南海北部陆坡天然气水合物储层特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对南海北部天然气水合物的成矿条件进行了研究,结果表明水合物存在于滨海-浅海-半深海-深海的沉积环境中,其中等深流、三角洲、浊积扇、滑塌沉积、底辟等沉积体系有利于水合物形成,尤其是沉积速率高、构造复杂、流体活跃、含砂率适中(35%~50%)、细粉沙粘土或细粒沉积物中,更有利于水合物成藏。南海北部的台西南盆地、东沙群岛海域、西沙海槽、琼东南盆地是天然气水合物远景区,其中台西南盆地为最有利区。
    含水合物沉积层具有高P-波速度、高弹性阻抗、高P-阻抗、高S-阻抗、高λρ、略微低泊松比,而含游离气沉积层具有低P-波速度、低弹性阻抗、低P-阻抗、正常的S-阻抗、低λρ和低泊松比等。研究沉积层弹性性质,对水合物研究具有重要意义。从测井和地球化学研究看,含水合物沉积层具有高电阻率异常、低氯离子浓度异常、高氧同位素异常等。针对南海北部台西南盆地和东沙海域的三条测线进行了约束稀疏脉冲反演,从声波阻抗剖面看,台西南盆地较东沙海域更利于形成水合物。台西南盆地地区构造复杂、断层发育、存在底辟构造,为深层流体(水和气体)和热聚集提供良好的通道;而从东沙群岛西部的珠江口盆地的沉积环境相对比较稳定,位于隆起和坳陷分界处规模较大的活动断层相对比较少,缺乏气体运移通道。
    分别基于迭代正演模拟反演法和阿奇方程从声波阻抗估算无井和有井地区饱和度,该方法给出了从地震反演的声波阻抗估算天然气水合物和游离气饱和度。从南海北部水合物和游离气饱和度估算结果看,台西南盆地水合物饱和度呈片状和块状分布,横向分布不连续,水合物饱和度占孔隙空间的10-30%,最高值达50%;深部含有少量游离气,呈不连续的层状分布,饱和度占孔隙空间的2-3%,局部层位饱和度比较高,达到6-7%且BSR比较清晰。东沙群岛BSR相对较弱;水合物呈层状分布,横向变化不大,饱和度占孔隙空间的10-20%,局部较高。
The mineral formation conditions of gas hydrate-bearing sediments in the northernSouth China Sea are studied in the dissertation. The research result shows that gas hydrateis likely to locate in the offshore, continental shelf, bathyal and abyssal depositional setting,especially in contour flow, delta, turbidite fans, slump deposit, diapir depositional system.In area, there are high sedimentation rate, complex geology, active faults, moderate sandyrate (35-50%), fine sandy clay and fine grained sediment, which are favor of the formationof gas hydrate. Prospective areas of gas hydrate in the northern South China Sea aredelineated, such as Taixinan basin, Dongsha Islands, Xisha trough and Qiongdongnan basinand so on, especially in Taixinan basin.
    By analyzing the elastic properties of gas hydrate-bearing sediments, the hydratedsediments have high compressional-wave velocity, high elastic impedance, highP-impedance, high S-impedance, high λρ and slightly lower Poisson's ratio. Freegas-bearing sediments have low compressional-wave velocity, low elastic impedance, lowP-impedance, non-anomalous background S-impedance, low λρ and low Poisson's ratio.Moreover, gas hydrate-bearing sediments have relatively high resistivities, low chlorideand high Oxygen Isotopic anomaly. Constrained Sparse Spike Inversion is used to obtainacoustic impedance profile in Taixinan basin and Dongsha Islands. Complex structuralsetting, well-developed fault systems and complex diapiric structures in Taixinan basinsupply good pathway for the migration of gas from deep to shallow sediments.Depositional setting of Pearl River Mouth basin in the west of Dongsha Islands is relativelystable and large scale faults are few between uplift and depression.
    Acoustic impedances based on iterative forward simulation inversion and Archie'sequations are used to estimate saturations in the area with well log and without well logdata. The methods are applied to multiple channel seismic data and well logs from thenorthern of South China Sea. Gas hydrate distribution nearby Taixinan Basin is patchy,noncontinuous and saturation is about 10-30% of the pore space, with the highest values of50%. Free gas is present in this zone with about 2-3% of the pore space. BSR is strongerthan that without free gas below GHSZ. The BSR is weak in Dongsha Islands. Gas hydratedistribution is layered, continuous and the saturation is about 10-20% of the pore space,while local zone is high.
引文
Andreassen K, Hart P E and Mckay M, 1997. Amplitude versus offset modeling of the bottom simulating reflection associated with submarine gas hydrates. Marine Geology, 137:25-40.
    Aki, K. and Richards, P. G., 1980. Quantitative Seismology 1: W. H. Freeman. Biot M.A. Theory of propagation of elastic waves in a fluid-saturated porous solid. Ι . low-frequency ranges. J. Acoust. Soc. Am, 1956.28:168-178
    Bortfeld, R., 1961. Approximation to the reflection and transmission coefficients of plane longitudinal and transverse waves. Geophysical prospecting, 9: 485-502.
    Borhrmann G. et al., 2003. Mud volcanoes and gas hydrate in the Black Sea: new data from Dvurechenskii and Odessa mud volcanoes. Geo-Marine Letters, 23: 239-249.
    Briais A, Tapponnier P, Paatriat R, Wang K. 1989. The Tertiary opening of the South China Sea: a consequence of the collision between India and Asia. Terra Abstr. , 1:210
    Cadoret T., Marion D. and Zinszner B. Influence of frequency and fluid distribution on elastic wave velocities in partially saturated limestones. J. Geophys. Res., 1995, 100:9789-9803
    Carcione J M, Tinivella U. Bottom-simulating reflectors: seismic velocities and AVO effects. Geophysics, 2000, 65(1):54-67
    Chen S, Li Z, 1987. Major oil accumulation characteristics and exploration direction in the Pearl River Mouth Basin. In: collection of papers from the international Petroleum Geological Convention, Northern South China Sea Continental Shelf, China. China Oil Magazine (Hong Kong), pp12-23.
    Cherkis N Z, Max M D, Vogt P R, et al., 1999. Large scale mass wasting on the north Spitsbergen continental margin, Arctic Ocean. Geo-Marine letters, 19:131-142
    Claypool, G E and Kaplan I R, 1974. The origin and distribution of methane in marine sediments, in Natural Gases in Marine Sediments, I.R. Kaplan, ed., Plenum Pub. Co., 99-139,
    Collett T S and Ladd J. Detection of gas hydrate with downhole logs and assessment of gas hydrate concentrations (saturations) and gas volumes on the Blake Ridge with electrical resistivity log data. In Miller, C.M. and Reigel, R., Eds., Proceedings of the Ocean Drilling Program, Scientific Results, 2000, 164, 179-191.
    Connolly P., 1999. Elastic impedance. The leading Edge, 19(4):438-452
    Dai J., Xu, H.. Detection and estimation of gas hydrates using rock physics and seismic inversion: Examples from the northern deepwater Gulf of Mexico. The Leading Edge, 2004, 23 (1):60-66.
    Davide G and Carcione J, 2003. Acoustic properties of sediments saturated with gas hydrate, free gas and water. Geophysical Prospecting, 51:141-157.
    Davidson C W, Leaist D G and Hesse R, 1983. Oxygen-18 enrichment in the water of a clathrate hydrate. Geochim. Cosmochim. Acta, 47:2293–2295.
    Dickens G R, Paull C, Wallace P et al. Direct measurement of in situ methane quantities in a large gas-hydrate reservoir. Nature, 1997, 385(6615):427~429
    Domenico S N. Effect of brine-gas mixture on velocity in an unconsolidated sand reservoir. Geophysics, 1976, 41(5):882-894
    Domenico S N, 1977. Elastic properties of unconsolidated porous sand reservoirs. Geophysics, 42:1339-1368
    Dvorkin J and Nur A, 1993. Rock physics for characterization of gas hydrates: The Future of Energy Gases, USGS Professional Paper 1570
    Dvorkin J, Nur A, 1996. Elasticity of high-porosity sandstones: Theory for two North Sea datasets. Geophysics, 61(5):1363~1370
    Dvorkin J, Nur A. Time-average equation revisited. Geophysics, 1998, 63(2):460~464
    Dvorkin J, Moos D et al., 1999. Identifying patchy saturation from well logs. Geophysics, 64:1756-1759
    Dvorkin J, Prasad M, Sakai A, et al. Elasticity of marine sediments. Geophysical Research Letter, 1999, 26 (12):1781-1784
    Ecker C, 2001. Seismic Characterization of Methane Hydrates Structures. A dissertation submitted to Stanford University for the Degree of Doctor of Philosophy,1-123
    Ecker C., Dvorkin J., and Nur A. Sediments with gas hydrate: Internal structure from seismic AVO. Geophysics, 1998, 63:1659-1669
    Ecker, C., Dvorkin, J., and Nur, A.. Estimating the amount of gas hydrate and free gas from marine seismic data. Geophys., 2000, 65, 565-573.
    Feng Z and Zheng, W, 1983. Tectonic evolution of Zhujiangkou (Pearl River Mouth) Basin and origin of South China Sea. Acta Geol. Sin. 3, 212-222.
    Fuchs K and Muller G, 1971. Computation of synthetic seismograms with reflectivity method and compariaon with observations. Geophys. J. Roy. Astr. Soc., 74, 461-481.
    Gassmann F, 1951. Uber die Elastizitat poroser Medien, Veirteljahrsschrift der Naturforschenden Gesellschaft in Zurich, 96, 1-23
    Geertsma J. and Smith D.C. Some aspects of elastic wave propagation in fluid saturated porous solids: Geophysics, 1961, 26:169-181
    Ginsburg G. D., Milkov A. V., Soloviev V. A. et al. Gas hydrate accumulation at the Haakon Mosby mud volcano. Geo-Mar. Lett. 1999, 19, 57-67.
    Guong Z, Jin Q, Qiu Z et al., 1989. Geology, tectonics and evolution of the Pearl River Mouth Basin. In: Zhu X (Ed.), Chinese sedimentary Basins. Elsevier, Amsterdam, pp. 181-196.
    Guérin G, Goldberg D, Meltser A. Characterization of in situ elastic properties of gas hydrate-bearing sediments on the Blake Ridge. J. Geophys. Res., 1999, 104(B8):17781~17795
    Hamilton E L. Variations of density and porosity with depth in deep-sea sediment. Journal of Sedimentary Petrology, 1976, 46(2):280-300
    Harrison W E and Curiale J A, 1982. Gas hydrates in sediments of Holes 497 and 498A, Deep Sea Drilling Leg 67. In Aubouin, J, von Huene R, et al., Init. Repts. DSDP, 67: Washington (U.S. Govt. Printing Office), 591–595.
    Hesse R and Harrison W E, 1981. Gas hydrates (clathrates) causing pore water freshening and oxygen isotope fractionation in deep-water sedimentary sections of terrigenous continental margins. Earth Planet. Sci. Lett., 55:453–462.
    Holbrook W S, Hoskins H, Wood W T, et al. Methane hydrate and free gas on the Blake Ridge from vertical seismic profiling. Science, 1996, 273(5283): 1840–1843
    Huang Y Y, Suess E and Wu N Y, 2005. Geological settings and evidences of gas-hydrate occurring in the Northeast Dongsha area of South China Sea. Proceedings of Gas Hydrate Colloquium Between Taiwan and Motherland. Taiwan, Jan17-18, 3-4.
    Hyndman, R., and Spence, G.. A seismic study of methane hydrate marine bottom simulating reflectors: J. Geophys. Res., 1992,97: 6683–6698.
    Katzman R, Holbrook W and Paull C.. Combined vertical incidence and wide-angle seismic study of a gas hydrate zone, Blake Ridge. J. Geophys. Res., 1994, 99:17975-17995.
    Keenan J H, Keyes F G, Hill P G,et al. Steam Tables. New York: John Wiley, 1969
    Korenaga J, Holbrook W S, Singh, S C, and Minshull T A, 1997. Natural gas hydrates on the
    southeast US margin: Constraints from full waveform and travel time inversion of wide-angle seismic data. J. Geophys. Res., 102, 15345-15365.
    Kuster G.T. and Toksoz M.N.;1974: Velocity and attenuation of seismic waves in two-phase media: Part I. Theoretical formulations. Geophysics, 39, 587-606.
    Kvenvolden K A. A primer on the geological occurrence of gas hydrate, in Henriet, J.-P. and Mienert, J., Eds., gas hydrate-relevance to world margin stability and climatic change. Geol. Soc. London Spec. Pub., 1998, 137: 9-30.
    Kvenvolden K A. Gas hydrate-Geological perspective and global change. Rev. Geophys., 1993, 31(2): 173~187
    Kvenvolden, K. A.. Methane hydrate – A major reservoir of carbon in the shallow geospher Chem. Geol., 1988, 71: 41-51.
    Kvenvolden K A and McMenamin M A, 1980. hydrates of natural gas: A review of their geologic occurrence. US Geological Survey Circular 825.
    Latimer, R. B., Davison, R., and Riel, P.V.. An interpreter's guide to understanding and working with seismic-derived acoustic impedance data. TLE, 2000, 19, 242-256.
    Leclaire, P., 1992. Propagation acoustique dans les milieux poreoux soumis au gel-modelisation et experience. PhD. Thesis, University paris.
    Lee M W, Hutchinson D R, Agena W F, et al. Seismic character of gas hydrates on the southeastern U.S. continental margin. Marine Geophysical Research, 1994,16(1):163–184
    Lee, M. W., Hutchinson, D. R., Collett, T. S., and Dillon, W. P.. Seismic velocities for hydrate-bearing sediments using weighted equation: J. Geophys. Res., 1996, 101: 20347–20358.
    Lee, M. W., Hutchinson, D. R., Dillon, W. P., Miller, J. J., Agena, W. F., and Swift, A. B.. Method of estimating the amount of in-situ gas hydrates in deep marine sediments: Marine Petr. Geol., 1993, 10: 493–506.
    Lee T Y and Lawver L A, 1995. Cenozoic plate reconstruction of Southeast Asia. Tectonophysics 251, 85-138.
    Lodolo E., Camerlenghi A, Madrussani G et al., 2002. Assessment of gas hydrate and free gas distribution on the South Shetland margin (Antarctica) based on multichannel seismic reflection data. Geophys. J. Int. 148, 103-119.
    Lu, S. and McMechan, G.A.. Elastic impedance inversion of multichannel seismic data from unconsolidated sediments containing gas hydrate and free gas. Geophysics, 2004, 69:164-179.
    Lu S M, McMechan G A. Estimation of gas hydrate and free gas saturation, concentration, and distribution from seismic data. Geophysics, 2002, 67(2): 582-593
    Lüdmann T, Wong H K, Wang P X, 2001. Plio-Quaternary sedimentation processes and neotectonics of the northern continental margin of the South China Sea. Marine Geology, 172, 331-358
    Lüdmann T and Wong H K, 2003. Characteristic of gas hydrate occurences associated with mud diapirism and gas escape structures in the northwestern Sea of Okhotsk. Marine geology, 210, 269-286
    Makogon, Y. F.. Hydrates of hydrocarbons. Pennwell Pub. C., 1997.
    Martin J B, Kastner M, Henry P, et al. Chemical and isotopic evidence for sources of fluid in a mud volcano field seaward of the Barbados accretionary wedge. J. Geophys. Res. 1996, 101:20325-20345.
    Mallick S, 1993. Asimple approximation to the P-wave reflection coefficient and its implication in the inversion of amplitude variation with offset data. Geophysics, 58, 544-552.
    Mallick S, Huang X, Lauve J and Ahmad R, 2000. Hybrid seismic inversion: A reconnaissance tool for deepwater exploration. The Leading Edge, 19(11): 1231-1237.
    Matsumoto R, Borowski W S. Gas hydrate estimates from newly determined oxygen isotopic fractionation (“GH-IW”) and 18O anomalies of the interstitial waters: Leg 164, Blake Ridge. Proceedings of the Ocean Drilling Program, Sci. Results, College Station, TX (Ocean Drilling Program), 2000, 164, 59~66.
    Mavko G, Nur A, 1979. Wave attenuation in partially saturated rocks. Geophysics, 44(2): 161~178
    McDonnell S L, Max M D, Cherkis N Z et al., 2000. Tectono-sedimentary controls on the likelihood of gas hydrate occurrence near Taiwan. Marine and Petroleum Geology, 17: 929~936.
    Milkov A.V. and Sassen R, 2000. Thickness of the gas hydrate stability zone, Gulf of Mexico continental slope. Marine & Petroleum Geology, 17: 981-991.
    Milkov A V, 2000 Worldwide distribution of submarine mud volcanoes and associated gas hydrates. Marine Geology, 167: 29-42.
    Mindlin R D, 1949. Compliance of elastic bodies in contact. J. Appl. Mech., 16, 259-268
    Murphy W F I, 1982. Effects of microstructure and pore fluids on the acoustic properties of granular sedimentary materials. Ph. D thesis stanford Univ.
    Minshull T A, Singh S C and Westbrook, G K, 1994. Seismic velocity structure at a gas hydrate reflector, offshore western Columbia, from full waveform inversion: J. Geophys. Res., 99: 4715–4734
    Nisbet E G and Piper D J W, 1998. Giant submarine landslides. Nature, 392:329-330
    Ostrander W J, 1984. Plane-wave reflection coefficients for gas sand at normal angles of incidence. Geophysics, 49:1637-1649
    Paull C K, Brewer P G, Ussler W, et al., 2002. Evaluation of marine slumping as a mechanism to transfer methane from seafloor gas hydrate deposits into the upper ocean and atmosphere. Proceedings of the Fourth International Conference on gas hydrate. 19-23.
    Paull C.K. and Dillon W.P. (eds.) Natutal Gas Hydrate: Occurrence, Distribution and Detection. Am. Geophys. Union Monogr. Ser., 1996, 124.
    Paull C K, Matsumoto R, Wallace P J, et al,1996. Proceedings of the Ocean Drilling Program, Initial Report, College Station, TX(Ocean Drilling Program), 164, 1–318
    Paull C K, Ussler W, Dillon W P, 1991. Is the extent of glaciations limited by marine gas-hydrate? Geophys. Res. Lett., 18:432-434
    Pautot G, Rangin C, Briais A, et al., 1986. Spreading direction in the central South China Sea. Nature 312, 150-154
    Pearson C F, Halleck P M, McGuire PL, Hermes R and Mathews M, 1983. Natural gas hydrate deposits: a review of in-situ properties. J. Phys. Chem., 87: 4180-4185.
    Rice D D and Claypool G E, 1981. Generation, accumulation and resource potential of biogenic gas. AAPG Bulletin, 65, 5-25.
    Rothwell R G, Thomson J, K?hler G, 1998. Low sea level emplacement of a very large Late Pleistocene megaturbidite in the western Mediterranean Sea. Nature, 392:377-380
    Sassen R, Sweet S T, Milkov A V, et al, 1999. Geology and geochemistry of gas hydrates, central Gulf of Mexico continental slope. Trans. Gulf Coast Assoc. Geol., 49:462-468.
    Song Hai-bin, et al, 2003. Full waveform inversion of gas hydrate-related bottom simulating reflectors. Chinese Journal of Geophysics, 46(1): 44-52.
    Sassen R, et al., 1999 Thermogenic gas hydrates and hydrocarbon gases in complex chemosynthetic communities, Gulf of Mexico continental slope. Organic Chemistry, 30, 485-497.
    Schoell M, 1988. Multiple origin of methane in the Earth. Chemical Geology, 71:1-10.
    Sen M K and Stoffa P L, 1992. Bayesian inference, Gibbs's sampler and uncertainty estimation in geophysical inversion. Geophysical Prospecting, 44(2): 313-350.
    Shuey, R. T., 1985. A simplification of the Zoeppritz equations. Geophysics, 50, 609-614.
    Sloan, E.D., 1998. Clathrate Hydrates of Natural Gases. Second edition, New York: Marcel Dekker Inc., 628 pp
    Su N and He Z, 1987. The characteristics of fault activities in the Pearl River Mouth Basin and their control of hydrocarbons. In: Collection of papers from the international Petroleum Geological Convention, Northern South China Sea Continental Shelf, China. China Oil Magazine (Hong Kong), pp. 191-216.
    Tinivella U, 1999. A method for estimating gas hydrate and free gas concentrations in marine sediments. Boll. Geofis. Teor. Applic., 40 (1):19~30
    Tinivella, U. and Accaino, F., 2000. Compressional velocity structure and Poisson's ratio in marine sediments with gas hydrate and free gas by inversion of reflection of reflected and refracted seismic data(South Shetland Islands, Antarctica). Marine Geol., 164 :13-27.
    Ussler W III and Paull C K, 1995. Effects of ion exclusion and isotopic fractionation on pore water geochemistry during gas hydrate formation and decomposition. Geo-Mar. Lett., 15:37–44.
    Wang P, Prell W, Blum P, et al., 2000. Proceeding of the Ocean Drilling Program, Init. Report. College Station TX, 184.
    Wang X, Liu X, 2004. A method for estimating gas hydrate and free gas saturations in marine sediments,SPG/SEG International Geophysical Conference,852-855.
    Wood W T, Stoffa P L and Shipley T H, 1994.Quantitative detection of methane hydrate through high-resolution seismic velocity analysis. J. Geophys. Res.,99: 9681–9695.
    Wu S, Liu Z, Wang W, et al., 2003. Late Cenozoic tectonic deformation in Dongsha Islands and adjacent sea area. Chinese Journal of Oceanolgy & Limnology, 21(4):377-388.
    Wu S, Zhang G., Huang Y, et al., 2005. Gas hydrate occurrence on the contimental slope of the northern South China Sea. Marine and Petroleum Geology, 22:403-412
    Wyllie M R J, Gregory A R and Gardner G H F, 1958. An experimental investigation of factors affecting elastic wave velocities in porous media: Geophysics, 23: 459–493.
    Xu W and Ruppel C, 1999. Predicting the occurrence, distribution and evolution of methane gas hydrate in porous marine sediments. J. of Geophys. Res., 104(3):5081-5095.
    Yu H S, 1994. Structure, stratigraphy and basin subsidence of Tertiary basins along the Chinese southeastern continental margin. Tectonophysics, 253, 63-76.
    Yuan T, Hyndman R D, Spence G D et al, 1996. Seismic velocity increase and deep-sea hydrate concentration above a bottom-simulating reflector on the northern Cascadian slope. J. Geophys. Res., 101(B6): 13655~13671
    Zimmerman R.W. and King M.S.;1986. The effect of the extent of freezing on seismic velocities in unconsolidated permafrost. Geophysics, 51, 1285-1290.
    Zoeppritz K, 1919. Erdbebenwellen VIII b: über Reflexionen und Durchgang seismischer Wellen durch Unstetigkeitsfl?chen. G?ttinger Nachrichten, 1:66-84
    陈多福、李绪宣、夏斌,2004.南海琼东南盆地天然气水合物稳定域分布特征及资源预测. 地球物理学报,47(3): 483-489.
    房殿勇,王汝建,邵磊等, 2002. 南海 ODP184 站深海相渐新统硅质成岩作用. 海洋地质与第四纪, 22 (2):75-79.
    方银霞,金翔龙,杨树锋等,2000. 冲绳海槽西北边坡天然气水合物的初步研究. 海洋学报,22(增刊):175-179
    方银霞,高金耀,黎明碧等,2005. 冲绳海槽天然气水合物与地质构造的关系. 海洋地质与第四纪,26(1):85-91
    郭自强,1982.固体中的波.北京:地震出版社,194-230
    蒋少涌,杨涛等,2005.南海北部海区海底沉积物中孔隙水的 Cl-1和 SO4-2浓度异常特征及其对天然气水合物的指示意义.现代地质,19(1):45-54
    李家彪,高抒,2005. 中国边缘海海盆演化与资源效应. 北京: 海洋出版社
    刘光鼎,1992. 中国海区及邻域地质地球物理特征. 北京:科学出版社
    刘学伟,李敏锋,张聿文等,2005. 天然气水合物地震响应研究-中国南海 HD152 测线应用实例. 现代地质,19(1):33-38
    刘雯林,1995. 油气田开发地震技术.北京:石油工业出版社,4-44
    陆红锋,刘坚,陈芳等,2005.南海台西南区碳酸盐岩矿物学和稳定同位素组成特征-天然气水合物存在的主要证据之一.地学前缘,12(3):268-276
    栾锡武,秦蕴珊,张训华等,2003. 东海陆坡及相临槽底天然气水合物的稳定域分析.地球物理学报,46(4):467-475
    马在田,宋海斌,孙建国. 海洋天然气水合物的地球物理探测高新技术. 地球物理学进展, 2000,15(3):1~6
    孟宪伟,刘保华,石学法等,2000. 冲绳海槽中段西陆坡下缘天然气水合物存在的可能性分析. 沉积学报,18(4):629-633
    沙志彬,王宏斌,张光学等,2005. 底辟构造与天然气水合物的成矿关系.地学前缘,12(3):283-288
    宋海斌,2003. 天然气水合物体系动态演化研究(II):海底滑坡. 地球物理学进展,18(3):374-383.
    宋海斌,耿建华等,2001. 南海北部东沙海域天然气水合物的初步研究. 地球物理学报, 44 (5): 687-695.
    宋海斌、Matsubayashi Osamu、杨胜雄、吴能友、江为为、 郝天珧.含天然气水合物沉积物的岩石物性模型与似海底反射层的 AVA 特征.地球物理学报,2002,45(4),545-556.
    苏新,陈芳,于兴河,黄永样,2005. 南海陆坡中新世以来沉积物特性与气体水合物分布初探. 现代地质,19(1):1-13.
    孙春岩,牛滨华, 文鹏飞等. 海上 E 区天然气水合物地质、地震、地球化学特征综合研究与成藏远景预测. 地球物理学报,2004, 47(6): 1076~1085
    王宏斌,梁劲,龚跃华等,2005. 基于天然气水合物地震数据计算南海北部陆坡海底热流. 现代地质,19(1):67-73
    王宏斌,张光学,杨木壮,等. 南海陆坡天然气水合物成藏的构造环境. 海洋地质与第四纪地质,2003,23(1):81~86
    王建桥,祝有海,吴必豪等,2005. 南海 ODP1146 站位烃类气体地球化学特征及其意义.海洋地质与第四纪地质,25(3):53-59
    王秀娟,吴时国,刘学伟.天然气水合物和游离气饱和度估算的影响因素。地球物理学报,2006,49(2):208~214
    王秀娟,吴时国,徐宁. 南海陆坡天然气水合物饱和度估计. 海洋地质与第四纪,2005,25(3): 89~95
    王秀娟,刘学伟,吴时国. 基于热弹性理论的天然气水合物和游离气饱和度估算. 石油物探,2005, 44(6): 545~550
    吴能友,曾维军,宋海斌等,2003. 南海区域构造沉降特征. 海洋地质与第四纪, 23 (1):55~65.
    吴时国,张光学,郭常升等,2004. 东沙海区天然气水合物形成及分布的地质因素.石油学报,25(4):7-12
    徐宁,吴时国,王秀娟等,2006. 东海冲绳海槽陆坡地震学研究. 地球物理学进展, 21(3)(待刊)
    姚伯初,2005. 南海天然气水合物的形成和分布.海洋地质与第四纪,25(2):81-90.
    姚伯初,曾维军等,1994.中美合作调研南海地质专报。武汉,中国地质大学出版社
    业渝光,张剑等,2003. 海洋天然气水合物模拟实验技术. 海洋地质与第四纪, 23(1):119-123
    于兴河,张志杰,苏新等,2004.中国南海天然气水合物沉积成藏条件初探及其分布.地学前缘,11(1):311-315
    张光学,黄永样等, 2002.南海天然气水合物的成矿远景.海洋地质与第四纪,22 (1): 75-81.
    张光学,祝有海,徐华宁,2003.非活动大陆边缘的天然气水合物及其成藏过程评述. 地质评论,49(2)181-186
    张剑,业渝光等,2005. 超声探测技术在天然气水合物模拟实验室中的应用. 现代地质,19(1):113-118
    赵汗青,吴时国,徐宁等,2006. 东海与泥底辟构造有关的天然气水合物初探. 现代地质,20(1):115-122
    赵洪伟,龚建明,陈建文等,2004. 冲绳海槽天然气水合物综合异常特征及成藏地质条件. 海洋地质与第四纪地质,24(1):93-97
    邹才能,张颖等,2002. 油气勘探开发实用地震新技术. 北京:石油工业出版社,

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700