小明,赵训坡,胡占义.基于线对应的单应矩阵估计及其在视觉测量中的应用.自动化学报, 2007,33(5):449-455
    143 Hogg, R., Rankin, A., McHenry, M., Helmick, D., Bergh, C., Roumeliotis, S., and Matthies, L. Sensors and algorithms for small robot leader/follower behavior. In Proc. SPIE 2001, 4364:72-85
    144 Smith, J. A Tracking System for a Seismic Surveying Mobile Robot, Master’s thesis, University of Alberta, 2001
    145 Nguyen, H., Kogut, G., Barua, R., and Burmeister, A. A Segway RMP-based Robotic Transport System, In Proceedings of SPIE Mobile Robots XVII, 2004
    146 Parker, L., Kannan, B., Tang, F., and Bailey, M. Tightly-Coupled Navigation Assistance in Heterogenous, In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, 2004
    147 Cervera, E., Martinet, P., and Renaud, P. Towards a reliable vision-based mobile robot formation control. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2004
    148 Benhimane, S., Malis, E., Rives, P., and Azinheira, J. Vision-based control for car platooning using homography decomposition, In Proceedings of the IEEE International Conference on Robotics and Automation, 2005
    149 G. Chivil`o, F. Mezzaro, A. Sgorbissa, and R. Zaccaria. Follow the leader behaviour through optical flow minimization, Proceedings of the IEEE International Conference on Intelligent Robots and Systems (IROS), 2004
    150 Wit, J., Crane, C., and Armstrong, D. Autonomous Ground Vehicle Path Tracking, Journal of Robotic Systems, 2004, 21(8):439-449
    151 Malis, E. and Benhimane, S. A unified approach to visual tracking and servoing, Robotics and Autonomous Systems, 2005, 52:39-52
    152 Hu W M, Hu M, Tan T N, et al. Principal axis-based correspondence between multiple cameras for people tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(4): 663-671
    153 Kim K, Davis L S. Multi-camera tracking and segmentation of occluded people on ground plane using search-guided particle filtering[A]. Proceeding of European Conference on Computer Vision[C]. Lecture Notes in Computer Science, Berlin, German: Springer, 2006. 98-109
    154 Montemerlo M, Thrun S, Whittaker W. Conditional particle filters for simultaneous Mobile Robot Localization and People-Tracking[A]. Proceedings of the IEEE International Conference on Robotics and Automation[C]. Piscataway, NJ, USA: IEEE, 2002. 695-701
    155 Qian K, Ma X D, Dai X Z, et al. A Multi-camera Approach to Tracking and Localization of People with Coexisting Robots. Proceeding of the 7th World Congress on Intelligent Control and Automation, 2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700