澜沧江南带三叠纪碰撞后岩浆作用、岩石成因及其构造意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碰撞后岩浆作用记录了俯冲/碰撞过程壳幔物质循环的诸多信息,其源区属性及所揭示的深部动力学背景对理解造山带构造演化和壳幔相互作用尤为重要。澜沧江南带作为古特提斯主洋盆的缝合带,在该区的云县-景洪一带(忙怀组-小定西组-芒汇河组或相当地层)发育最大厚度可达8000m的与特提斯俯冲碰撞有关的三叠纪火山岩及相关侵入岩,因此,我们选择研究基础较为薄弱的三叠纪火山岩和临沧花岗岩基为研究对象,开展系统的岩石(相)学、精细的锆石单矿物SHRIMP和全岩(40)~Ar/(39)~Ar年代学、元素-同位素地球化学研究,以确立该火山岩带的时空分布格局,示踪其岩石成因与构造背景,探讨该区三叠纪岩浆形成的可能动力学机制及其对古特提斯构造演化的制约,从而更好地理解典型碰撞后岩浆作用的深部过程及壳-幔相互作用机制。本研究主要取得以下成果和认识:
     1、澜沧江南带三叠纪火山岩锆石SHRIMP U-Pb年代学表明,景洪忙怀组下段中基性火山岩(20SM-408)形成于241.0±4.9Ma,其顶部流纹岩(02DX-95)形成于231.0±5.0Ma;临沧花岗岩基主体的2个二长花岗岩的代表性样品(02DX-137和20JH-10)分别给出了229.4±3.0 Ma和230.4±3.6Ma的谐和年龄;原划为小定西组的下部基性岩样品(02DX-103)给出了213.5±7.7Ma的谐和年龄,而原划为芒汇河组的上部火山岩(02DX-124)给出了216+20Ma的参考年龄。
     2、忙怀组下段中基性火山岩为玄武质安山岩-安山岩系列,以亏损Nb-Ta、P等高场强元素和富集LILE、LREE为特征,((87)~Sr/(86)~Sr)_i=0.706116-0.707046,εNd(t)=-2.69~-4.02,((206)~Pb/(204)~pb)_t=18.541-18.800,((207)~Pb/(204)~Pb)_t=15.614-15.698,((208)~Pb/(204)~Pb)_t=38.478-38.820。其高于岛弧火山岩的Pb/Nd比值,与受俯冲沉积物改造的富集岩石圈地幔特征相似,模拟计算结果暗示其源区可能是印度洋MORB玄武岩源区与5-7%洋壳俯冲沉积物混合作用的结果。
     3、忙怀组上段流纹岩显示 A-型酸性岩特征,具较低初始(87)~Sr/(86)~Sr(0.705717-0.707262)和较高εNd(t)(-4.64~-6.34)值及变化较大的初始Pb同位素组成((206)~Pb/(204)~Pb)_t=17.220-18.570,((207)~Pb/(204)~Pb)_t=15.601-15.570,((208)~Pb/(204)~Pb)_t=36.964-
The post-collisional magmatism can provide a great deal of important information on the interaction of crust and mantle during subduction and collision. In particular, the natures of magma source and the tectonic settings of generation of magmatism to understand the tectonic evolution of orogenic belt and the crust-mantle interaction are very important. As a major suture of paleo-Tethyan ocean, the Triassic volcanic rocks with a depth up to 8000 m and granitic intrusion correlated with subduction and collision of the paleo-Tethyan ocean were cropped out in the Yunxian-Jinghong area, Southern Lancangjiang zone. Thus, we chose the Triassic magmatism to conduct the study on systematic lithology (lithofacies), zircon SHRIMP U-Pb and whole-rock ~(40)Ar/~(39)Ar geochronology, elemental and Sr-Nd-Pb isotopic geochemistry. The main objectives are: (1) to confirm patterns of distribution of different magmatism belts;(2) to investigate the petrogenesis of magma and their tectonic settings relative to their generation;(3) to probe into the geodynamic mechanism of the Triassic magmatism and their constraint on the tectonic evolution of the paleo-Tethyan Ocean;(4) to better understand the deep process and mechanism of crust-mantle interaction of typical post-collisional magmatism. The major conclusions are summarized as follow:1、 The geochronological data of zircon SHRIMP U-Pb for the Triassic igneous rocks from the Southern Lancangjiang zone indicate that the intermediate-mafic volcanic rock (20SM-408) from the lower part of the Manghuai Formation and the rhyolite (02DX-95) from its uppermost part were erupted at ca. 241.0±4.9 Ma and ca. 231.0±5.0 Ma, respectively, and the main granitic intrusions in Lincang batholith
    were mainly intruded at about ca. 230Ma, and the volcanic rocks from Xiaodingxi Formation and Manghuihe Formation could were generated at similar time(215-210 Ma).2 s The middle-Triassic intermediate-mafic volcanic rocks for the lower part of Manghuai Formation characterized by depletion in Nb-Ta and enrichment in LILE, LREE and initial Sr-Nd-Pb isotopic compositions ((87Sr/86Sr)r= 0.706116-0.707046, sNd(t)=-2.69~-4.02, (206Pb/204Pb)t=l 8.541-18.800, (207Pb/204Pb)t= 15.614-15.698, (208Pb/204Pb)t=3g.478_3g.820), with an affinity to basaltic andesite and andesite, show similar signatures to source of the enriched lithospheric mantle modified by the subducted pelagic sediments. Their higher Pb/Nd ratios than those of island arc volcanic rocks indicate a possible contribution of pelagic sediments. The result of simulating calculation further suggests that its origin source could be the product of the Indian MORB-type source mixed with 5-7% pelagic sediments.3 > The rhyolites for the uppermost of Manghuai Formation characterized by a relatively low initial 87Sr/86Sr (0.705717-0.707262) and high eNd(t) (-4.64~-6.34) ratios and variable initial Pb isotopic composition ((206Pb/204Pb)t==17.220-18.570), with the geochemical affinity to A-type granite, are distinct from the felsic rocks derived from partial melting of crust, but similar to Anorogenic A-type felsic rocks. The result of simulating calculation indicates that the rhyolites for the uppermost of Manghuai Formation might be originated from the underplated basic magma mixed with 5-7% lower crustal materials and 8-10% middle-upper crustal materials, and then underwent some mineral crystallization and fractionation during the ascent of magma.4^ The late-Triassic volcanic rocks for the Xiaodingxi and Manghuihe Formations possess the feature of high-Al basaltic rocks. In light of the discrepancy of their MgO contents, they are divided into two groups: group 1: high-Al and low-Mg basaltic series (Al2O3=16.00-16.85wt%, MgO=3.04-7.50wt%), and group 2: high-Al and high-Mg basaltic series (Al2O3=16.77-19.79wt%, MgO=7.74-11.00wt%). The group 1 possess Zr/Nb=9.29-15.42, Nb/La=0.26-0.66, La/Sm=4.19-6.86, ENd(t)= -2.30-3.44 (2O6Pb/2O4Pb)r=18.401-18.598. Group 2 have higher Zr/Nb (19.37-23.92) and ENd(t) (1.25-2.31) ratios and lower La/Sm (1.65-3.11) ratios. The corresponding results of
    simulating calculation implies that the mantle source of Group 1 volcanism could be product of Indian MORB-type mantle source modified by mixing with 4-7% pelagic sediments, while the Group2 rocks could be derived from the interaction of low-Mg and high-Al magma and asthenospheric components.5> Based on the previous data of the evolution of paleo-Tethyan Ocean, we reconstruct the model of evolution of paleo-Tethyan Ocean (Cangning-Menglian Ocean) in the western Yunnan Province. The Cangning-Menglian Ocean had opened before the middle-Devonian. The continent-continent or continent-arc collision had developed from the late-Permian to early-Triassic. The evolution of post-orogenic phase had occurred in the region since the middle- to -Triassic time. Subducted slab had begun to slip off or delaminate since the early-Triassic, and resulted in the generation of the middle-Triassic igneous rocks. Following the slab slip-off or delamination, the ascending asthenosphere interacted with the enriched lithospheric mantle modified by the subducted pelagic sediments and produced the late-Triassic volcanic rocks (high-Al, low-Mg and high-Al, high-Mg basaltic rocks for the Xiaodingxi and Manghuihe Formation).
引文
Asrat A. and Barbey P. 2003. Petrology, geochronology and Sr-Nd isotopic geochemistry of the Konso pluton, south-western Ethiopia: implications for transition from convergence to extension in the Mozambique Belt. International Journal of Earth Sciences, 92, 873-890
    Ayers J. 1998. Trace element modeling of aqueous fluid-peridotite interaction in the mantle wedge of subduction zones. Contribution to Mineralogy and Petrology, 132, 390-404
    Avigad D. and Garfunkel Z. 1991. Uplift and exhumation of high-pressure metamorphic terrains: the example of the Cycladic blueschist belt (Aegean Sea). Tectonophysics, 188, 357-372
    Bailey J C. 1981. Geochemical criteria for a refined tectonic discrimination of orogenic andesites. Chemical Geology, 32, 139-154
    Baker D R and Eggler D H. 1983. Fractionation paths of Atka (Aleutians) high-alumina basalts: constraints from phase relations. Journal of Volcanology and Geothermal Research, 18, 387-404
    Barsdell M. and Berry R F. 1990. Origin and evolution of primitive island arc ankaramites from Western Epi, Vanuatu. Journal of Petrology, 31, 747-777
    Bartels K S., Kinzler R J., Grove T L. 1991. High pressure phase relation of primitive high-alumina basalt from Medicine Lake volcano, northern California. Contributions to Mineralogy and Petrology, 108, 253-270
    Ben Othman D., White W M., Patchett J. 1989. The geochemistry of marine sediments, island arc magma genesis, and crust-mantle recycling. Earth and Planetary Science Letters, 94, 1-21
    Bird P. 1978. Initiation of intracontinental subduction in the Himalaya. Journal of Geophysical Research, 83,4975-4987
    Bird P. 1979. Continental delamination and the Colorado Plateau. Journal of Geophysical Research, 84, 7561-7571
    Blanckenburg von F and Davis J H. 1995. Slab breakoff: a model for syncollisional magmatism and tectonics in the Alps. Tectonics, 14, 120-131
    Bonin B. 1990. From orogenic to anorogenic setting: evolution of granitoid suites after a major orogenesis. Geological Journal, 25, 261-270
    Bonin B., Azzouni-Sekkal A., Bussy F., Ferrag S. 1998. Alkali-calcic and lakine post-orogenic (PO) granite magmatism: Petrologic constraints and geodynamic settings. Lithos, 45, 45-70
    Brophy J G and Marsh B D. 1986. On the origin of high-Al arc basalt and the mechanics of melt extraction. Journal of Petrology, 27, 763-789
    Brophy J G. 1988. Basalt convection and plagioclase retention: a model for the generation of high-Al basalt. Journal of Geology, 97, 319-329
    Cadoux A., Pinti D L., Aznar C, Chiesa S., Gillot P Y. 2005. New chronological and geochemical constraints on the genesis and geological evolution of Ponza and Palmarola Volcanic Islands (Tyrrhenian Sea, Italy). Lithos, 81, 121-151
    Chen J F. and Jahn B M. 1998. Crustal evolution of southeastern China: Nd and Sr isotopic evidence. Tectonophysics, 284,101-133
    Church S E. 1976. The Cascade Mountains revised: A reevaluation in light of new lead isotope data. Earth and Planetary Science Letters, 29,175-188
    Chung S L. 1999. Trace element and isotope characteristics of Cenozoic basalts around the Tanlu Fault with implications for the eastern plate boundary between north and south China. Journal of Geology, 107, 301-312
    Claoue-Long J C, Compston J, Roberts C M. Fanning. 1995. Two Carboniferous ages: a comparison of SHRIMP zircon dating with conventional zircon ages and 40Ar/39Ar analysis, in: Geochronology Time Scales and Global Stratigraphic Correlation 54, SEPM Special Publication, 3-21
    Class C, Miller D., Goldstein S L., Langmuir C H. 2000. Distinguishing melt and fluid
    subduction components in Umnak Volcanics, Aleutian Arc. Geochem. Geophys. Geosyst 1, 1999, GC000010
    Cobbing EJ, Pitfield PE, Darbyshire DPF and Mallick DIJ. 1992. The granites of the South-East Asian Tin Belt. Overseas Memoir of the British Gological Survey. 10: 1-369, Her Majesty's Sth Off, Norfolk, England.
    Collins, W J., Beams, S D., White, A J R., Chappell, B W. 1982. Nature and origin of A-type granites with particular reference to southeastern Australia. Contributions to Mineralogy and Petrology, 80(2), 189-200
    Cottin J Y., Lorand J P., Agrinier P and Bodinier J L. 1998. Isotopic and trace elemental geochemistry of the Laouni layered intrusions (Pan-African belt, Hoggar, Algeria): evidence of post-collisional continental tholeiitic magmas variably contaminated by continental crust. Lithos, 45, 197-222
    Coulon C., Megartsi M., Fourcade S. 2002. Post-collisional transition from calc-alkaline to alkaline volcanism during the Neofene in Oranie (Algerua): magmatic expression of a slab breakoff. Lithos, 62, 87-110
    Crawford A J., Falloon T J. and Eggins S. 1987. The origin of island arc high-Al basalts. Contributions to Mineralogy and Petrology, 97, 417-430
    Crawford A J., Falloon T J. and Green D H. 1989. Classification, petrogenesis and tectonic setting of boninites. In Crawford AJ (eds). Boninites and related rocks. Unwin Hyman London, pp1-49
    Cvetkovic V., Prelevic D., Downes H., Jovanovic M., Vaselli O., Pecskay Z. 2004. Origin and geodynamic significance of Tertiary postcollisional basaltic magmatism in Serbia (central Balkan Peninsula). Lithos, 73, 161-186
    Davis J H. and Blanckenburg von F. 1995. Slab breakoff: a model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens. Earth and planetary Science Letters, 129, 85-102
    Defant M J. and Drummond M S. 1990. Derivation of some modem arc magmas by melting of young subducted lithosphere. Nature, 347, 662-665
    Dewey J F. 1989. Tectonic evolution of the India-Eurasia collision zone. Eclogae Geologicae Helvetine. 82, 717-734
    Dewey J F. and Lamb S H. 1992. Active tectonics of the Andes. Tectonophysics, 205, 79-95
    Draper D S. and Johnston A D. 1992. Anhydrous P-T phase relations of an Aleutian high-MgO basalt: an investigation of the role of Ol-liquid reaction in the generation of arc high-Al basalts. Contributions to Mineralogy and Petrology, 112, 501-519
    Eby G N. 1992. Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications. Geology, 20, 641-644
    Eggins S M. 1993. Origin and differentiation of picritic arc magmas, Ambae (Aoba). Vanuatu. Contributions to Mineralogy and Petrology, 114, 79-100
    England C. and Houseman G A. 1988. The mechanics of the Tibetan plateau. Philosophical Transactions of the Royal Society of London. Series A, 326, 301-319
    England C. and Houseman GA. 1989. Extension during continental covergence with application to the Tibetan plateau. Journal of Geophysical Research, 94, 17561-17579
    Falloon T J., and Green D H. 1987. Anhydrous partial melting of MORB pyrolite and other peridiotite compositions at 10 kbar: implicarions for the origin of primitive MORB glass. Mineral Petrology, 37, 181-219
    Fan W M., Guo F., Wang Y J. 2001. Post-orogenic bimodal volcanism along the Sulu Orogenic belt in eastern China. Physics and Chemistry of the Earth (A), 26(9-10), 733-746.
    Fan W M., Guo F., Wang Y J. and Zhang M. 2004. Late Mesozoic volcanism in the northern Huaiyang tectono-magmatic belt, central China: Partial melts from a lithospheric mantle with subducted continental crust relicts beneath the Dabie Orogen? Chemical Geology, 209, 27-48
    Ferguson E M. and Klein E M. 1993. Fresh basalts from the Pacific-Antarctic Ridge extend the Pacific geochemical province. Nature, 366, 330-333
    Ferfe E. and Leake B E. 2001. Geodynamic significance of early orogenic high-K crustal and mantle melts: example of the Corsica Batholith. Lithos, 59:47-67
    Foley S F. and Wheller G E. 1990. Parallels in the origin of the geochemical signatures of island arc volcanics and continental Potassic igneous rocks: the role of residual
     titanates. Chemical Geology, 85,1-18
    Fournelle J and Marsh B D. 1991. Shisalkin volcano: Aleutian high-Al basalts and the question of plagiclase accmulation. Geology, 19, 234-237
    Fujii T. and Scarfe C M. 1985. Compositions of liquids coexisting with spinel lherzolite at 10 kbar and the genesis of MORBs. Contributions to Mineralogy and Petrology, 90,18-28
    Furlong K P. and Fountain D M. 1986. Continental crustal underplating: thermal consideration and seismic-petrological consequences. Journal of Geophysical Research, 91, 8285-8294
    Grigoriev S I. and Pshenichny C A. 1998. Late Mesozoic post-collisional intermediate to silicic magmatism in the Badjal area, Far East of Russia. Lithos, 45,457-468
    Guo F., Fan W M. and Wang Y J. 2001. Late-Mesozoic mafic intrusive complexes in north china block: constraints on the nature of subcontinental lithospheric mantle. Physics and Chemistry of the Earth (A), 26(9-10), 759-771.
    Guo Z F., Hertogen J., Liu J Q., Pasteels P., Boven A., Punzalan L., He H Y, Luo X J., Zhang W H. 2005. Potassic magmatism in Western Sichuan and Yunnan Provincs, SE Tibet, China: Petrological and Geochemical constraints on petrogenesis. Journal of Petrology, 46, 33-78
    Gust D A. and Perfit M R. 1987. Phase relations of high-Mg basalt from Aleutian Island Arc: implications for primary island arc basalts and high-Al basalts. Contributions to Mineralogy and Petrology, 97,7-18
    Harris N B W, Pearce J A., Tindle A G. 1986. Geochemical characteristics of collision-zone magmatism. In: Coward, M P., Reis A C. (Eds.), Collision Tectonic. Specical Publication of Geological Society, 19, 67-81
    Hart S R. 1988. Heterogeneous mantle domains: signature, genesis and mixing chronologies. Earth and Planetary Science Letters, 90, 273-296
    Hawkesworth C J., Rogers N W, van Calsteren P W C, Menzies M A. 1984. Mantle enrichment processes. Nature, 311(27), 331-335
    Hawkesworth C, Turner S., Gallagher K., Hunter A., Bradshaw T., Rogers N. 1995. Calc-alkaline magmatism, lithospheric thinning and extension in the Basin and
     Range. Journal of Geophysical Research, 100,10271-10286
    Hochstaedter A G, Kepezhinskas P., Defant P., Drummond M. and Koloskov A. 1996. Insights into the volcanic arc mantle wedge from magnesian lavas from the Kamchatka arc. Journal of Geophysical Research, 101, 697-712
    Hofmann A W. 1997. Mantle geochemistry: the message from oceanic volcanism. Nature, 385,219-229
    Hou Z Q., Wang L Q., Zaw K., Mo X X., Wang M J., Li D M., Pan G T. 2003. Post-collisional crustal extension setting and VHMS mineralization in the Jinshajiang orogenic belt, southwestern China. Oregeology Reviews, 22, 177-199
    Hutchinson C S. 1989. Geological evolution of SE Asia, Oxford Monographs on Geology and Geophysics. 13:1-368, Clarendon, Oxford, England.
    Johnston A D. 1986. Anhydrous P-T phase relations of near-primary high-Al basalt from the South Sandwich Islands: Implications for the origin of island arcs and tonalite-trondhjemite series rocks. Contributions to Mineralogy and Petrology, 92, 368-382
    Jahn B M., Wu F Y. and Lo C H. 1999. Crust-mantle interaction induced by deep subduction of the continental crust: geochemical and Sr-Nd isotopic evidence from post-collisional mafic-ultramafic intrusions of the northern Dabie Complex, Central China. Chemical Geollogy, 157,119-146
    Kadik A A., Rozenhauer M., Lukanin O A. 1989. Experimental study of pressure influence on the crystallization of Kamchatka magnesian and aluminous basalts. Geochemistry, 12,1748-1762, in Russian
    Kay S M. and Kay R W. 1985. Aleutian tholeiitic and calc-alkaline magma series I: the mafic phenocrysts. Contribution to Mineralogy and Petrology, 90,276-290
    Kelemen P B. 1995. Genesis of high Mg andesites and the continental crust. Contributions to Mineralogy and Petrology, 120, 1-19
    Kepezhinskas P., McDermott F., Defant M J., Hochstaedter A., Drummond M S., Hawkesworth C J., Koloskov A., Maury R C. and Bellon H. 1997. Trace element and Sr-Nd-Pb isotopic constraints on a three-component model of Kamchatka arc petrogenesis. Geochemica et Cosmochimica Acta, 61(3), 577-600
    Kersting A B. and Arculus R J. 1994. Klyuchevskoy volcano, Kamchatka, Russia: the role of high-flux recharged, tapped and fractionated magma chambers in the genesis of high Al2O3 from high-MgO basalt. Journnal of Petrology, 35,1-41
    Lepvrier C, Maluski H., Van Vuong N., Roques D., Axente V., Rangin C. 1997. Indosinian NW-trending shearing zone within the Truong Son belt 40Ar-39Ar Triassic ages and Cretaceous to Cenozoic overprints. Tectonophysics, 283, 105-127
    Li S G, Xiao Y L., Liou D L., Chen Y Z., Ge N J., Zhang Z Q., Sun S S. 1993. Collision of the North China and Yangtse Blocks and formation of coesite-bearing eclogites: Timing and processes. Chemical Geology, 109, 89-111
    Liegeois L P. 1998. Preface: some words on the post-collisional magmatism. Lithos, 45:XV-XVII
    Lin P N., Stem R J., Morris J., Bloomer S H. 1990. Nd- and Sr-isotopic compositions of lavas from the northern Mariana and southern Volcano arcs: Implications for the origin of island arc melts. Contributions to Mineralogy and Petrology, 105, 381-392
    Luhr J. and Haldar D. 2006. Barren island volcano (NE Indian Ocean): island-alumina basalts produced by troctolite contamination. Journal of Volcanology and Geothermal Research, 149,177-212
    Lytwyn J., Rutherford E., Burke K. and Xia C. 2001. The geochemistry of volcanic, plutonic and turbiditic rocks from Sumba, Indonesia. Journal of Asian Earth Sciences, 19,481-500
    Ma C Q., Li Z C. and Ehlers C. 1998. A post-collisional magmatic plumbing system: Mesozoic granitoid plutons from the Dabieshan high-pressure and ultrahigh-pressure metamorphic zone, East-central China. Lithos, 45,431-456.
    Mahawat C, Atherton M P. and Brotherton M S. 1990. The Tak batholith, Thailand: the evolution of contrasting granite types and implications for tectonic setting. Journal of Southeastern Asia Earth Sciences, 4,11-27
    Mahoney J J., Frel R., Tejada M L G, Mo X X., Leat P T., Nagler T F. 1998. Tracing the Indian Ocean mantle domain through time: isotopic results from old west Indian, east Tethyan, and south Pacific seafloor. Journal of Petrology, 39,1285-1306
    Marsh B D. 1976. Some Aleutian andesites: their nature and source. Journal of Geology, 84, 27-45
    Marsh B D and Carmichael I S E. 1974. Benioff zone magmatism. Journal of Geophysical Research, 79,1196-1206
    Meijer A. 1976. Pb and Sr isotopic data bearing on the origin of volcanic rocks from the Mariana island-arc system. Geological Society of America Bulletin, 87,1358-1369
    Melluso L., Mahoney J J., Dallai L. 2006. Mantle sources and crustal input as recorded in high-Mg Deccan Traps basalts of Gujarat (India). Lithos, (in press)
    Menuge J E, Brewer T S., Seeger C M. 2002. Petrogenesis of metaluminous A-type rhyolites from the St Francois mountains, Missouri and the mesoproterozoic evolution of the southern laurentian margin. Precambrian Research, 113, 269-291
    Michard A., Montigny R., Schlich R. 1986. Geochemistry of the mantle beneath the Rodriguez Triple Junction and the South-East Indian Ridge. Earth and planetary Science Letters, 78,104-114
    Miller C, Schuster R, Klotzli U. 1999. Post-collisional potassic and ultrapotassic magmatism in SW Tibet: Geochemical and Sr-Nd-Pb-O isotopic constraints for mantle source characteristics and petrogenesis. Journal of Petrology, 40(9), 1399-1424
    Monie P. and Chopin C. 1991. Ar/ Ar dating in coesite-bearing and associated units of the Dora Maira massif, Western Alps. European Journal of Mineralogy, 3, 239-262
    Morra V., Secchi F A G, Melluso L. and Franciosi L. 1997. High-Mg subduction-related Tertiary basalts in Sardinia, Italy. Lithos, 40, 69-91
    Myers J D. 1988. Possible petrogenetic relations between low- and high-MgO Aleutian basalts. Geological Society of America Bulletin, 100,1040-1053
    Myer J D. and Johnston A D. 1996. Phase equilibrium constraints on models of subduction zone magmatism. In: Bebout GE, Scholl DW, Kirby SH, Platt J P (eds), Subduction Top to Bottom. Geophysical Monographics, 96, 229-249
    Naqvi S M., Khan R M K., Manikyamba C M., Ram Mohan M., Khanna T. 2005, journal of Earth Sciences, 1-20
    Ozerov A. 2000. The evolution of high-alumina basalts of the Klyuchevskoy volcano, Kamchatka, Russia, based on microprobe analyses of mineral inclusions. Journal of Volcanology and Geothermal Research, 95, 65-79
    Pearce J A., Harris N B W., Tindle A G. 1984. Trace elements discrimination diagrams for the tectonic interpretation of granitc rocks. Journal of Petrology, 25, 956-983
    Price R C, Kennedy A K., Riggs-Sneeringer M., Frey F A. 1986. Geochemisrty of basalts from the Indian Ocean Triple Junction: implication for the generation and evolution of Indian Ocean Ridge basalts. Earth and Planetary Science Letters, 78, 379-396
    Qiu Y M., Gao S., McNaughton N J., et al. 2000. First evidence of >3.2 Ga continental crust in the Yangtze craton of south China and its implications for Archean crustal evolution and Phanerozoic tectonics. Geology, 33(4), 309-314
    Ramsay W R H., Crawford A J., Foden J. 1984. Field setting, mineralogy chemistry and genesis of arc picrites. Contributions to Mineralogy and Petrology, 88, 386-402
    Regelous M., Collerson K D., Ewart A. and Wendt J I. 1997. Trace element transport rates in subduction zones: evidence from Th-Sr-Pb isotopic data for Tonga-Kermadec arc lavas. Earth and Planetary Science Letters, 150,291-302
    Rehkamper M. and Hofmann A W. 1997. Recycled ocean crust and sediment in Idian Ocean MORB. Earth and Planetary Science Letters, 147, 93-106
    Rivalenti G, Mazzucchelli M., Girardi V A V., Cavazzini G, Finatti C, Barbieri M A. and Teixeira W. 1998. Petrogenesis of the Paleo-proterozoic basalt-andesite-rhyolite dyke association in the Carajas region, Amazonian craton. Lithos, 43,235-265
    Ryan J G, Moriss J., Tera F., Leeman W P., Tavetskov A. 1995. Cross-arc geochemical variations in the Kurile arc as a function of slab depth. Science, 270,625-627
    Sajona F G, Maury R C, Pubellier M., Leterrier J., Belllon H. and Cotton J. 2000. Magmatic source erichment by slab-derived melts in a young post-collision setting, central Mindanao (Philippines). Lithos, 173-206
    Schiano P., Clocchiatti R., Boivin P. and Medard E. 2004. The nayure of melt inclusions inside minerals in an ultramafic cumulate from Adak volcanic center, Aleutian Arc:
     implications for the origin of high-Al basalts. Chemical Geology, 203,169-179
    Seghedi I., Downes H., Pecskay Z., Thirlwall M., et al. 2001. Magmagenesis in a subduction-related post-collisional volcanic arc segment: the Ukrainian Carpathians. Lithos, 57, 237-262
    Seghedi I., Downes H., Szakacs A., Mason P R D., et al. 2004. Negene-Quaternary magmatism and geodynamics in the Carpathian-Pannonian region: a synthesis. Lithos, 72, 117-146
    Shimoda G, Tatsumi Y., Nohda S., Ishizaha K., Jahn B M. 1998. Setouchi high-Mg andesites revisited: geochemical evidence for melting of subducting sediments. Earth and Planetary Science Letters, 160, 479-492
    Shinjo R. 1999. Geochemistry of high Mg andesites and the tectonic evolution of the Okinawa Trough-Ryukyu arc system. Chemical, Geology, 157, 69-88
    Singh A K., Singh R K B., Villinayagam G 2006. Anorogenic acid volcanic rocks in the Kundal area of the Malani Igneous Suite, Northwestern India: geochemical and petrogenetic studies. Journal of Asian Earth Sciences, 1-14
    Sisson T W., and Grove T L. 1993. Temperatures and H2O contents of low-MgO high-alumina basalts. Contributions to Mineralogy and Petrology, 113, 167-184
    Steiger R H., Jager E. 1997. Subcommission on geochronology: Convetion or the use of decay constants in geo- and cosmo-chronology. Earth and Planetary Science Letters, 36,359-362
    Stolz A J., Vame R., Wheller G E., Foden J D., Abbott M J. 1988. The geochemistry and petrogenesis of K-rich alkaline volcanics from the Batu Tara volcano, eastern Sunda Arc. Contributions to Mineralogy and Petrology, 98, 374-389
    Stolz A J., Vame R., Davies G R., Wheller G E., Foden J D. 1990. Magma source components in an arc-continet collision zone: the Flores-Lembata sector, Sunda Arc, Indonesia. Contributions to Mineralogy and Petrology, 105, 585-601
    Sun S S. 1980. Lead isotopic study of young volcanic rocks from mid-ocean ridges, ocean island and island arc. Philos. Trans. R. Soc. Lond, Ser. A., 297,409-445
    Taylor S R., and McLennan S M. 1985. The continental crust: Its composition and evolution. Blackwell, Oxford Press, 312
    Tastumi Y. 1982. Origin of high-Mg andesites in the Setouchi volcanic belt, southwest Japan: II melting phase relations at high pressures. Earth and Planetary Science Letters, 60, 305-317
    Tatsumi Y. and Kogiso T. 1997. Trace element transport during dehydration processes in the subducted oceanic crust: 2. origin of chemical and physical characteristics in arc magmatism. Earth and Planetary Science Letters, 148,207-221
    Tatsumi Y. and Maruyama S. 1989. Boninites and high-Mg andesites: tectonics and petrogenesis. In: Crawford AJ (eds) Boninites and related rocks. Unwin Hyman, London, 50-71
    Trua T., Deniel C, Mazzuoli R. 1999. Crustal control in the genesis of Plio-Quaternary biomodal magmatism of the Main Ethiopian Rift (MER): geochemical and isotopic (Sr, Nd, Pb) evidence. Chemical Geology, 155,201-231
    Turner S., Arnaud N., Liu J., Rogers N. 1996. Post-collisional shoshonitic volcanism on the Tibetan Plateau: Implications for convective thinning of the lithosphere and the source of ocean Island basalts. Journal of Petrology, 37(1), 45-71
    Turner S., Sandiford M., Foden J. 1992. Some geodynamic and compositional constraints on "postorogenic" magmatism. Geology, 20,931-934
    Turner S P., Foden J D., Morrison R S. 1992. Derivation of some A-type magmas by fractionation of basaltic magma: an example from the padthaway Ridge, South Australia. Lithos, 28,151-179
    Voshage H. and Hoffman A W. 1990. Isotopic evidence from the Ivrea Zone for a hybrid lower crust formed by magmatic underplating. Nature, 247, 731-736
    Vroon P Z. 1992. Subduction of continental material in the Banda Arc, eastern Indonesia: Sr-Nd-Pb isotope and trace-element evidence from volcanics and sediments. Ph.D. thesis Univ. of Utrecht. Geol. Ultralectina, 90,205
    Vroon P Z., van Bergen M J., Klaver G J., White W M. 1995. Strontium, neodymium, and lead isotopic and trace-element signature of the East Indonesian sediments: Provenance and implications for Banda Arc magma genesis. Geochemica et Cosmochimica Acta, 59, 2573-2598
    Vroon P Z., van Bergen M J., White W M., Varekamp J C. 1993. Sr-Nd-Pb isotope
     systematics of the Banda arc, Indonesia: Combined subduction and assimilation of continental material. Journal of Geophysical Research, 98, 22349-22366
    Wang K L., Chung S L., Chen C H., Chen C H. 2002. Geochemical constraints on the petrogenesis of high-Mg basaltic andesites from the Northern Taiwan Volcanic Zone. Chemical Geology, 182, 513-528
    Wang Q., Li J W, Jian P., Zhao Z H., Xiong X L., et al. 2005. Alkaline syenites in eastern Cathaysia (South China): link to Permian-Triassic transtension. Earth and Planetary Science Letters, 230, 339-354
    Wang Y J., Fan W M., Guo F., Peng T P., Lin G. 2003. Geochemistry of early Mesozoic potassium-rich diorites-granodiorites in southeastern Hunan Province, South China: petrogenesis and tectonic implications. Geochemical Journal, 37(4), 427-448
    Wang Y J., Fan W M, Zhang Y H., Peng T P., Chen X Y, Xu Y G 2006. Kinematics and 40Ar/39Ar geochronology of the Gaoligong and Chongshan shear systems, western Yunnan, China: implication for early Oligocene tectonic extrusion of SE Asia. Tectonophysics, (in press)
    Whalen J B., Currie K., Chappel B W. 1987. A-type granites: geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 70,407-419
    Whalen J B., McNicoll V J., van Staal C R., Lissenberg C J., Longstaffe F J., Jenner G A., van van Breeman O. 2006. Spatial, temporal and geochemical characteristics of Silurian collision-zone magmatism Newfoundland Apppalachians: An example of a rapidly evolving magmatic system related to slab break-off. Lithos, (in press)
    White A J R., Chappell B W. 1983. Granitoid types and their distribution in the Lachlan Fold Belt, southeastern Australia. Geological Society of America Bulletin, 159, 21-34
    White W M., Dupre B., Vitdal P. 1985. Isotope and trace element geochemistry of sediments from the Barbados Ridge-Demerara Plain region, Atlantic Ocean. Geochemica et Cosmochimica Acta, 49, 1875-1886
    Williams I S. and Claesson S. 1987. Isotope evidence for the Precambrian province and Caledonian metamorphism of high grade paragneiss from the Seve Nappes,
    Scandinavian Caledonides, Ⅱ. Ion microprobe zircon U-Th-Pb. Contributions to Mineralogy and Petrology, 97, 205-217
    Yogodzinski G M., Volynets O N., Koloskov A V. 1994. Magnesia andesites and the subduction component in a strongly calc-alkaline series at Piip Volcano, far western Aleutians. Journal of Petrology, 35, 163-204
    Zhang H E, Sun M., Zhou X H., Fan W M., Zhai M G., Yin J E 2002. Mesozoic lithospheric destruction beneath the north china craton: evidence from major-, trace-element and Sr-Nd-Pb isotope studies of Fangcheng basalts. Contributions to Mineralogy and Petrology, 144, 241-253.
    Zhang H E, Sun M., Zhou X H., Zhou M F., Fan W M. and Zheng J P. 2003. Secular evolution of the lithosphere beneath the eastern North China Craton: evidence from Mesozoic basalts and high-Mg andesites. Geochemica et Cosmochimica Acta, 67(22), 4373-4387
    Zindle A. and Hart S R. 1986. Chemical geodynamics. Annual Review of Earth and Planetary Sciences, 14, 493-571
    Zou H B., Zindler A., Xu X S., Qu Q. 2000. Major, trace element, and Nd, Sr and Pb isotope studies of Cenozoic basalts in SE China: mantle sources, regional variations, and tectonic significance. Chemical Geology, 171, 33-47
    陈吉琛.1987.滇西花岗岩时代划分及同位素年龄值选用讨论.云南地质,6,101-113
    陈义贤,陈文寄,周新华等.1997.辽西及邻区中生代火山岩年代学和地球化学及构造背景.地震出版社.
    从柏林,吴根耀,张旗等.1993.中国滇西古特提斯构造带岩石大地构造演化.中国科学(B),23(11),1201-1207
    冯庆来等.1993.滇西南昌宁-孟连构造带火山岩地层学研究.现代地质,7(4),402-409
    葛文春,林强,孙德有,吴福元等.1999.大兴安岭中生代玄武岩的地球化学特征:壳幔相互作用的证据.岩石学报,15(3),396-407
    简平,刘敦一,孙晓猛.2003a.滇西白马雪山和鲁甸花岗岩基SHRIMP U-P年龄及其地质意义.地质学报,24(4),338-342
    简平,刘敦一,孙晓猛.2003b.滇川西部金沙江石炭纪蛇绿岩SHRIMP测年:古特提斯洋盆演化的同位素年代学制约.地质学报,77(2),217-228
    简平,刘敦一,张旗等.2003c.蛇绿岩及蛇绿岩中浅色岩的SHRIMP U-Pb测年:简要评述.地学前缘,10(4),439-456
    李继亮.1988.滇西三江带的大地构造演化.地质科学,4,337-346
    李曙光,聂永红,Jagoutz等.1997.大别山俯冲陆壳的再循环:地球化学证据.中国科学(D)27(5),412-418
    李兴林.1996.临沧复式花岗岩基的基本特征及形成构造环境的研究.云南地质,15(1),1-18
    李兴振,刘文均等.1999.西南三江地区特提斯构造演化与成矿(总论).地质出版社(北京),1—276
    刘本培.1993.滇西南昌宁-孟连带和澜沧江带古特提斯多岛洋构造演化.地球科学,18(5),529-538
    刘昌实,朱金初.1989.滇西临沧复式岩基特征研究.云南地质,8(3-4),189-204
    刘福田,刘建华,何建坤,等.2000.滇西特提斯造山带下扬子地块的俯冲板片.科学通报,45(1),79-84
    莫宣学,路凤香,沈上越.1993.三江特提斯火山作用与成矿.地质出版社
    莫宣学,沈上越,朱勤文.1998.三江中南段火山岩蛇绿岩与成矿.地质出版社(北京)
    牟传龙 王立全.2000.云南德钦及邻区晚三叠世火山沉积盆地演化.矿物岩石,20(3),23-28
    牟传龙,余谦.2002.云南兰坪盆地攀天阁组火山岩的Rb-Sr年龄.地层学杂志,26(4),289-292
    彭兴阶,罗万林.1982.滇西澜沧江南段蓝闪片岩带的发现及其大地构造意义.中国区域地质(2),北京:地质出版社,69-75
    秦元季.1999.滇西临沧花岗岩基的基本特征和构造侵位机制(中国科学院地质研究所博士论文)
    沈上越,冯庆来,刘本培等.2002.三江地区南澜沧江带火山岩构造岩浆类型.矿物岩石,22(3),66-71
    沈上越,张保民,魏启荣.1995.三江地区江达.维西弧南段火山岩特征.特提斯地质,19,38-55
    王立全 李定谋 管士平 须同瑞.2001.云南德钦鲁春.红坡牛场上叠裂谷盆地演化.矿物岩石,21(3),81.89
    王立全,李定谋,管士平.2002a.云南德钦鲁春.红坡牛场上二叠裂谷盆地“双峰式”火山岩的Rb-Sr年龄值.沉积与特提斯地质,22(1),65-71
    王立全 侯增谦 莫宣学 汪明杰 徐强.2002b.金沙江造山带碰撞后地壳伸展背景-火山成因块状硫化物矿床的重要成矿环境.地质学报,76(4),541-556
    王立全,潘桂棠,李定谋,徐强,林仕良.1999.金沙江弧-盆系时空结构及地史演化.地质学报,73(3),206-218
    王晓蕊,高山,柳小明,袁洪林,胡兆初,张宏,王选策.2005.辽西四合屯早白垩
    世义县组高镁安山岩的地球化学:对下地壳拆沉作用合Sr/Y变化的指示.中国科学,35(8),700-709
    魏启荣,沈上越,莫宣学等.2003.三江地区古特提斯火山岩源区物质的Sr-Nd-Pb同位素体系特征.矿物岩石,23(1),55-60
    魏启荣,沈上越.1997.三江地区哀牢山西侧三类弧火山岩特征.地质科技情报,16(2),13-18
    吴根耀,王晓鹏,钟大赉等.2000.川滇藏交界区P-T1两套弧火山岩.地质科学,35(3),350-362
    徐夕生,蔡德坤,朱金初等.1987.滇西澜沧江碰撞带海西.印支期花岗岩类的特征和成因,大地构造与成矿学,11,247-258
    许效松,刘宝珺,徐强,潘桂棠等著.1997.中国西部大型盆地分析及地球动力学.地质出版社,北京
    俞赛赢,李昆琼,施玉萍等.2003.临沧花岗岩基中段花岗闪长岩类研究.云南地质,22(4),426-442
    王自廉等著.1984.云南省澜沧江南段三叠纪火山岩系地层划分及岩石类型(内部报告).
    云南省地质矿产局.1990.云南省区域地质志.地质出版社:北京,291-301
    张魁武,张旗,李达周.1986.滇西德钦.维西.云县.景洪一带火山岩的岩石化学特
    征和成因的讨论,青藏高原研究.横断山考察专集(2),北京科学技术出版社147-157
    张旗,张魁武,李达周.1992.横断山区镁铁.超镁铁岩.北京:科学出版社.125-136
    张旗,周德进,赵大升等.1996.滇西古特提斯造山带的威尔逊旋回:岩浆活动记录和深部过程讨论.岩石学报,12(1),17-28
    张儒媛,丛伯林,秦元寄.1989.滇西蓝片岩及其构造意义.中国科学(B),12,1318-1327
    赵大升,刘祥品.1994.滇西北碰撞型火山岩的地球化学特征.地球化学,33,235-244
    赵靖.1991.滇西澜沧变质带的变形与变质特征及古特提斯构造演化.博士论文,中国科学院地质研究所
    郑永飞.2003.新元古代岩浆活动与全球变化.科学通报,48(16),1705-1720
    钟大赉等,1998.滇川西部古特提斯造山带.科学出版社(北京).1-231
    朱勤文,张双全,谭劲.1998.确定南澜沧江缝合带的火山岩地球化学证据.岩石矿物学杂志,17(4),298-307
    朱勤文,张双全,谭劲.1999.南澜沧江结合带火山岩岩浆成因.现代地质,2,137-142
    朱勤文.1993.滇西南澜沧江云县三叠纪火山岩大地构造环境.岩石矿物学杂志12(2),134-143

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700