镧系氧化物反蛋白石光子晶体可控制备与发光调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自从1987年光子晶体的概念被首次提出以来,已经引起了学术界广泛地关注。这种长程有序的结构使折射率在光学波长的尺度产生周期性地调制,从而导致光子带隙地形成。当所采用的材料满足布拉格散射条件时,由于光子带隙地抑制作用,特定频率的光就会禁止在光子晶体内传播。光学性质的空间周期性调制为产生和发展新的光电子器件开拓了新的空间。在光子晶体的特殊性质中,一个非常重要的方面就是对嵌入光子晶体中的发光客体自发辐射地调制作用。根据费米黄金规则,在相应自发辐射的频率范围内,自发辐射速率在弱场范畴正比于原子或分子周围的光场态密度。在拥有完全光子带隙的光子晶体中,由于在光子带隙的频率范围内不存在光的电磁波模式,自发辐射将被完全禁止。同时,在光子晶体中会出现许多新的效应,如光子-原子限域态的出现、光谱劈裂、自发辐射增强的量子相干效应、非经典衰减和Lamb移动等。本论文以稀土掺杂反蛋白石光子晶体为研究对象,一方面研究不同基质材料,不同稀土离子掺杂浓度的反蛋白石光子晶体的可控制备,另一方面我们研究了不同带隙光子晶体对稀土离子自发辐射速率的调制作用,并在此基础上研究了光子晶体在折射率传感中地应用,具体取得了如下成果:
     1.通过自组装模板技术结合溶胶-凝胶法成功获得了高度有序,光子带隙可控的YVO4:Dy3+/Eu3+的反蛋白石光子晶体样品。发现当Dy3+/Eu3+离子的发光位置与光子带隙重叠时,其自发辐射速率受到抑制;而Dy3+/Eu3+离子的寿命的变化却不依赖与光子带隙,但相对于参考样品其寿命延长了大约2.5倍。我们得出结论:在弱调制的反蛋白石光子晶体中,其寿命的变化不是来源于局域态密度地改变,而是由于周围介质有效折射率地改变引起。在参考样品中,钒酸根离子和Dy3+离子的强度随温度升高急剧地下降,而在光子晶体中,其强度却变化很小,这是由于反蛋白石特殊的结构(薄壁,大的空隙率)可以有效地抑制离子间的长程能量传递过程。
     2.将五种折射率相差很小的不同液体渗透到反蛋白样品中,测试其光子禁带位置和Eu3+离子寿命的变化,发现在大折射率材料的光子晶体中,基于荧光寿命作为指标来进行传感,其灵敏度提高了很多,并通过实腔和虚腔模型对结果进行分析,发现当发光中心处在空气中时适合虚腔模型,处在液体环境时适合实腔模型。
     3.首次在磷酸盐体系中系统地研究并比较了光子晶体对Ce3+(短寿命)和Tb3+(长寿命)的发射光谱和动力学过程的调制。相对于参考样品,我们观察到反蛋白石光子晶体中Tb3+离子的5D4-7F5,5D3-7F5的自发辐射速率都有了很大地抑制。更重要的是我们发现反蛋白石光子晶体中,由于其特殊的空腔结构,Tb3+离子向周围缺陷态的能量迁移,Tb3+离子之间的交叉弛豫和温度猝灭都有了很明显地抑制,并通过基态和激发态标准的位形坐标图来对实验结果进行分析。
     4.成功制备出不同孔径大小的YVO4:Yb3+,Er3+上转换反蛋白石光子晶体,首先详细研究了光子晶体对其自发辐射地调制,对变温光谱和动力学的研究发现,由于光子晶体特殊结构对发光的调制作用,光子晶体中的非辐射跃迁速率远小于参考样品。通过反蛋白石特殊的结构来提高热扩散速率,进而降低发光中心局域点的温度,有效抑制温度猝灭。
     5.通过静电相互作用将制备出YVO4:Eu3+反蛋白石光子晶体和用巯基乙酸修饰的CdTe量子点吸附在一起制备出复合材料,通过量子点和稀土离子之间的共振能量传递来实现稀土离子激发谱展宽(450到590纳米),并通过反蛋白石特殊结构来有效的抑制量子点和稀土离子的非辐射弛豫过程,我们发现相对与粉末参考样品,光子晶体中Eu3+离子的发光强度提高了20倍,量子点和稀土之间的能量传递效率达到了47%。
The concept of photonic crystals (PCs) has attracted much attention worldwidesince it was first proposed in1987. This kind of long-range order structure makesthe refractive index modulated with periodicity in optical wavelength, which leads tothe formation of photonic stop band (PSB). When the materials satisfy Braggscattering conditions, the light of the specific frequency will be inhibited in the PCsdue to the inhibition of PSB. The spatial periodic modulation of PCs opens up newpossibilities for the development of optoelectronic devices. Among all the specialproperties of the PCs, a very important aspect is modulation of spontaneousemission, when photoluminescence centers were embedded in PCs. According to theFermi gold rules, within the scope of the spontaneous radiation frequency, thespontaneous emission rate is proportional to the photon state density around theatoms or molecules in the weak field category. If the PCs have a complete photonicband gap, the spontaneous emission will be inhibited completely because there is noelectromagnetic wave mode in the frequency range of photonic band gap. At thesame time, there will be many new effects in the PCs, such as the emergence of thephotons-atoms confined state, spectral splitting, spontaneous radiation enhancedquantum coherence effect, non classical damping and lamb shift, etc. In this paper,we studied the lanthanide doped inverse opal PCs. On one hand, we studied thecontrollable preparation of inverse opal PCs of different substrate materials anddifferent rare earth doping concentrations; on the other hand, we studied themodulation effect of the different band gap PCs on the spontaneous radiation rate ofrare earth ions, on the basis of which, the application of PCs is further studied in therefractive index sensing, the findings are listed below:
     1. The YVO4: Dy3+/Eu3+inverse opal PCs samples with highly ordered, controllable PSBs were successfully prepared through self-assembly template technequecombined with sol-gel method. We found that the spontaneous emission will beinhibited, when the emission bands of Dy3+or Eu3+ions overlap with the PSBs. Thechanges of lifetimes of Dy3+/Eu3+ions are independent on the PSBs, The lifetimes inPC4are prolonged~2.5times in contrast to the reference samples. We conclude thatin weakly coupled PCs, the variation of lifetime is attributed to the change ofeffective refractive index of surrounding medium, instead of the change of localdensity of state. As the temperature increases, the luminescence intensity ofvanadate groups and Dy3+ions decreases quickly, however, the emissions rarelychange in PCs since the special structure of opal (thin wall, large void ratio) caneffectively inhibit the long range energy transfer process among the rare earth ions.
     2. The five liquids of different refractive index with little differences were infiltratedinto the inverse opal PCs, the shifts of PSBs and the lifetimes of Eu3+ions have beenmeasured. We found that the sensing sensitivity improved largely in PCs materialswith large refractive index, based on the fluorescence lifetime as indicators forsensing. Using the virtual and real cavity model to fit the experimental results, wefound that the virtual cavity model is useful as the luminescence centers are in theair, the real cavity model is valid as the luminescence centers are put into solutions.
     3. We studied and compared the modulation of phosphace PCs on the emissionspectra and kinctic process of Ce3+(short lifetime) ions and Tb3+(long lifetime) ions.We observed that the transition rate of5D4-7F5,5D3-7F5have been largely inhibited inPCs compared to the reference sample. More importantly, we found that the energytransfer from Tb3+ions to the surrounding defect states, the cross relaxation amongTb3+and the temperature quenching have been inhibited, due to the special cavitystructures of inverse opal PCs, we also analyze the experimental results using theground state and excited state standard configuration coordinate.
     4. The successful preparation of the different size of YVO4: Yb3+, Er3+upconversioninverse opal PCs was demonstrated. First we study in details the modulation of thePCs on spontaneous emission, temperature-dependent emission spectra anddynamics. Due to the effect of the special structure of inverse opal PCs on spontaneous emission, the nonradiative transition rate of Er3+ions in PCs is far lessthan that in corresponding reference samples. The thermal diffusion rate has beenimproved in the inverse opal structures, the local temperature of the luminescencecenter will be lowered, so the temperature quenching can be effectively restrained.
     5. The composites combining YVO4:Eu3+inverse opal PCs and mercaptoacetic acidmodified CdTe quantum dots have been successfully prepared through electrostaticinteraction. Through the fluorescence resonance energy transfer from CdTe QDs toEu3+ions, a broad excitation band (450-590nm) was obtained for the rare earthemission. Due to the restrained nonradiative transition of CdTe QDs and rare earthions in the inverse opal PCs, the luminescence intensity of Eu3+ion in PCs wasimproved~20times compared to that in reference sample, and the energy transferbetween quantum dots and rare earth ions reached47%.
引文
[1]徐少辉,丁训民,资剑,电子体系与光子体系[J],物理,2002,31(9),558-566.
    [2] E.Yablonovitch, Inhibited spontaneous emission in solid-state physics andelectronic [J]. Phys. Rev. Lett.1987,58,2059-2062.
    [3] S. John, Strong localization of photons in certain disorderd dielectricsuperlattices [J], Phys. Rev. Lett.,1987,58,2486-2489.
    [4] E. M. Purcell, Spontaneous emission probabilities at radio frequencies [J]. Phys.Rev.1946,69,681-684.
    [5] E.Yablonovitch, Photonic band-gap structures [J], J. Opt. Soc. Am.,1993,10,283-295.
    [6] H. Li, J. X. Wang, Z. L. Pan, L. Y. Cui, L. Xu, R. M. Wang, Y. L. Song and L.Jiang, Amplifying fluorescence sensing based on inverse opal photonic crystaltoward trace TNT detection [J], J. Mater. Chem.,2011,21,1730–1735.
    [7] S. John, Localization of light [J]. Physics Today,1991,44,32-40.
    [8] J. M. Drake, A. Z. Genack, Observation of nonclassical optical diffusion [J].Phys Rev Lett,1989,63,259-262.
    [9] J. Zhou, Y. Zhou, S. Buddhudu, S. L. Ng, Y. L. Lam, C. H. Kam,Photoluminescence of ZnS:Mn embedded in three-dimensional photonic crystals ofsubmicron polymer spheres [J], Appl. Phys. Lett.2000,76,3513.
    [10] B. Li, J. Zhou, R. L. Zong, M. Fu, L. T. Li, Strong suppression andenhancement of photoluminescence in Zn2SiO4:Mn2+inverse opal photonic crystals[J], J. Am. Ceram. Soc.2006,89,2308.
    [11] X. Sheng, L. Z. Broderick, L. C. Kimerling, Photonic crystal structures for lighttrapping in thin-film Si solar cells: Modeling, process and optimizations [J], OpticsComm.,2014,314,41–47.
    [12] Y. Fink, J. N. Winn, S. H. Fan, C. P. Chen, J. Michel, J. D. Joannopoulos and E.L. Thomas, Photonic resonant transmission in the quantum-well structure ofphotonic crystals [J], Science,1998,282,1679–1682.
    [13] D. L. R. Richard and S. Chirs, Photonics: On the threshold of success [J],Nature,2000,408,653-655.
    [14] J. D. Joannopoulos, P. R. Villeneuve and S. H. Fan, Photonic crystals: putting anew twist on light [J], Nature,1997,386,143-147.
    [15] R. D. Meade, K. D. Brommer, A. M. Rappe, Existence of a photonic band gapin two dimensions [J], Appl. Phys. Lett.,1992,5,495-497.
    [16] Y. J. Zhao, Z. Y. Xie, H. C. Gu, C. Zhu and Z. Z. Gu, Bio-inspired variablestructural color materials [J], Chem. Soc. Rev.,2012,41,3297–3317.
    [17] Y. J. Zhao, X. W. Zhao, B. C. Tang, W. Y. Xu, J. Li, J. Hu and Z. Z. Gu,Quantum-Dot-Tagged Bioresponsive Hydrogel Suspension Array for MultiplexLabel-Free DNA Detection [J], Adv. Funct. Mater.,2010,20,976-982.
    [18] X. B. Hu, G. T. Li, J. Huang, D. Zhang and Y. Qiu, Construction ofSelf-Reporting Specific Chemical Sensors with High Sensitivity [J], Adv. Mater.,2007,19,4327-4332.
    [19] A. C. Arsenault, D. P. Puzzo, I. Manners and G. A. Ozin, Photonic-crystalfull-colour displays, Nat. Photonics [J],2007,1,468-472.
    [20] Z. Y. Chen, L. Fang, W. Dong, F. G. Zheng, M. R. Shen and J. L. Wang, Inverseopal structured Ag/TiO2plasmonic photocatalyst prepared by pulsed currentdeposition and its enhanced visible light photocatalytic activity [J], J. Mater. Chem.A,2014,2,824–832.
    [21] J. Y. Hong, W. K. Oh, K. Y. Shin, O. S. Kwon, S. Son, J. Jang, Spatiallycontrolled carbon sponge for targeting internalized radioactive materials in humanbody [J], Biomaterials2012,33,5056-5066.
    [22] Y. Zhang and Y. N. Xia, Formation of Embryoid Bodies with Controlled Sizesand Maintained Pluripotency in Three-Dimensional Inverse Opal Scaffolds [J], Adv.Funct. Mater.2012,22,121–129.
    [23] Y. Ji, X. Y. Liu, B. X. Li, J. C. Zhang, X. F. Wang, Mild molten-salt synthesisand photo luminescence property of LaF3and its white-lighte mission with Eudoping [J], Journal of Luminescence2014,146,150–156.
    [24] A. P. Jadhav, A. U. Pawar, U. Pal and Y. S. Kang, Red emitting Y2O3:Eu3+nanophosphors with>80%down conversion efficiency [J], J. Mater. Chem. C,2014,2,496-500.
    [25] J. H. Huang, X. H. Gong, Y. J. Chen, Y. F. Lin, Z. D. Luo, Y. D. Huang, Spectralproperties of Er3+-doped CaGdAlO4crystal for laser application around1.55μm [J],J. Alloys. Compounds,2014,585,163–167.
    [26] J. J. Peng, Y. Sun, L. Z. Zhao, Y. Q. Wu, W. Feng, Y. H. Gao, F. Y. Li,Polyphosphoric acid capping radioactive/upconverting NaLuF4:Yb,Tm,153Smnanoparticles for blood pool imaging in vivo [J], Biomaterials2013,34,9535-9544.
    [27] M. Y. He and Z. H. Liu, Paper-Based Microfluidic Device with UpconversionFluorescence Assay[J], Anal. Chem.,2013,85,1169111694.
    [28] G. H. Dieke, Spectra and energy levels of rare earth ions in crystals [J], NewYork:Wiley-Interscience,1968.
    [29] H. W. Song, L. X. Yu, L. M. Yang, S. Z. Lu, Luminescent Properties of RareEarth Ions in One-Dimensional Oxide Nanowires [J], Journal of Nanoscience andNanotechnology,2005,5,1519-1531.
    [30] H. Y. Wu, Y. H. Hun, G. F. Ju, L. Chen, X. J. Wang, Z. F. Yang,Photoluminescence and thermoluminescence of Ce3+and Eu2+in Ca2Al2SiO7matrix[J], J. Lumin.2011,131,2441–2445.
    [31] L. Wang, X. Zhang, Z. D. Hao, Y. S. Luo, J. H. Zhang, and X. J. Wang,Interionic energy transfer in Y3Al5O12:Ce3+, Pr3+phosphor [J], J. Appl. Phys.2010,108,093515.
    [32] N. Pradal, G. Chadeyron, A. Potdevin, J. Deschamps, R. Mahiou,Elaboration and optimization of Ce-doped Y3Al5O12nanopowder, J. Eur.Ceramic Soc.2013,33,1935–1945.
    [33] Q. Y. Meng, B. J. Chen, X. X. Zhao, X. J. Wang, W. Xu, Study on UVexcitation properties of Y2O3:Ln(3+)(Ln=Eu3+or Tb3+) luminescent nanomaterials[J], Journal of Nanoscience and Nanotechnology,2008,8,1443-1448.
    [34] Q. L. Dai, H. W. Song, M. Y. Wang, X. Bai, B. Dong, R. F. Qin, X. S. Qu, H.Zhang, Size and Concentration Effects on the Photoluminescence of La2O2S:Eu3+Nanocrystals [J], J. Phys. Chem. C,2008,112,19399-19404.
    [35] W. P. Chen, A. H. Zhou, Microemulsion-Solvothermal Synthesis and TunableEmission of YBO3:Eu for White-Light-Emitting Diodes [J], J. Phys. Chem. C,2012,116,24748-24751.
    [36] W Xu, Y. Wang, X. Bai, B. Dong, Q. Liu, J. S. Chen, H. W. Song, ControllableSynthesis and Size-Dependent Luminescent Properties of YVO4:Eu3+Nanospheresand Microspheres [J], J. Phys. Chem. C,2010,114,14018-14024.
    [37] L. X. Yu, H. W. Song, Z. X. Liu, L. M. Yang and S. Z. Lu, Fabrication andphotoluminescent characteristics of La2O3:Eu3+nanowires [J], Phys. Chem. Chem.Phys.,2006,8,303-308.
    [38] Y. Tao, G. Zhao, W. Zhang, and S. Xia, Combustion synthesis andphotoluminescence of nanocrystalline Y2O3: Eu phosphors [J], Mater. Res. Bull.1997,32,501.
    [39] T. Igrashi, M. Ihara, T. Kusunoki, and K. Ohno, Relationship between opticalproperties and crystallinity of nanometer Y2O3: Eu phosphor [J], Appl. Phys. Lett.2000,76,1549.
    [40] D. K. Williams, H. Yuan, and B. M. Tissue, Size dependence oftheluminescence spectra and dynamics of Eu3+:Y2O3nanocrystals [J], J. Lumin.1999,83,297.
    [41] R. Schmechel, M. Kennedy, H. V. Seggem, H. Winkler, M. Kolbe, R. A. Fischer,L. Xaomao, A. Benker, M. Winterer, and H. Hahn, Luminescence properties ofnanocrystalline Y2O3:Eu3+in different host materials [J], J. Appl. Phys.2001,89,1679.
    [42] M. Yin, W. Zhang, S. Xia, J. C. Krupa, Luminescence of nanometric scaleY2Si05:Eu3+[J], J. Lumin.,1996,68,335-339.
    [43] H. Huang, G. Q. Xu, W. S. Chin, L. M. Gan and C. H. Chew, Synthesis andcharacterization of Eu:Y2O3nanoparticles [J], Nanotechnology2002,13,318–323.
    [44] Z. G. Wei, L. D. Sun, C. S. Liao, X. C. Jiang, and C. H.Yan, Size dependence ofluminescent properties for hexagonal YBO3:Eu nanocrystals in the vacuumultraviolet region [J], J. Appl. Phys.,2003,93,9784.
    [45] S. F. Lim, R. Riehn, W. S. Ryu, N. Khanarian, C.-k. Tung, D. Tank and R. H.Austin, In Vivo and Scanning Electron Microscopy Imaging of UpconvertingNanophosphors in Caenorhabditis elegans [J],Nano Lett.,2006,6,169.
    [46] L. Wang, R. Yan, Z. Huo, L. Wang, J. Zeng, J. Bao, X. Wang, Q. Peng and Y. Li,Fluorescence Resonant Energy Transfer Biosensor Based onUpconversion‐Luminescent Nanoparticles [J], Angew. Chem., Int. Ed.,2005,44,6054.
    [47] W. Q. Zou, C. Visser, J. A. Maduro, M. S. Pshenichnikov and Jan C. Hummelen,Broadband dye-sensitized upconversion of near-infrared light [J], Nature Photonics,2012,6,560.
    [48] P. Ramasamy and J. Kim, Combined plasmonic and upconversion rearreflectors for efficient dye-sensitized solar cells [J], Chem. Commun.,2014,50,879-881.
    [49] P. P. Freitas, T. S. Plaskett, Giant anisotropic magnetoresistance and excessresistivity in amorphous U1-xSbxferromagnets [J], Phys. Rev. Lett.1990,64,2184.
    [50]S. John, T. Quang, Localization of superradiance near a photonic band gap [J],Phys. Rev. Lett.1995,74,3419.
    [51]S. John, T. Quang, Collective switching and inversion without fluctuation oftwo-level atoms in confined photonic systems [J], Phys. Rev. Lett.1997,78,1888.
    [52]S. John, J. Wang, Quantum optics of localized light in a photonic band gap [J],Phys. Rev B1991,43,12772.
    [53] S. John, T. Quang, Spontaneous emission near the edge of a photonic band gap[J], Phy.Rev A1994,50,1764.
    [54] T. Quang, M. Woldeyohannes, S. John, G. S. Agarwal, Coherent control ofspontaneous emission near a photonic band edge: a single-atom optical memorydevice [J], Phys. Rev. Lett.1997,79,5238.
    [55] X. H.Wang, B. Y. Gu, R.Wang, H. Q. Xu, Decay kinetic properties of atoms inphotonic crystals with absolute gaps [J], Phys. Rev. Lett.2003,91,113904.
    [56] X. H.Wang, Y. S. Kivshar, B. Y. Gu, Giant lamb shift in photonic crystals [J],Phys. Rev. Lett.2004,93,073901.
    [57] I. S. Nikolaev, P. Lodahl, and W. L. Vos, Fluorescence Lifetime of Emitters withBroad Homogeneous Linewidths Modified in Opal Photonic Crystals [J], J. Phys.Chem. C2008,112,7250-7254.
    [58] L. Peter, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag,D.Vanmaekelbergh&Willem L. Vos, Controlling the dynamic of spontanousemission from quantum dots by photonic crystals [J], Nature,2004,430,654.
    [59] Ivan S. Nikolaev, Peter Lodahl, and Willem L. Vos, Fluorescence Lifetime ofEmitters with Broad Homogeneous Linewidths Modified in Opal, Photonic Crystals[J], J. Phys. Chem. C2008,112,7250-7254.
    [60] J. Zhou, Y. Zhou, S. Buddhudu, S. L. Ng, Y. L. Lam, and C. H. Kam,Photoluminescence of ZnS:Mn embedded in three-dimensional photonic crystals ofsubmicron polymer spheres [J], Appl. Phys. Lett.2000,76,3513-3515.
    [61] M. Megens, J. E. G. J. Wijnhoven, A. Lagendijk, and W. L. Vos, Fluorescencelifetimes and linewidths of dye in photonic crystals [J], Phys. Rev. A1999,59,4727-4731.
    [62] E. P. Petrov, V. N. Bogomolov, I. I. Kalosha, and S. V. Gaponenko,Spontaneous Emission of Organic Molecules Embedded in a Photonic Crystal [J],Phys. Rev. Lett.1998,81,77-80.
    [63] J. Gutmann, H. Zappe, and J. C. Goldschmidt, Quantitative modeling offluorescent emission in photonic crystals [J], Phys. Rev. B2013,88,205118.
    [64] W. Wang, H. W. Song, X. Bai, Q. Liu and Y. S. Zhu, Modified spontaneousemissions of europium complex in weak PMMA opals, Phys. Chem. Chem. Phys.,2011,13,18023.
    [65] M. Barth, A. Gruber, and F.Cichos, Spectral and angular redistribution ofphotoluminescence near a photonic stop band [J], Phys. Rev. B2005,72,085129.
    [66] W. L. Vos, A. F. Koenderink, and I. S. Nikolaev, Orientation-dependentspontaneous emission rates of a two-level quantum emitter in any nanophotonicenvironment [J], Phys. Rev. A2009,80,053802-1-7.
    [67] P. Bermel, A. Rodriguez, J. D. Joannopoulos, and M. Soljacic, TailoringOptical Nonlinearities via the Purcell Effect [J], Phys. Rev. Lett.2007,99,053601-1-4.
    [68] X. H. Wang, R. Z. Wang, B. Y. Gu, and G. Z. Yang, Decay Distribution ofSpontaneous Emission from an Assembly of Atoms in Photonic Crystals withPseudogaps [J], Phys. Rev. Lett.,2002,88,093902-1-4.
    [69] M. Megens, J. E. G. J. Wijnhoven, A. Lagendijk, and W. L. Vos, Fluorescencelifetimes and linewidths of dye in photonic crystals [J], Phys. Rev. A1999,59,4727-4731.
    [70] S. G. Romanov, A.V. Fokin, R. M. De La Rue, Eu3+emission in an anisotropicphotonic band gap environment [J],Appl. Phys. Lett.2000,76,1656.
    [71] M. Aloshyna, S. Sivakumar, M.Venkataramanan, A. G. Brolo, V. Veggel,Significant Suppression of Spontaneous Emission in SiO2Photonic Crystals Madewith Tb3+-Doped LaF3Nanoparticles [J], J. Phys. Chem. C2007,111,4047.
    [72] K.Y. Ko, K. N. Lee, Y. K. Lee, Y. R. Do, Enhanced Light Extraction fromSrGa2S4:Eu2+Film Phosphors Coated with Various Sizes of Polystyrene NanosphereMonolayers [J], J. Chem. Phys. C2008,112,7594.
    [73] Z. Yang, J. Zhou, X. Huang, G. Yang, Q. Xie, L. Sun, B. Li, and L. Li, Photonicband gap and photoluminescence properties of LaPO4: Tb inverse opal [J], Chem.Phys. Lett.2008,455,55-58.
    [74] X. S. Qu, H.W. Song, G. H. Pan, X. Bai, B. Dong, H. F. Zhao, Q. L. Dai, H.Zhang, R. F. Qin and S. Z. Lu, Three-Dimensionally Ordered MacroporousZrO2:Eu3+: Photonic Band Effect and Local Environments [J], J. Phy. Chem. C2009,113,5906.
    [75] X. S. Qu, H. W. Song, X. Bai, G. H. Pan, B. Dong, H. F. Zhao, F. Wang and Q.R. Fei, Preparation and Upconversion Luminescence of Three-DimensionallyOrdered Macroporous ZrO2: Er3+, Yb3+[J], Inor. Chem.2008,47,9654.
    [76] Q. Liu, H. W. Song, W. Wang, X. Bai, Y. Wang, B. Dong, L. Xu, W. Han,Observation of Lamb shift and modified spontaneous emission dynamics in theYBO3:Eu3+inverse opal [J], Opt. Lett.2010,35,2898-2900.
    [77] W. Wang, H. W. Song, Q. Liu, X. Bai, Y. Wang, B. Dong, Modified opticalproperties in a samarium doped titania inverse opal [J], Opt. Lett.2010,35,1449-1451.
    [1] E. Yablonovitch, Inhibited spontaneous emission in solid-state physics andelectronics [J], Phys. Rev. Lett.1987,58,2059-2062.
    [2] S. John, Strong localization of photons in certain disordered dielectric lattices [J],Phys. Rev. Lett.1987,58,2486-2489.
    [3] J. D. Joannopoulos, P. R.Villeneuve, S. Fan, Photonic crystals: putting a newtwist on light [J], Nature1997,386,143-145.
    [4] S. G. Romanov, A. V. Fokin, R. M. De La Rue, Anisotropic photoluminescencein incomplete three-dimensional photonic band-gap environments [J], Appl. Phys.Lett.1999,74,1821-1823.
    [5] S.Y. Lin, E. Chow, V. Hietala, P. R.Villeneuve, J. D. Joannopoulos, Experimentaldemonstration of guiding and bending of electromagnetic waves in a photoniccrystal [J], Science1998,282,274-276.
    [6] K.Yoshino, S. B. Lee, S.Tatsuhara, Y. Kawagishi, M. Ozaki, A. A. Zakhidov,Observation of inhibited spontaneous emission and stimulated emission ofrhodamine6G in polymer replica of synthetic opal [J], Appl. Phys. Lett.1998,73,3506-3508.
    [7] I. S. Nikolaev, P. Lodahl, W. L. Vos, Fluorescence Lifetime of Emitters withBroad Homogeneous Linewidths Modified in Opal Photonic Crystals [J], J. Phys.Chem. C.2008,112,7250-7254.
    [8] E. P. Petrov, V. N. Bogomolov, I. I. Kalosha, S. V. Gaponenko, Spontaneousemission of organic molecules embedded in a photonic crystal [J], Phys. Rev. Lett.1998,81,77-80.
    [9] P. Lodahl, A. F. Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. L.Vanmaekelbergh, W. L. Vos, Controlling the dynamics of spontaneous emissionfrom quantum dots by photonic crystals [J], Nature,2004,430,654-657.
    [10] J. Y. Zhang, X. Y. Wang, M. Xiao, Y. H. Ye, Modified spontaneous emission ofCdTe quantum dots inside a photonic crystal [J], Opt. Lett.2003,28,1430-1432.
    [11] Y. A. Vlasov, N. Yao, D. Norris, Synthesis of Photonic Crystals for OpticalWavelengths from Semiconductor Quantum Dots [J], Adv. Mater.1999,11,165-169.
    [12] R. Airan, G. Y. Zhou, D. Jaque, M. Gu, Rare-Earth Spontaneous EmissionControl in Three-Dimensional Lithium Niobate Photonic Crystals [J], Adv. Mater.2009,21,3526-3530.
    [13] A. Oertel, C. Lengler, T. Walther, M. Haase, Photonic Properties of InverseOpals Fabricated from Lanthanide-Doped LaPO4Nanocrystals [J], Chem. Mater.2009,21,3883-3888.
    [14] Q. Liu, H. W. Song, W. Wang, X. Bai, Y. Wang, B. Dong, L. Xu, W. Han,Observation of Lamb shift and modified spontaneous emission dynamics in theYBO3:Eu3+inverse opal [J], Opt. Lett.2010,35,2898-2890.
    [15] L. D. Carlos, R. A. S. Ferreira, V. Z. Bermudez, S. J. L. Ribeiro,Lanthanide-Containing Light-Emitting Organic–Inorganic Hybrids: A Bet on theFuture [J], Adv. Mater.2009,21,509-534.
    [16] L. D. Carlos, R. A. Ferreira, J. P. Rainho, V. D. Bermudez, Fine-Tuning of theChromaticity of the Emission Color of Organic–Inorganic Hybrids Co-Doped withEu, Tb, and Tm [J], Adv. Funct. Mater.2002,12,819-823.
    [17] K. S. Sohn, J. M. Lee, N. S. Shin, A Search for New Red Phosphors Using aComputational Evolutionary Optimization Process [J], Adv. Mater.2003,15,2081-2084.
    [18] A. F. Koenderink, L. Bechger, H. P. Schriemer, A. Lagendijk, L. Willem,Broadband fivefold reduction of vacuum fluctuations probed by dyes in photoniccrystals [J], Phys. Rev. Lett.2002,88,143903-143906.
    [19] Z. X. Li, L. L. Li, H. P. Zhou, Q.Yuan, C. Chen, L. D. Sun, C. H. Yan, Colourmodification action of an upconversion photonic crystal [J], Chem. Commun.2009,43,6616-6618.
    [20] A. S. Osvaldo, A. C. Simone, R. I. Renata, Fabrication of size controllableYVO4nanoparticles via microemulsion-mediated synthetic process [J], J. AlloysCompd.2000,316,313.
    [21] G. H. Pan, H. W.Song, X. Bai, Z. Liu, H. Yu, W. Di, S. Li, L. Fan, X. Ren, S. Lu,Novel Energy-Transfer Route and Enhanced Luminescent Properties inYVO4:Eu3+/YBO3:Eu3+Composite [J], Chem. Mater.2006,18,4526-4532.
    [22] A. Rodenas, G. Y. Zhou, D. Jaque, M. Gu, Rare-Earth Spontaneous EmissionControl in Three-Dimensional Lithium Niobate Photonic Crystals [J], Adv. Mater.2009,21,3526-3530.
    [23] K. Riwotzki, M. Haase, Wet-Chemical Synthesis of Doped ColloidalNanoparticles: YVO4:Ln (Ln=Eu, Sm, Dy)[J], J. Phys. Chem. B1998,102,10129-10135.
    [24] S. Jeon, P. V. Braun, Hydrothermal Synthesis of Er-Doped Luminescent TiO2Nanoparticles [J], Chem. Mater.2003,15,1256-1263.
    [25] F. Zhang, Y. H. Deng, Y. F. Shi, R. Y. Zhang, D. Y. Zhao, Photoluminescencemodification in upconversion rare-earth fluoride nanocrystal array constructedphotonic crystals [J], J. Mater. Chem.2010,20,3895-3900.
    [26] N.Vats, S. John, K. Busch, Theory of fluorescence in photonic crystals [J], Phys.Rev. A2002,65,043808-043820.
    [27] Wang, X. H.; Wang, R. Z.; Gu, B. Y.; Yang, G. Z. Decay distribution ofspontaneous emission from an assembly of atoms in photonic crystals withpseudogaps [J], Phys. Rev. Lett.2002,88,093902-093902.
    [28] Y. H. Wang, Y. S. Liu, Q. B. Xiao, H. M. Zhu, R. F. Li, Chen, X. Y. Eu3+dopedKYF4nanocrystals: synthesis, electronic structure, and optical properties [J],Nanoscale,2011,3,3164-3169.
    [29] K. K. Pukhov, T. T. Basiev, Y. V. Orlovskii, Spontaneous emission in dielectricnanoparticles [J], JETP Lett.,2008,88,12-18.
    [30] K. K. Pukhov, T. T. Basiev, Radiative transitions in nanocrystals [J], Opt. Mater.2010,32,1664-1667.
    [31] M. Aloshyna, S. Sivakumar, M. Venkataramanan, A. G. Brolo, C. J. FrankVeggel, M. Van, Significant Suppression of Spontaneous Emission in SiO2PhotonicCrystals Made with Tb3+-Doped LaF3Nanoparticles [J], J. Phys. Chem. C2007,111,4047-4051.
    [32] J. Li, X. W. Zhao, Y. J. Zhao, J. Hu, M. Xu, Z. Z. Gu, Colloidal crystal beadscoated with multicolor CdTe quantum dots: microcarriers for optical encoding andfluorescence enhancement [J], J. Mater. Chem.2009,19,6492-6497.
    [33] S. Fan, P. R.Villeneuve, J. D. Joannopoulos, E. F. Schubert, High extractionefficiency of spontaneous emission from slabs of photonic crystals [J], Phys. Rev.Lett.1997,78,3294-3297.
    [34] M. Zelsmann, E. Picard, T. Charvolin, E. Hadji, M. Heitzmann, B. Dalzotto, M.E. Nier, C. Seassal, P. Rojo-Romeo, X. Letartre, Seventy-fold enhancement of lightextraction from a defectless photonic crystal made on silicon-on-insulator [J], Appl.Phys. Lett.2003,83,2542.
    [35] K. Riwotzki, M. Haase, Colloidal YVO4:Eu and YP0.95V0.05O4:EuNanoparticles:Luminescence and Energy Transfer Processes [J], J. Phys. Chem. B2001,105,12709-12713.
    [36] X. S.Qu, H. W. Song, X. Bai, G. H. Pan, B. Dong, H. F. Zhao, F. Wang, R. F.Qin, Preparation and Upconversion Luminescence of Three-Dimensionally OrderedMacroporous ZrO2: Er3+, Yb3+[J], Inorg. Chem.2008,47,9654-9659.
    [1] E. Yablonovitch, Inhibited spontaneous emission in solid-state physics andelectronics [J]. Phys. Rev. Lett.1987,58,2059.
    [2] S. John, Strong localization of photons in certain disordered dielectricsuperlattices [J]. Phys. Rev. Lett.1987,58,2486.
    [3] D. L. R. Richard, and S. Chirs, Photonics: On the threshold of success[J]. Nature,2000,408,653.
    [4] S. John, and T. Quang, Collective switching and inversion without fluctuation oftwo-level atoms in confined photonic systems [J]. Phys. Rev. Lett.1997,78,1888.
    [5] M. Ibanescu, Y. Fink, S. H. Fan, E. L. Thomas, and J. D. Joannopoulos, Anall-dielectric coaxial waveguide [J]. Science2000,289,415.
    [6] L. Zhou, Z. R. Gong, Y. X. Liu, C. P. Sun, and F. Nori, Phys. Rev.Lett.Controllable scattering of a single photon inside a one-dimensional resonatorwaveguide [J]. Phys. Rev. Lett.,2008,101,100501.
    [7] P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. L.Vanmaekelbergh, and W. L. Vos.Controlling the dynamics of spontaneous emissionfrom quantum dots by photonic crystals [J]. Nature,2004,430,654.
    [8] J. Y. Zhang, X. Y. Wang, M. Xiao, and Y. H. Ye, Modified spontaneous emissionof CdTe quantum dots inside a photonic crystal [J]. Opt. Lett.2003,28,1430.
    [9] A. Oertel, C. Lengler, T. Walther, and M. Haase, Photonic properties of inverseopals fabricated from lanthanide-doped LaPO4nanocrystals [J]. Chem. Mater.2009,21,3883.
    [10] K. Byrappa, S. Ohara, and T. Adschiri, Adv. Nanoparticles synthesis usingsupercritical fluid technology–towards biomedical applications [J]. Drug DeliVeryRev.2008,60,299.
    [11] W. X. Wang, Z. Y. Cheng, P. P. Yang, Z. Y. Hou, C. X. Li, G. G. Li, Y. L. Dai,and J. Lin, Patterning of YVO4:Eu3+Luminescent Films by Soft Lithography [J].Adv. Fun. Mater.2011,21,456.
    [12] W. Xu, Y. Wang, X. Bai, B. Dong, Q. Liu, J. S. Chen, and H. W. Song,Controllable Synthesis and Size-Dependent Luminescent Properties of YVO4:Eu3+Nanospheres and Microspheres [J]. J. Phys. Chem. C2010,114,14018.
    [13] A. Rodenas, G. Zhou, D. Jaque, and M. Gu, Rare‐Earth Spontaneous EmissionControl in Three-Dimensional Lithium Niobate Photonic Crystals [J]. Adv. Mater.2009,21,3526.
    [14] M. Aloshyna, S. Sivakumar, M. Venkataramanan, A. G. Brolo, and F. C. J. M.van Veggel, Significant suppression of spontaneous emission in SiO2photoniccrystals made with Tb3+-doped LaF3nanoparticles [J]. J. Phys. Chem. C2007,111,4047.
    [15] Y. H. Wang, Y. S. Liu, Q. B. Xiao, H. M. Zhu, R. F. Li, and X. Y. Chen, Eu3+doped KYF4nanocrystals: synthesis, electronic structure, and optical properties [J].Nanoscale2011,3,3164.
    [16] K. K. Pukhov, T. T. Basiev, and Y. V. Orlovskii, Spontaneous emission indielectric nanoparticles [J]. JETP Lett.2008,88,12.
    [17]C. K. Duan, M. F. Reid, and Z. Q. Wang, Local field effects on the radiativelifetime of emitters in surrounding media: Virtual-or real-cavity model [J]. Phys.Lett.2005,343,474.
    [18] W. Wang, H. W. Song, X. Bai, Q. Liu, and Y. S. Zhu,Modified spontaneousemissions of europium complex in weak PMMA opals [J]. Phys. Chem. Chem. Phys.2011,13,18023.
    [19] Y. Nishijima, K. Ueno, S. Juodkazis, V. Mizeikis, H. Misawa, T. Tanimura, andK. Maeda, Inverse silica opal photonic crystals for optical sensing applications [J],Opt. Exp.2007,15,12979.
    [1] E. Yablonovitch, Inhibited Spontaneous Emission in Solid-State Physics andElectronics [J], Phys. Rev. Lett.1987,58,2059.
    [2] S. John, Strong localization of photons in certain disordered dielectric superlattices[J], Phys. Rev. Lett.1987,58,2486-2489.
    [3] S. G. Romanov, A. V. Fokin, R. M. De La Rue,Anisotropicphotoluminescence in incomplete three-dimensional photonicband-gap environments [J], Appl. Phys. Lett.1999,74,1821-1823.
    [4] S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho,M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, J. Bur, A three-dimensional photoniccrystal operating at infrared wavelengths [J], Nature1998,394,251.
    [5] J. D. Joannopoulos, P. R. Villeneuve, S. H. Fan, Photonic crystals: putting a newtwist on light [J], Nature1997,386,143.
    [6] C. E. Finlayson, D. S. Ginger, N. C. Greenham, Enhanced Forster energy transferin organic/inorganic bilayer optical microcavities [J], Chem. Phys. Lett.2001,338,83.
    [7] J. Zhang, Y. Fu, J. R. Lakowicz, Metal particle-enhanced fluorescentimmunoassays on metal mirrors [J], Anal. Biochem.2007,360,266.
    [8] Y. Z. Li, T. Kunitake, S. Fujikawa, K. Ozasa, Photoluminescence Modificationin3D-Ordered Films of Fluorescent Microspheres [J], Langmuir,2007,23,9109.
    [9] K. Yoshino, S. B. Lee, S. Tatsuhara, Y. Kawagishi, M. Ozaki, A. A. Zakhidov,Observation of inhibited spontaneous emission and stimulated emission ofrhodamine6G in polymer replica of synthetic opal [J], Appl. Phys. Lett.1998,73,3506-3508.
    [10] I. S. Nikolaev, P. Lodahl, W. L. Vos, Fluorescence lifetime of emitters withbroad homogeneous linewidths modified in opal photonic crystals [J], J. Phys.Chem. C.2008,112,7250-7254.
    [11] P. Lodahl, A. F. Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. L.Vanmaekelbergh, W. L. Vos, Controlling the dynamics of spontaneous emissionfrom quantum dots by photonic crystals [J], Nature,2004,430,654-657.
    [12] J. Y. Zhang, X. Y. Wang, M. Xiao, Y. H. Ye, Modified spontaneous emissionof CdTe quantum dots inside a photonic crystal [J], Opt. Lett.,2003,28,1430-1432.
    [13] R. Aira′n, G. Y. Zhou, D. Jaque, M. Gu, Rare-Earth Spontaneous EmissionControl in Three-Dimensional Lithium Niobate Photonic Crystals [J], Adv. Mater.,2009,21,3526-3530.
    [14] D. Yan, J. L. Zhu, H. J. Wu, Z. W. Yang, J. B. Qiu, Z. G. Song, X. Yu, Y. Yang, D.C. Zhou, Z. Y. Yin, R. F. Wang, Energy transfer and photoluminescence modificationin Yb-Er-Tm triply doped Y2Ti2O7upconversion inverse opal [J], J. Mater. Chem.2012,22,18558–18563.
    [15] Z. X. Li, L. L. Li, H. P. Zhou, Q. Yuan, C. Chen, L. D. Sun, C. H. Yan, Colourmodification action of an upconversion photonic crystal [J], Chem. Commun.2009,6616–6618.
    [16] Y. S. Zhu, W. Xu, H. Z. Zhang, W. Wang, L. Tong, S. Xu, Z. P. Sun, H. W. Song,Highly modified spontaneous emissions in YVO4:Eu3+inverse opal and refractive indexsensing application [J], Appl. Phys. Lett.2012,100,081104.
    [17] Z. W. Yang, J. Zhou, X. G. Huang, G. Yang, Q. Xie, L. Sun, B. Li, L. T. Li,Photonic band gap and photoluminescence properties of LaPO4: Tb inverse opal [J], Chem.Phys. Lett.2008,455,55–58.
    [18] F. Zhang, Y. H. Deng, Y. F. Shi, R. Y. Zhang, D. Y. Zhao, Photoluminescencemodification in upconversion rare-earth fluoride nanocrystal array constructed photoniccrystals [J], J. Mater. Chem.2010,20,3895–3900.
    [19] Y. S. Zhu, W. Xu, H. Z. Zhang, W. Wang, S. Xu, H. W. Song, Inhibited Long-ScaleEnergy Transfer in Dysprosium Doped Yttrium Vanadate Inverse Opal [J], J. Phys. Chem.C2012,116,2297–2302.
    [20] D. T. Tu, L. Q. Liu, Q. Ju, Y. S. Liu, H. M. Zhu, R. F. Li, X. Y. Chen, Time-ResolvedFRET Biosensor Based on Amine-Functionalized Lanthanide-Doped NaYF4Nanocrystals[J], Angew. Chem. Int. Ed.2011,50,6306–6310.
    [21] Y. S. Liu, S. Y. Zhou, D. T. Tu, Z. Chen, M. D. Huang, H. M. Zhu, E. Ma, X.Y. Chen, Amine-Functionalized Lanthanide-Doped Zirconia Nanoparticles: OpticalSpectroscopy, Time-Resolved Fluorescence Resonance Energy TransferBiodetection, and Targeted Imaging [J], J. Am. Chem. Soc.,2012,134,15083-15090.
    [22] Q. Ju, D. T. Tu, Y. S. Liu, R. F. Li, H. M. Zhu, J. C. Chen, Z. Chen, M. D.Huang, X. Y. Chen, Amine-Functionalized Lanthanide-Doped KGdF4Nanocrystalsas Potential Optical/Magnetic Multimodal BioProbes [J], J. Am. Chem. Soc.,2012,134,1323-1330.
    [23] J. Fang, Y. L. Guo, G. Z. Lu, C. L. Raston, S. Iyer K., Enhancement of quantumyield of LaPO4:Ce3+:Tb3+nanocrystals by carbon nanotube induced suppression of the1-dimensional growth [J], Dalton T.2011,40,3122.
    [24] F. Duault, M. Junker, P. Grosseau, B. Guilhot, P. Iacconi, B. Moine, Effect ofdifferent fluxes on the morphology of the LaPO4:Ce, Tb phosphor [J], PowderTechnology2005,154,132–137.
    [25] W. S. Song, H. N. Choi, Y. S. Kim, H. Yang, Formation of green-emittingLaPO4:Ce,Tb nanophosphor layer and its application to highly transparent plasmadisplays [J], J. Mater. Chem.2010,20,6929-6934.
    [26] C. V. Subban, I. C. Smith, F. J. DiSalvo, Interconversion of Inverse Opals ofElectrically Conducting Doped Titanium Oxides and Nitrides [J], Small2012,8,2824–2832.
    [27] J. Maria, T. T. Truong, J. Yao, T. W. Lee, R. G. Nuzzo, S. Leyffer, S. K. Gray,J. A. Rogers, Optimization of3D Plasmonic Crystal Structures for Refractive IndexSensing [J], J. Phys. Chem. C2009,113,10493–10499.
    [28] Y. Zhang, Y. N. Xia, Formation of Embryoid Bodies with Controlled Sizes andMaintained Pluripotency in Three-Dimensional Inverse Opal Scaffolds [J], Adv.Funct. Mater.2012,22,121–129
    [29] L. W. Zhang, C. Baumanis, L. Robben, T. Kandiel, D. Bahnemann, Bi2WO6Inverse Opals: Facile Fabrication and Efficient Visible-Light-Driven Photocatalyticand Photoelectrochemical Water-Splitting Activity [J], Small2011,7,2714–2720.
    [30] M. Aloshyna, S. Sivakumar, M. Venkataramanan, A. G. Brolo, V. Veggel,Significant Suppression of Spontaneous Emission in SiO2Photonic Crystals Madewith Tb3+-Doped LaF3Nanoparticles [J], J. Phys Chem. C2007,111,4047.
    [31] S. Kim, A. N. Mitropoulos, J. D. Spitzberg, H. Tao, D. L. Kaplan, F. G.Omenetto, Silk inverse opals [J], Nature Photonics,2012,6,817-822.
    [32] W. Wang, H. W. Song, X. Bai, Q. Liu and Y. S. Zhu, Modified spontaneousemissions of europium complex in weak PMMA opals [J], Phys. Chem. Chem. Phys.,2011,13,18023–18030.
    [33] H. Lai, A. Bao, Y. M. Yang, Y. C. Tao, H. Yang, Y. Zhang, and L. L. Han, UVluminescence property of YPO4: RE (RE=Ce3+, Tb3+)[J], J. Phys. Chem. C2008,112,282-286.
    [34] X. S. Qu, H. W. Song, G. H. Pan, X. Bai, B. Dong, H. F. Zhao, Q. L. Dai, H.Zhang, R. F. Qin, S. Z. Lu, Three-Dimensionally Ordered Macroporous ZrO2:Eu3+:Photonic Band Effect and Local Environments [J], J. Phys. Chem. C2009,113,5906–5911.
    [35] Y. Ruan, Q. B. Xiao, W. Q. Luo, R. F. Li, and X. Y. Chen, Optical propertiesand luminescence dynamics of Eu3+-doped terbium orthophosphate nanophosphors [J],Nanotechnology2011,22,275701.
    [36] J. L. Ferrari, A. M. Pires, M. R. Davolos, The effect of Eu3+concentration onthe Y2O3host lattice obtained from citrate precursors [J], Materials Chemistry andPhysics2009,113,587–590.
    [37] P. Ghosh, S. Sadhu, A. Patra, Preparation and photoluminescence properties ofY2SiO5:Eu3+nanocrystals [J], Phys. Chem. Chem. Phys.2006,8,3342–3348.
    [38] J. Zhou, Y. Zhou, S. Buddhudu, S. L. Ng, Y. L. Lam, and C. H. Kam,Photoluminescence of ZnS: Mn embedded in three-dimensional photonic crystals ofsubmicron polymer spheres [J], Appl. Phys. Lett.2000,76,3513-3515.
    [39] I. S. Nikolaev, P. Lodahl, and W. L. Vos, Fluorescence Lifetime of Emitterswith Broad Homogeneous Linewidths Modified in Opal Photonic Crystals [J], J. Phys.Chem. C2008,112,7250-7254.
    [40] M. Aloshyna, S. Sivakumar, M. Venkataramanan, A. G. Brolo, and F. C. J. M.Veggel, Significant Suppression of Spontaneous Emission in SiO2Photonic CrystalsMade with Tb3+-Doped LaF3Nanoparticles [J], J. Phys. Chem. C2007,111,4047-4051.
    [41] M. Salis, C. M. Carbonaro, R. Corpino, A. Anedda, and P. C. Ricci, Investigationof energy transfer in terbium doped Y2SiO5phosphor particles [J], J. Phys.: Condens.Mater.2012,24,295401-295406.
    [42] C. K. Duan, M. F. Reid, Z. Q. Wang, Local field effects on the radiative lifetimeof emitters in surrounding media [J], Phys. Lett.2005,343,474.
    [43] R. Visser, P. Dorenbos, C. W. E. Eijk, A. Meijerink, G. Blasse, H. W. Hartog,Energy-transfer processes involving different luminescence-centers in BaF2:Ce [J], J.Phys. C1993,5,1659-1680.
    [44] T. A. Lawrence, K. A. Murra, P. S. May, Temperature dependence of rateconstants for Tb3+(D-5(3)) cross relaxation in symmetric Tb3+pairs in Tb-dopedCsCdBr3, CsMgBr3, CsMgCl3[J], J. Phys. Chem. B2003,107,4002-4011.
    [45] Z. G. Xia, and R. S. Liu, Tunable Blue-Green Color Emission and EnergyTransfer of Ca2Al3O6F:Ce3+,Tb3+Phosphors for Near-UV White LEDs [J], J. Phys.Chem. C2012,116,1560415609.
    [46] A. A. Setlur, J. J. Shiang, and C. J. Vess, Transition from Long-Range toShort-Range Energy Transfer through Donor Migration in Garnet Hosts [J], J. Phys.Chem. C2011,115,3475–3480.
    [1] M. M. Baksh, M. Jaros, J. T. Groves, Detection of molecular interactions at membranesurfaces through colloid phase transitions [J], Nature2004,427,139.
    [2] H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, Y. H.Lee, Electrically Driven Single-Cell Photonic Crystal Laser [J], Science2004,305,1444.
    [3] L. Zhou, Z. R. Gong, Y. X. Liu, C. P. Sun, F. Nori, Controllable Scattering of a SinglePhoton inside a One-Dimensional Resonator Waveguide [J], Phys. Rev. Lett.2008,101,100501.
    [4] O. B. Ayyub, J. W. Sekowski, Ta-I Yang, X. Zhang, R. M. Briber, P.Kofinas, Colorchanging block copolymer films for chemical sensing of simple sugars [J], Biosensors andBioelectronics2011,28,349–354.
    [5] I. S. Nikolaev, P. Lodahl, and W. L. Vos, Fluorescence Lifetime of Emitters with BroadHomogeneous Linewidths Modified in Opal Photonic Crystals [J], J. Phys. Chem. C2008,112,7250.
    [6] J. Y. Zhang, X. Y. Wang, M. Xiao, and Y. H. Ye, Modified spontaneous emission ofCdTe quantum dots inside a photonic crystal [J], Opt. Lett.2003,28,1430.
    [7] A. Oertel, C. Lengler, T. Walther, and M. Haase, Photonic Properties of Inverse OpalsFabricated from Lanthanide-Doped LaPO4Nanocrystals [J], Chem. Mater.2009,21,3883.
    [8] Y. S. Zhu, W. Xu, H. Z. Zhang, W. Wang, S. Xu, and H. W. Song, InhibitedLong-Scale Energy Transfer in Dysprosium Doped Yttrium Vanadate Inverse Opal [J], J.Phys. Chem. C2012,116,2297–2302.
    [9] Y. S. Zhu, W. Xu, H. Z. Zhang, W. Wang, L. Tong, S. Xu, Z. P. Sun, and H. W. Song,Highly modified spontaneous emissions in YVO4:Eu3+inverse opal and refractive indexsensing application [J], Appl. Phys. Lett.2012,100,081104.
    [10] Q. Liu, H. W. Song, W. Wang, X. Bai, Y. Wang, B. Dong, L. Xu, W. Han,Observation of Lamb shift and modified spontaneous emission dynamics in the YBO3:Eu3+inverse opal [J], Opt. Lett.2010,35,2898–2890.
    [11] S. J. Zeng, G. Z. Ren, and Q. B. Yang, Fabrication, formation mechanism and opticalproperties of novel single-crystal Er3+doped NaYbF4micro-tubes [J], J. Mater. Chem.2010,20,2152–2156.
    [12] H. Naruke, T. Mori, and T. Yamase, Luminescence properties and excitation processof a near-infrared to visible up-conversion color-tunable phosphor [J], Opt. Mater.2009,31,1483.
    [13] F. Zhang, Y. H. Deng, Y. F. Shi, R. Y. Zhang and D. Y. Zhao, Photoluminescencemodification in upconversion rare-earth fluorid nanocrystal array constructed photoniccrystals [J], J. Mater. Chem.2010,20,3895–3900.
    [14] Z. X. Li, L. L. Li, H. P. Zhou, Q. Yuan, C. Chen, L. D. Sun, and C. H. Yan, Colourmodification action of an upconversion photonic crystal [J], Chem. Commun.2009,6616–6618.
    [15] G. Mialon, S. Tu¨rkcan, G. Dantelle, D. P. Collins, M. Hadjipanayi, R. A. Taylor, T.Gacoin, A. Alexandrou, and J. P. Boilot, High Up-Conversion Efficiency of YVO4:Yb,ErNanoparticles in Water down to the Single-Particle Level [J], J. Phys. Chem. C2010,114,22449–22454.
    [16] A. Rodenas, G. Zhou, D. Jaque, and M. Gu, Rare-Earth Spontaneous Emission Controlin Three-Dimensional Lithium Niobate Photonic Crystals [J], Adv. Mater.2009,21,3526.
    [17] K. Riwotzki, and M. Haase, Colloidal YVO4: Eu and YP0.95V0.05O4:Eu Nanoparticles:Luminescence and Energy Transfer Processes [J], J. Phys. Chem. B2001,105,12709-12713.
    [18] X. S. Qu, H. W. Song, X. Bai, G. H. Pan, B. Dong, H. F. Zhao, F. Wang, R. F. Qin,Preparation and Upconversion Luminescence of Three-Dimensionally OrderedMacroporous ZrO2: Er3+, Yb3+[J], Inorg. Chem.2008,47,9654–9659.
    [19] F. Wang, R. R. Deng, J. Wang, Q. X. Wang, Y. Han, H. M. Zhu, X. Y. Chen, and X. G.Liu, Tuning upconversion through energy migration in core–shell nanoparticles [J], Nature.Mater.2011,10,968.
    [20] X. Bai, H. W. Song, G. H. Pan, Y. Q. Lei, T. Wang, X. G. Ren, S. Z. Lu, B. Dong, Q.L. Dai, and L. B. Fan, Size-Dependent Upconversion Luminescence in Er3+/Yb3+-CodopedNanocrystalline Yttria: Saturation and Thermal Effects [J], J. Phys. Chem. C2007,111,13611.
    [1] Y. J. Cui, Y. F. Yue, G. D. Qian and B. L. Chen, Luminescent FunctionalMetal–Organic Frameworks [J], Chem. Rev.,2012,112,1126–1162.
    [2] Y. J. Cui, H. Xu, Y. F. Yue, Z. Y.Guo,J. C. Yu, Z. X. Chen, J. K. Gao, Y. Yang,G. D. Qian and B. L. Chen, A Luminescent Mixed-Lanthanide Metal–OrganicFramework Thermometer [J], J. Am. Chem. Soc.,2012,134,3979–3982.
    [3] H. L. Guo, Y. Z. Zhu, S. L. Qiu, J. A. Lercher and H. J. Zhang, CoordinationModulation Induced Synthesis of Nanoscale Eu1-xTbx-Metal-Organic Frameworksfor Luminescent Thin Films [J], Adv. Mater.,2010,22,4190–4192.
    [4] S. L. Gai, P. P.Yang, C. X. Li, W. X. Wang, Y. L. Dai, N. Niu, J. Lin, Synthesisof Magnetic, Up-Conversion Luminescent, and Mesoporous Core–Shell-StructuredNanocomposites as Drug Carriers [J], Adv. Funct. Mater.2010,20,11661172.
    [5] F. Meiser, C. Cortez, F. Caruso, Biofunctionalization of FluorescentRare-Earth-Doped Lanthanum Phosphate Colloidal Nanoparticles [J], Angew. Chem.Int. Ed.2004,43,59545957.
    [6] J. K. Sheu, S. J. Chang, C. H. Kuo, Y. K. Su, L.W. Wu, Y. C. Lin, W. C. Lai, J.M. Tsai, G. C. Chi, R.K. Wu, White-light emission from near UV InGaN-GaN LEDchip precoatedwith blue/green/red phosphors [J], IEEE Photonic Tech. Lett.2003,15,18-20.
    [7] J. L. Wu, G. Gundiah, A. K. Cheetham, Structure–property correlations inCe-doped garnet phosphors for use in solid state lighting [J], Chem. Phys. Lett.2007,441,250-254.
    [8] J. K. Park, M. A. Lim, C. H. Kim, H. D. Park, J. T. Park, S. Y. Choi, Whitelight-emitting diodes of GaN-based Sr2SiO4:Eu and the luminescent properties [J],Appl. Phys. Lett.2003,82,683-685.
    [9] J. K. Park, K. J. Choi, J. H. Yeon, S. J. Lee, C. H. Kim, Embodiment of thewarm white-light-emitting diodes by using a Ba2+codoped Sr3SiO5:Eu phosphor [J],Appl. Phys. Lett.2006,88,043511-1-3.
    [10] S. Ye, F. Xiao, Y. X. Pan, Y. Y. Ma, Q. Y. Zhang, Phosphors inphosphor-converted white light-emitting diodes: Recent advances in materials,techniques and properties [J], Materials Science and Engineering R2010,71,1–34.
    [11] D. L. Geng, M. M. Shang, D. M. Yang, Y. Zhang, Z. Y. Cheng and J.Lin,Tunable luminescence and energy transfer properties inKCaGd(PO4)2:Ln3+/Mn2+(Ln=Tb, Dy, Eu, Tm; Ce, Tb/Dy) phosphors with highquantum efficiencies [J], J. Mater. Chem.,2012,22,23789-23798.
    [12] Z. G. Xia, Y. Y. Zhang, M. S. Molokeev, and V. V. Atuchin, Structural andLuminescence Properties of Yellow-Emitting NaScSi2O6:Eu2+Phosphors: Eu2+SitePreference Analysis and Generation of Red Emission by Codoping Mn2+forWhite-Light-Emitting Diode Applications [J], J. Phys. Chem. C2013,117,2084720854.
    [13] X. M. Guo, H. D. Guo, L. S. Fu, L. D. Carlos, R. A. S. Ferreira, L. N. Sun, R. P.Deng and H. J. Zhang, Novel Near-Infrared Luminescent Hybrid MaterialsCovalently Linking with Lanthanide [Nd(III), Er(III), Yb(III), and Sm(III)]Complexes via a Primary-DiketoneLigand: Synthesis and Photophysical Studies [J],J. Phys. Chem. C2009,113,12538–12545.
    [14] Y. Li, B. Yan, and H. Yang, Construction,characterization andphotoluminescence of mesoporous hybrids containing europium (Ш) complexescovalently bonded to SBA-15directly functionalized by modified beta-diketone [J],J. Phys. Chem. C2008,112,3959-3968.
    [15] J. Y. Han, W. B. Im, D. Kim, S. H. Cheong, G. Y. Lee and D. Y. Jeon, Newfull-color-emitting phosphor, Eu2+-doped Na2xAl2xSixO4(0≤x≤1), obtainedusing phase transitions for solid-state white lighting [J], J. Mater. Chem.,2012,22,5374–5381.
    [16] Y. Kawabe, A. Yamanaka, E. Hanamura, T. Kimura, Y. Takiguchi, H. Kan, andY. Tokura, Photoluminescence of perovskite lanthanum aluminate single crystals [J],J. Appl. Phys.2000,87,7594-7596.
    [17] J. C. Chen, Q. G. Meng, P. S. May, M. T. Berry, and C. K. Lin, Sensitization ofEu3+Luminescence in Eu:YPO4Nanocrystals [J], J. Phys. Chem. C2013,117,59535962.
    [18] Zhang, J.; Shade, C. M.; Chengelis, D. A.; Petoud, S., A Strategy to Protect andSensitize Near Infrared Luminescent Nd3+and Yb3+: Organic Tropolonate Ligandsfor the Sensitization of Ln3+Doped NaYF4Nanocrystals [J], J. Am. Chem. Soc.2007,129,1483414835.
    [19] Q. Zhu, T. Sheng, R. Fu, S. Hu, J. Chen, S. Xiang, C. Shen and X. Wu, Novelstructures and luminescence properties of lanthanide coordination polymers with anovel flexible polycarboxylate ligand [J], Cryst. Growth Des.,2009,9,5128–5134.
    [20] L. R. Melby, N. J. Rose, E. Abramson and J. C. Caris,Synthesis andFluorescence of Some Trivalent Lanthanide Complexes [J], J. Am. Chem. Soc.,1964,86,5117-5125.
    [21] A. J. Nozik, M. C. Beard, J. M. Luther, M. Law, R. J. Ellingson and J. C.Johnson, Semiconductor Quantum Dots and Quantum Dot Arrays and Applicationsof Multiple Exciton Generation to Third-Generation Photovoltaic Solar Cells [J],Chem. Rev.,2010,110,6873-6890.
    [22] P. V. Kamat and G. C. Schatz, Nanotechnology for Next Generation Solar Cells[J], J. Phys. Chem. C,2009,113,15473-15475.
    [23] I. Gur, N. A. Fromer, M. L. Geier, and A. P. Alivisatos, Air-StableAll-Inorganic Nanocrystal Solar Cells Processed from Solution [J], Science2005,310,462–465.
    [24] W. J. Kim, S. J. Kim, K. S. Lee, M. Samoc, A. N. Cartwright, and P. N. Prasad,Robust Microstructures using UV Photo-patternable Semiconductor Nanocrystals [J],Nano. Lett.2008,8,3262–3265.
    [25] I. L. Medintz, H. Mattoussi, Quantum dot-based resonance energy transfer andits growing application in biology [J], Phys. Chem. Chem. Phys.2009,11,17–45.
    [26] Z. Deutsch, L. Neeman, and D. Oron, Luminescence upconversion in colloidaldouble quantum dots [J], Nature Nanotechnology,2013,8,649-653.
    [27] H. Sekhar, G. T. Rao, P. H. Reddy, D. N. Rao, Preparation, structural and itsenhanced green upconversion luminescence in rare-earth dopedCdMnSnanopowders [J], Journal of Alloys and Compounds,2013,562,38–42.
    [28] R. C. Mulrooney, N. Singh, N. Kaur, J.F. Callan, An “off–on”sensorfor fluoride using luminescent CdSe/ZnS quantum dots [J], Chem. Commun.2009,686–688.
    [29] Y. S. Zhu, W. Xu, H. Z. Zhang, W. Wang, S. Xu, and H. W. Song, InhibitedLong-Scale Energy Transfer in Dysprosium Doped YttriumVanadate Inverse Opal[J], J. Phys. Chem. C2012,116,2297–2302.
    [30] Y. S. Zhu, W. Xu, H. Z. Zhang, S. Xu, Y. F. Wang, Q. L. Dai, B. Dong, L. Xu,and H. W. Song, Inhibited local thermal effect in upconversion luminescence ofYVO4:Yb3+, Er3+inverse opals [J], Opt. Exp.2012,20,29673-29678.
    [31] Y. S. Zhu, Z. P. Sun, Z. Yin, H. W. Song, W. Xu, Y. F. Wang, L. G. Zhang andH. Z. Zhang, Self-assembly, highly modified spontaneous emission and energytransfer properties of LaPO4:Ce3+, Tb3+inverse opals [J], Dalton Trans,2013,42,8049–8057.
    [32] Y. F. Zheng, B. J. Chen, H. Y. Zhong, J. S. Sun, L. H. Cheng, X. P. Li, J. S.Zhang, Y. Tian, W. L. Lu, J. Wan, T. T. Yu, L. B. Huang, H. Q. Yu, H. Lin [J], J.Am. Chem. Soc.,2011,94,1766.
    [33] L. Z. Zhang, G. F. Wang, S. K. Lin, Synthesis,growth and spectrd properties ofTm3+/Yb3+-codoped YVO4crystal [J], J. Cryst. Growth.2002,241,325-329.
    [34] Q. Zhou, L. C. Zhang, H. Y. Fan, L. Wu, Y. Lv, An ethanol gas sensor usingenergy transfer cataluminescence on nanosized YVO4:Eu3+surface [J], Sensors andActuators B-Chemical,2010,144,192-197.
    [35] M. R. Salvador, M. W. Graham, G. D. Scholes, Exciton-phonon coupling anddisorder in the excited states of CdSe colloidal quantum dots [J], J. Chem. Phys.2006,125,184709-184725.
    [36] Y. Kobayashi, L. Y. Pan and N. Tamai,Effects of Size and Capping Reagentson Biexciton Auger Recombination Dynamics of CdTe Quantum Dots [J], J. Phys.Chem. C2009,113,11783-11789.
    [37] W. W. Yu, X. Peng, Formation of High-Quality CdS and Other II–VISemiconductor Nanocrystals in Noncoordinating Solvents: Tunable Reactivity ofMonomers [J], Angewandte Chemie International Edition,2002,41,2368-2371.
    [38] T. Karstens, K. Kobs, Rhodamine B and rhodamine101as reference substancesfor fluorescence quantum yield measurements [J], J. Phy.Chem,1980,84,1871-1872.
    [39] C. H. Huang, T. M. Chen, A Novel Single-Composition TrichromaticWhite-Light Ca3Y(GaO)3(BO3)4:Ce3+, Mn2+, Tb3+Phosphor for UV-Light EmittingDiodes [J], J. Phys. Chem. C2011,115,23492355.
    [40] Z. G. Xia, and R. S. Liu, Tunable Blue-Green Color Emission and EnergyTransfer of Ca2Al3O6F:Ce3+, Tb3+Phosphors for Near-UV White LEDs [J], J. Phys.Chem. C2012,116,1560415609.
    [41] L. X. Yu, H. W. Song, Z. X. Liu, L. M. Yang, S. Z. Lu, Z. H. Zheng, ElectronicTransition and Energy Transfer Processes in LaPO4-Ce3+/Tb3+Nanowires [J], J.Phys. Chem. B2005,109,11450-11455.
    [42] W. Xu, H. W. Song, D. T. Yan, H. C. Zhu, Y. Wang, S. Xu, X. Bai, B.Dongand Y. X. Liu,YVO4:Eu3+, Bi3+UV to visible conversion nano-films used fororganic photovoltaic solar cells [J], J. Mater. Chem.,2011,21,12331-12336.
    [43] H. Yusuf, W. G. Kim, D. H. Lee, M. Aloshyna, A. G. Brolo, and M. G. Moffitt,A hierarchical self-assembly route to three-dimensional polymer-quantum dotphotonic arrays [J], Langmuir2007,23,5251-5254.
    [44] C. J. Barrelet, J. M. Bao, M. Loncar, H. G. Park, F. Capasso, and C. M. Lieber,Hybrid Single-Nanowire Photonic Crystal and Microresonator Structures [J], Nano.Lett.2006,6,11-15.
    [45] P. Jiang and M. J. McFarland, Large-Scale Fabrication of Wafer-Size ColloidalCrystals, Macroporous Polymers andNanocomposites by Spin-Coating [J], J. Am.Chem. Soc.2004,126,13778-13786.
    [46] P. Jiang, J. F. Bertone, K. S. Hwang, and V. L. Colvin, Single-Crystal ColloidalMultilayers of ControlledThickness [J], Chem. Mater.1999,11,2132-2140.
    [47] K.Y. Ko, K. N. Lee, Y. K. Lee, and Y. Rag Do, Enhanced Light Extractionfrom SrGa2S4:Eu2+Film Phosphors Coated with Various Sizes of PolystyreneNanosphere Monolayers [J], J. Phys. Chem. C2008,112,7594–7598.
    [48] M. Aloshyna, S. Sivakumar, M. Venkataramanan, A. G. Brolo, and F. C. J. M.van Veggel,Significant Suppression of Spontaneous Emission in SiO2PhotonicCrystals Made with Tb3+-Doped LaF3Nanoparticles [J], J. Phys. Chem. C2007,111,4047-4051.
    [49] Peter Lodahl, A. Floris van Driel, Ivan S. Nikolaev, ArieIrman, Karin Overgaag,DanieVanmaekelbergh&Willem L. Vos, Controlling the dynamics of spontaneousemission from quantum dots by photonic crystals [J], Nature,2004,430,654-657.
    [50] Ivan S. Nikolaev, Peter Lodahl, A. Floris van Driel, A. FemiusKoenderink, andWillem L. Vos,Strongly nonexponential time-resolved fluorescence of quantum-dotensemblesin three-dimensional photonic crystals [J], Phys. Rev. B,2007,75,115302-1-5.
    [51] Ivan S. Nikolaev, Peter Lodahl, and Willem L. Vos, Fluorescence Lifetime ofEmitters with Broad Homogeneous Linewidths Modified in Opal, Photonic Crystals[J], J. Phys. Chem. C2008,112,7250-7254.
    [52] J. Zhou, Y. Zhou, S. Buddhudu, S. L. Ng, Y. L. Lam, and C. H. Kam,Photoluminescence of ZnS:Mn embedded in three-dimensional photonic crystals ofsubmicron polymer spheres [J], Appl. Phys. Lett.2000,76,3513-3515.
    [53] J. Gutmann, H. Zappe, and J. C. Goldschmidt, Quantitative modeling offluorescent emission in photonic crystals [J], Phys. Rev. B2013,88,205118.
    [54] M. Megens, J. E. G. J. Wijnhoven, A. Lagendijk, and W. L. Vos, Fluorescencelifetimes and linewidths of dye in photonic crystals [J], Phys. Rev. A1999,59,4727-4731.
    [55] E. P. Petrov, V. N. Bogomolov, I. I. Kalosha, and S. V. Gaponenko,Spontaneous Emission of Organic Molecules Embedded in a Photonic Crystal [J],Phys. Rev. Lett.1998,81,77-80.
    [56] M. Barth, A. Gruber, and F.Cichos, Spectral and angular redistribution ofphotoluminescence near a photonic stop band [J], Phys. Rev. B2005,72,085129.
    [57] W. L. Vos, A. F. Koenderink, and I. S. Nikolaev, Orientation-dependentspontaneous emission rates of a two-level quantum emitter in any nanophotonicenvironment [J], Phys. Rev. A2009,80,053802-1-7.
    [58] P. Bermel, A. Rodriguez, J. D. Joannopoulos, and M. Soljacic, TailoringOptical Nonlinearities via the Purcell Effect [J], Phys. Rev. Lett.2007,99,053601-1-4.
    [59] X. H. Wang, R. Z. Wang, B. Y. Gu, and G. Z. Yang, Decay Distribution ofSpontaneous Emission from an Assembly of Atoms in Photonic Crystals withPseudogaps [J], Phys. Rev. Lett.,2002,88,093902-1-4.
    [60] M. Megens, J. E. G. J. Wijnhoven, A. Lagendijk, and W. L. Vos, Fluorescencelifetimes and linewidths of dye in photonic crystals [J], Phys. Rev. A1999,59,4727-4731.
    [61] Y. S. Zhu, W. Xu, H. Z. Zhang, W. Wang, L. Tong, S. Xu, Highly modifiedspontaneous emissions in YVO4:Eu3+inverse opal and refractive index sensingapplication [J], Appl. Phys. Lett.,2012,100,081104-1-4.
    [62] W. Wang, H. W. Song, X. Bai, Q. Liu and Y. S. Zhu, Modified spontaneousemissions of europium complex in weak PMMA opals [J], Phys. Chem. Chem.Phys.,2011,13,18023–1

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700