手功能康复机器人系统若干关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着偏瘫患者数量的逐年增加,患者运动功能的康复越来越多地引起人们的重视。运动功能的恢复对患者的日常生活能力影响很大,也是康复治疗中难以解决的问题之一,已成为现代康复医学和医疗工程的研究热点。康复机器人技术研究正是在这种需求形式下应运而生的一个崭新的研究领域,涉及到机器人学、康复医学、人体工程学、机械设计、控制理论及计算机科学等众多领域。
     在国家863课题和自然科学基金的资助下,本文以自行研制的穿戴式手功能康复机器人为基础,对其本体机械结构及控制系统设计、驱动器的建模与控制、人手表面肌电信号的辨识等关键技术展开了深入的研究。本文主要的工作和贡献体现在以下几个方面:
     分析和比较了现有的手功能康复设备,对人手的结构与功能、手指的运动约束进行了调查,并研究了具有代表性的食指生物力学模型。在此基础上研究了手功能康复机器人的机械结构设计。根据临床康复的需求,考虑穿戴的舒适性,安全性及运动的柔顺性,设计了针对手指多关节运动功能康复的机构。基本的结构采用连杆的外骨骼形式,驱动器选用柔顺性好的气动肌肉。搭建手功能康复机器人控制系统实验平台,并进行了基本的实验研究,验证了机构和控制系统的有效性。同时,还提出了机构改进的方案,为进一步设计真正临床实用化的手功能康复机器人奠定了良好的基础。
     针对手功能康复机器人的驱动器——气动肌肉所组成的两种不同形式的驱动关节进行了分析和比较,说明气动肌肉扭力弹簧驱动关节是一种有效的驱动形式,非常适合于手功能康复机器人的应用。由于气动肌肉具有很强的时变和非线性特性,难以精确控制,因此,本文对气动肌肉的建模与控制进行了深入的研究。首先通过实验对气动肌肉的“三元素”模型进行了辨识,并在此基础上设计了滑模控制器,考虑到未建模的动力学以及系统存在的不确定的扰动,采用干扰观测器对这些不确定的非线性扰动进行观测,设计了基于非线性扰动观测器的滑模控制器,仿真和实验结果表明当系统存在不确定的建模误差和外部扰动的情况下,设计的控制方法可以保证系统跟踪性能要求。不同的制作工艺和材料特性会导致气动肌肉具有不同的动态特性,为了寻求更为通用和便捷的建模和控制方法,还采用一种新型的递归神经网络——回声神经网络对气动肌肉进行了建模,并基于回声神经网络设计了自适应控制器,通过仿真和实验进行了比较,说明了方法的有效性。
     表面肌电信号反馈也是手功能康复机器人的一个重要组成部分,可用于康复评价和肌电控制策略中的意图检测,因此,本文也对人手表面肌电信号的辨识进行了较为深入的研究。采集人手做屈肘、伸肘、腕内旋、腕外旋、展拳及握拳六种不同动作时的表面肌电信号,利用离散小波分解提取特征值。针对特征值,采用支持向量机进行了分类,取得了很好的分类效果。通过与神经网络分类器的进一步比较可以发现,支持向量机对小规模样本的分类更加有效,具有同神经网络类似的优点,自动提取分类信息和自动特征选择,且具有更好的泛化能力,容易实施和控制,不会产生神经网络的局部极小和过学习的问题。
     最后,对全文进行了总结,并指出了下一步需要进行的工作。
     本博士论文通过深入研究手功能康复机器人系统的若干关键技术问题,为发展面向临床应用的手功能康复机器人系统提供必要的理论依据、实验数据和研究经验。随着研究工作的进一步深入和完善,手功能康复机器人将最终转化为康复产品,为更多的患者提供康复训练,提高他们的康复效果和生活质量,具有积极的学术和实际意义。
With the increasing number of the hemiplegia patients, attention has been drawn to the rehabilitation therapy of the movement functional disorder. Rehabilitation of the movement function has influenced on patient's daily life greatly. In nowadays, this topic is one of the most difficult problems in rehabilitation therapy and has become a hotspot of modern rehabilitation and medical studies. Rehabilitation robot research was born as a new study area due to the great demand in rehabilitation of the movement function. It involves robotics, rehabilitation medicine, ergonomics, mechanical design, control theory, computer science and other fields.
     Under the support grants from National 863 project and National Natural Science Foundation, the research work in this dissertation focus on investigation some key technologies of wearable robot for rehabilitation of hand function. Our study includes mechanical and control system design of rehabilitation robot, modeling and control of pneumatic muscle actuator, identification of hand's surface electromyography (sEMG) signal, and so on. The main contributions of this dissertation focus on the following aspects:
     First, the existing rehabilitation equipments for hand function are analyzed and compared. The structure, function and motion constraints of human hand are analyzed and biomechanical model of representative index finger is also investigated. Based on the investigations, the mechanical design of the hand rehabilitation robot is studied. Considering the needs of clinical rehabilitation, the wearing comfort, as well as safety and flexibility of motion, we design a mechanism which can assist fingers to complete multi-joints functional rehabilitation movements. The exoskeleton structure is adopted and the flexible PMs are selected as its actuator. A control system platform of the hand rehabilitation robot is built and the basic control experiments are also implemented to verify the effectiveness of the mechanical and control system. Furthermore, the improved mechnical design is also proposed, which lays a good foundation for realizing the clinical use of the hand rehabilitation robot.
     Two different structural actuators consisting of the pneumatic muscle (PM) which is work as rehabilitation robot's actuator are analyzed and compared. The work indicates the proposed actuator configuration consisting of the PM and the torsion spring is an effective and promising method for rehabilitation robot application. The complex nonlinear dynamics and time-varying parameters of the PM make it difficult to control. Thus, the modeling and control of PM are also investigated in this dissertation. We identify three-element model of the PM by experiments. Based on this model, the sliding mode controller is designed. Considering the unmodeled dynamics and uncertain disturbance in the system, the disturbance observer is adopted to compensate for these uncertain nonlinear disturbances. The simulation and experimental results demonstrated that the model and the controller achieved the desired performance in tracking a desired trajectory within guaranteed accuracy regardless of modeling uncertainties and perturbation. The PM made by different workmanship and material has different dynamics. To get more convenient modeling and control method, a new type of recurrent neural networks-Echo Neural Network (ESN) is proposed to model the PMs. The adaptive controller is developed based on ESN. The effectiveness of the proposed method is validated by simulation and experiments.
     The other important part of the rehabilitation robot is the sEMG signal feedback, which can be used to evaluate the effectiveness of the rehabilitation and recognize the motion intension. In order to fulfill the sEMG signal recognizing task, sEMG signal of elbow flexion, elbow extension, wrist pronation, wrist supination, palm extension and fist are collected. Then discrete wavelet transform is used to extract the signal's features. The Support Vector Machines (SVM) is used to classify these features. Compared with the neural network classifier, the experimental results show that SVM is more effective for small-scale sample classification. Besides having the advantages of neural network, which can extract the classification information and select features automatically, SVM also has better generalization ability and is easy to apply and control. Furthermore, it overcomes the disadvantages of artificial neural network such as overlearning and partially leading to minimum.
     Finally, the summary of this dissertation and the directions of future work are presented.
     Some key issues on hand rehabilitation robot system are investigated deeply in this thesis. These works provide the necessary theoretical basis, experimental data and valuable research experience for development of the clinic-oriented hand rehabilitation robot. With improvement of the further research work, some products on hand rehabilitation robot will be realized. These products can provide more patients effective rehabilitation training and improve the quality of rehabilitation. This is a research work of positive academic and practical significance.
引文
[l]陈景藻.康复医学.北京:高等教育出版社,2001:26-177
    [2]Jenkins W M. Reorganization of neocortical representations after brain injury:a neurophysiological model of the bases of recovery from stroke. Progress in Brain Research, 1987,71:249-266
    [3]Pons T P, Garraghty P E, Ommaya A K, et al. Massive cortical reorganization after sensory deafferentation in adult macaques. SCIENCE.1991,252:1857-1860
    [4]胡宇川,季林红.一种偏瘫上肢复合运动的康复训练机器人.机械设计与制造,2004,(06):47-49
    [5]胡宇川.偏瘫上肢复合运动康复训练机器人的研制:[硕士学位论文].北京:清华大学,2004
    [6]Hawing W S. A review of design issues in rehabilitation robotics with reference to North American Research. IEEE Trans on Rehabilitation Engineering.1995,3(1):3-13
    [7]Erlandson R F. Applications of robotic/mechatronic systems in special education, rehabilitation therapy, and vocational training:a paradigm shift. IEEE Trans. on Rehabilitation Engineering. 1995,3(1):22-34
    [8]Krebs H I, Volpe B T, Williams D, et al. Robot-Aided Neurorehabilitation:A Robot for Wrist Rehabilitation. IEEE Trans on Rehabilitation Engineering.2007,15(3):327-335
    [9]Lum P S, Loos M V, Shor P. A robotic system for upper-limb exercises to promote recovery of motor function following stroke. In:Proc.6th Intern. Conf. on Rehabilitation Robotics. Madison, USA:July 1-2,1999.235-239
    [10]Burgar C G, Lum P S, Shor P C, et al. Development of robot for rehabilitation therapy:The PALO Alto VA/Stanford experience. J. Rehabilitation Research and Development.2000,37(6): 663-673
    [11]Reinkensmeyer D J, Kahn L E, Averbuch M, et al. Understanding and treating arm movement impairment after chronic brain injury:progress with the ARM Guide. J. Rehabilitation Research and Development.2000,37:653-662
    [12]车仁炜,吕广明,孙立宁.五自由度康复机械手臂的设计.机械设计.2005,22(4):18-21
    [13]Kiguchi K, Tanaka T, Watanabe, et al. Designed and control of an exoskeleton system for human upper-limb motion assist. In:Proc.2003 IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics (AIM 2003). Kobe:2003.926-931
    [14]Kiguchi K, Tanaka T, Wantanabe, et al. Exoskeleton for Human Upper-Limb Motion Support. In:Proc.2003 IEEE Conf. on Robotics & Automation. Taiwan:2003.2206-2211
    [15]王广志,任宇鹏,季林红等.机器人辅助运动神经康复的研究现状.机器人技术与应用.2004(04):9-14
    [16]任宇鹏.辅助上肢运动功能康复机器人的控制和评价系统研究:[硕士学位论文].北京:清华大学,2004
    [17]李会军,宋爱国.上肢康复训练机器人的研究进展及前景.机器人技术与应用.2006(04):32-36
    [18]李军强.康复医疗手臂外骨骼系统的研究:[硕士学位论文].天津:河北工业大学,2005
    [19]He Jiping, Koeneman E J, Schultz R S, et al. RUPERT:a device for robotic upper extremity repetitive therapy. In:Proc.27th EMBS. Shanghai, China:Sept.,2005.6844-6847
    [20]Sugar T Q He Jiping, Koeneman E J, et al. Design and Control of RUPERT:A Device for Robotic Upper Extremity Repetitive Therapy. IEEE Trans. on Rehabilitation Engineering.2007, 15(3):336-346
    [21]Kousidou S, Tsagarakis N G and Caldwell D G. Evaluation of a "Soft" Exoskeleton for Rehabilitation and Physiotherapy of the Upper Limb. Autonomous Robots.2003,15(1):21-33
    [22]Popescu V G, Burdea G C, Bouzit M, et al. A virtual-reality-based telerehabilitation system with force feedback. IEEE Trans. on Information Technology in Biomedicine.2000,4(1): 45-51
    [23]Bouzit M, Popescu G, Burdea G, et al. The Rutgers Master II-ND Force Feedback Glove. In: Proc. IEEE VR Haptics Symposium. Orlando, FL:March 2002.145-152
    [24]Takahashi C D, Yeghiaian L D, Le V, et al. Robot-based hand motor therapy after stroke. Brain. 2008, (131):425-437
    [25]Sarakoglou I, Tsagarakis N G and Caldwell D G. Occupational and physical therapy using a hand exoskeleton based exerciser. In:Proc.2004 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems. Sendai, Japan:2004.2973-2978
    [26]Tsagarakis N. and Caldwell D G, Improved modeling and assessment of pneumatic muscle actuators. In:Proc.2000 IEEE Int. Conf. on Robotic and Automation, San Francisco, CA, USA: 2000.3641-3646
    [27]Noritsugu T, Yamamoto H, Sasaki D, et al. Wearable power assist device for hand grasping using pneumatic artificial rubber muscle. In:Proc. Annual Conference of SICE. Sapporo, Japan: 2004.420-425
    [28]Koeneman E J, Schultz R S, Wolf S L, et al. A pneumatic muscle hand therapy device. In:Proc. 26th Annual Int. Conf. of the IEEE EMBS, San Francisco, CA, USA:2004.2711-2713
    [29]Dario P, Guglielmelli E, Allotta B, et al. Robotics for medical applications. IEEE Robotics and Automation Magazine.1996,3(3):44-56.
    [30]http://www.sammonspreston.com/app.aspx?cmd=get_product&id=74161
    [31]张付祥.创伤手指康复机械手系统研究:[博士学位论文].哈尔滨:哈尔滨工业大学,2007
    [32]刘博,张玉茹,任大伟等.人手食指运动学建模.机器人.2007,29(3):214-218
    [33]Turner M L. Programming Dexterous Manipulation by Demonstration:[PHD thesis]. USA: Stanford University,2001
    [34]Heap T and Hogg D. Wormholes in shape space:tracking through discontinuous changes in shape. In:Proc. Sixth. Int. Conf. on Computer Vision (ICCV98). Bombay, India:1998.344-349
    [35]Pavlovic V, Sharma R, Huang T S. Visual Interpretation of Hand Gestures for Human-Computer Interaction:A Review. IEEE PAMI.1997,19(7):677-695
    [36]Chang C, Tsai W. Model-Based Analysis of Hand Gesture Form Single Images Without Using Marked Gloves Or Attaching Marks on Hands. In:the Fourth Asian Conference on Computer Vision (ACCV2000).2000.923-930
    [37]Chua C S, Guan H Y and Ho Y K. Model-based Finger Posture Estimation. In:the Fourth Asian Conference on Computer Vision (ACCV2000).2000.43-48.
    [38]Kuch J and Huang T S. Vision-based Hand Modeling and Tracking for Virtual Teleconferencing and Teleconlaboration. In:Proc. Fifth Int. Conf. on Computer Vision (ICCV95).1995.666-671
    [39]Lin John, Wu Ying, Huang T S. Modeling the constraints of human hand motion. Workshop on Human Motion.2000.121-126
    [40]Landsmeer J M F. Anatomical and functional investigations on the articulations of the human fingers. Acta anatomica, suppl.,1955,25:1-69.
    [41]Landsmeer, J M F. Study in the anatomy of articulation 1. The equilibrium of the'intercalated' bone. Acta Morphol Neerl Scand.1961,3:287-303
    [42]An K N, Ueba Y, Chao E Y, et al. Tendon excursion and moment arm of index finger muscles. J Biomech.1983,16(6):419-425
    [43]Smith E M, Juvinall R C, Bender L F, et al. Role of the finger flexors in rheumatoid deformities of the metacarpophalangeal joints. Arthritis & Rheumatism.1964,7(5):467-480
    [44]Flatt A E. Some pathomechanics of ulnar drift. Plastic and Reconstructive Surgery.1966,37: 295-303.
    [45]An K N, Chao E Y, Cooney W P, et al. Normative model of human hand for biomechanical analysis. Journal of Biomechanics.1979,12(10):775-788
    [46]Penrod D D, Davy D T, Singh D P. An optimization approach to tendon force analysis. Journal
    of Biomechanics.1979,7(2):123-129
    [47]Chao E Y, Opgrande J D, Axmear F E. Three-dimensional force analysis of finger joints in selected isometric hand functions. J Biomech.1976,9(6):387-396.
    [48]Storace A, Wolf B. Functional analysis of the role of the finger tendons. J Biomech.1979, 12(8):575-578
    [49]Youm Y, Gillespie T T, Flatt A E, et al. Kinematic investigation of normal MCP joint. Journal of Biomechanics.1978,11(3):109-118
    [50]Esteki A, Mansour J M. A dynamic model of the hand with application in functional neuromuscular stimulation. Annals of Biomedical Engineering.1997,25(3):440-451
    [51]Mommersteeg T J A, Blankevoort L, Huiskes R, et al. Characterization of the mechanical behavior of human knee ligaments:a numerical-experimental approach. Journal of Biomechanics.1996,29 (2):151-160
    [52]杨桂通.生物力学.重庆:重庆出版社,2000:79
    [53]Bhaler A S. Modeling of mammalian skeletal muscle. IEEE Transaction on BioMedical Engineering.1968, BME-15(4):249-257
    [54]Hatze H. A myocybernetic control model of skeletal muscle. Biological Cybernetics.1997,25: 103-119
    [55]Van den Bogert A J and Nigg B M. Simulation. In:Biomechanics of the musculo-skeletal system. John Wiley and Sons, Ltd.1999.594-617
    [56]Sancho-Bru J L, Perez-Gonzalez A, Vergara-Monedero M, et al. A 3-D dynamic model of human finger for studying free movements. Journal of Biomechanics,2001,34(11):1491-1500
    [57]Kaufman K R, An K N, Litchy W J, et al. Physiological prediction of muscle forces-Ⅰ. Theoretical formulation. Journal of Neuroscience.1991,40 (3):781-792
    [58]Brown I E, Cheng E J, Leob G Measured and modeled properties of mammalian skeletal muscle. Ⅱ. The effects of stimulus frequency on force-length and force-velocity relationships. J. of Muscle Research and Cell Motility,1999,20:627-643
    [59]Wrighy A K and Stanisic M M. Kinematic mapping between the EXOS handmaster exoskeleton and the UTAH/MIT dextrous hand. In:Proc. of Systems Engineering.1990.101-104
    [60]Zhou Zhihua, Wan Huagen, Gao Shuming, et al. A realistic force rendering algorithm for CyberGrasp. In:Proc. Ninth International Conference on Computer Aided Design and Computer Graphics. Hong Kong, China.2005.409-414
    [61]卫玉芬,李小宁.MiKibben型气动肌肉.液压与气动.2003,(03):22-23
    [62]张远深,刘明春,赵娜等.McKibben气动人工肌肉技术的发展历程.液压与气动,2008(07):
    13-15
    [63]Daerden F and Lefeber D. The concept and design of pleated pneumatic artificial muscles. International Journal of Fluid Power.2001,2(3):41-50
    [64]Chou C P and Hannaford B. Static and Dynamic Characteristics of McKibben Pneumatic Artificial Muscles. In:Proc.1994 IEEE Int. Conf. on Robotic and Automation. San Diego, USA.1994,1:281-286
    [65]Schulte H F. The characteristics of the McKibben artificial muscle. In:The Application of External Power in Prosthetics and Orthotics. Washington, DC.1961. Pub.874, National Academy of Science-National Research Council 94-115
    [66]Chou C P and Hannaford B. Measurement and Modeling of McKibben Pneumatic Artificial Muscle. IEEE Transactions on Robotics and Automation.1996,12(1):90-102
    [67]Caldwell D G, Medrano-Cerda G A, Goodwin Mike. Control of Pneumatic Muscle Actuators. IEEE Control System Magazine.1995,15(1):40-48
    [68]Tondu B and Lopez P. Modeling and control of McKibben artificial muscle robot actuators. IEEE Control Systems Magazine,2000,20(2):15-38
    [69]Tondu B and Lopez P. The McKibben muscle and its use in actuating robot-arms showing similarities with human arm behavior. Industrial Robotics.1997,24(6),432-439
    [70]Klute G K and Hannaford B. Accounting for elastic energy storage in McKibben artificial muscle actuators. Journal of Dynamics Systems, Measurement and Control.2000,122(2): 386-388
    [71]Colbrum R W, Nelson G M, Quinn R D. Modeling of Braided Pneumatic Actuators for Robotic Control. In:Proc.2001 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems. Maui, Hawaii, USA.2001.1964-1970
    [72]Colbrum R W. Design and control of a robotic leg with braided pneumatic actuators:[Master thesis]. USA:Case Western Reserve University,2000
    [73]Repperger D W, Johnson K R and Phillips C A. Nonlinear Feedback Controller Design of A Pneumatic Muscle Actuator System. In:Proc. American Control Conference. San Diego, California.1999.1525-1529
    [74]Repperger D W, Phillips C A, Neidhard-Doll A, et al. Actuator design using biomimicry methods and a pneumatic muscle system. Control Engineering Practice.2006,14(9),999-1009
    [75]Reynolds D B, Repperger D W, Phillips C A, et al. Dynamic characteristics of pneumatic muscle. Ann. Biomed. Eng.2003,31(3):310-317
    [76]田社平,林良明.人工肌肉静态特性及其测量.实用测试技术,1998,(6):12-14
    [77]刘荣,宗光华.人工肌肉驱动特性研究.高技术通讯,1998,(6):34-38
    [78]隋立明,包钢,王祖温.气动人工肌肉驱动关节特性研究.液压与气动.2002,(3):3-5
    [79]杨刚,李宝仁,傅晓云.气动人工肌肉系统动态特性研究.中国机械工程.2006,12:1294-1298
    [80]Caldwell D G, Medrano-Cerda G A, Goodwin M. Characteristics and adaptive control of pneumatic muscle actuators for a robotic elbow. In:Proc.1994 IEEE Int. Conf. on Robotics and Automation. San Diego, USA.1994.3558-3563
    [81]Kawashima K, Sasaki T, Ohkubo A, et al. Application of robot arm using fiber knitted type pneumatic artificial rubber muscles. In:Proc. IEEE Int. Conf. Robotics and Automation.2004. 4937-4942.
    [82]Lilly J H. Adaptive tracking for pneumatic muscle actuators in bicep and tricep configurations. IEEE Trans. Neural Systems and Rehabilitation Engineering.2003,11(3):333-339
    [83]Lilly J H, Senior Member, IEEE, and Yang Liang, Sliding Mode Tracking for Pneumatic Muscle Actuators in Opposing Pair Configuration. IEEE Transactions on Control Systems Technology.2005,13(4):550-558
    [84]Chan S W, Lilly J H, Repperger D W, et al. Fuzzy PD+I learning control for a pneumatic muscle. In:Proc. IEEE Int.Conf. Fuzzy Systems.2003, vol.1.278-283
    [85]Carbonell P, Jiang Z P, and Repperger D W. A fuzzy backstepping controller for a pneumatic muscle actuator system. In:Proc. IEEE Int. Conf. Intelligent Control.2001.353-358
    [86]Djouadi S M, Repperger D W, Berlin J E. Gain-scheduling H∞ control of a pneumatic muscle using wireless MEMS sensors. In:Proc.2001 Midwest Symposium on Circuits and Systems. Dayton.2001.734-737
    [87]Carbonell P, Jiang Z P, Repperger D W. Nonlinear Control of a Pneumatic Muscle Actuator: Backstepping vs. Sliding-mode. In:Proc.2001 IEEE Int. Conf. on Control Applications. Mexico City.2001.167-172
    [88]Repperger D W, Johnson K R and Philips C A. A VSC Position Tracking System Involving a large Scale Pneumatic Muscle Actuator. In:Proc.37th IEEE Conf. on Decision & Control. Tampa, Florida, USA.1998.4302-4307
    [89]Medrano-Cerda G A, Bowler C J and Caldwell D G. Adaptive Position Control of Antagonistic Pneumatic Muscle Actuators. In:Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems. Pittsburgh, USA.1995.378-383
    [90]Hesselroth T, Sarkar K, van der Smagt P, et al. Neural Network Control of a Pneumatic Robot Arm. IEEE Transaction on Systems, Ma. and Cybernetics.1994,24(1):28-38
    [91]Cai D, Yamaura H. A Robust Controller for Manipulator Driven by Artificial Muscle Actuator. In:Proc. IEEE Conf. on Control Application. Dearborn, USA.1996.540-545
    [92]Osuka K, Kimura T and Ono T. Hoo Control of A Certain Nonlinear Actuator. In:Proc.29th Conf. on Decision and Control. Honolulu, Hawaii.1990.370-371
    [93]宗光华.利用变结构理论实现人工肌肉夹持力控制.机器人.1990,12(4):15-20
    [94]杨刚.气动人工肌肉位置伺服系统研究及其应用:[博士学位论文],武汉:华中科技大学,2004.
    [95]田社平,丁国清,林良明等.人工肌肉的自适应预测控制.仪器仪表学报,2001,22(3):86-87
    [96]田社平,林良明,颜国正.基于神经网络的人工肌非线性控制.上海交通大学学报,2001,35(5):713-716
    [97]加玉涛,罗志增.肌电信号特征提取方法综述.电子器件,2007,30(1):326-330.
    [98]Kuribayashi K, Shimizu S, Okimura K, et al. A Discrimination System Using Neural Network for EMG-Controlled Prostheses-Integral type of EMG Signal Processing. In:Proc.1993 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems,1983.1750-1755
    [99]Saridis G N, Gootee T P. EMG pattern analysis and classification for a prosthetic arm. IEEE Trans. Biomed. Eng.1982,29(6):403-412
    [100]Graupe D, Cline W K. Functional Separation of EMG Signals via ARMA Identification Methods for Prosthesis Control Purposes. IEEE Trans. Syst. Man Cybern.1975,5(2):252-259
    [101]Graupe D. Multifunctional prosthesis and orthosis control via microcomputer identification of temporal pattern differences in single site myoelectric signals. J.Biomed. Eng.1982,4(1): 17-22
    [102]Sherif M H, Gregor R J, Lyman J. Effects of load on myoelectric signals:the ARIMA representation. IEEE Trans. Biomed Eng.1981,28(5):411-416.
    [103]Stulen Foster B, De Luca, Carlo J. Frequency Parameters of the Myoelectric Signal as a Measure of Muscle Conduction Velocity. IEEE Trans. Biomed Eng.1981,28(7):515-523
    [104]Park E, Meek S G. Fatigue Compensation of the Electromyographic Signal for Prosthetic Control and Force Estimation. IEEE Trans. Biomed Eng.1993,40(10):1019-1023
    [105]Georgakis A, Stergioulas L K, Giakas G. Fatigue analysis of the surface EMG signal in isometric constant force contractions using the averaged instantaneous frequency. IEEE Trans. Biomed Eng.2003,50(2):262-265
    [106]飞思科技产品研发中心.小波分析理论与MATLAB7实现.北京:电子工业出版社,2005:3.
    [107]Potvin J R. and Bent L R. A Validation of Techniques Using Surface EMG Signals from Dynamic Contractions to Quantify Muscle Fatigue During Repetitive Tasks. J. Electromyography and Kinesiology,1997,7(2):131-139
    [108]蔡立羽,王志中,张还虹.基于短时傅立叶变换的肌电信号识别方法.中国医疗器械杂志.2000,24(3):133-136
    [109]Davies M R, Reisman S S. Time frequency analysis of the electromyogram during fatigue. In: Proc.20th Annual Northeast Bioengineering Conference.1994.93-95.
    [110]Jang G C, Cheng C K, Lai J S and Kuo T S. Using time-frequency analysis technique in the classification of surface EMG signals. In:Proc. Annual Int. Conf. IEEE Engineering in Medicine & Biology Society.1994.1242-1243.
    [111]Unser M, Aldroubi A. A review of wavelets in biomedical applications. Proceedings of the IEEE,1996,84(4):626-638
    [112]Laterza F, Olmo G. Analysis of EMG signals by means of the matched wavelet transform. Electronics letters,1997,33(5):357-359
    [113]Karlsson S, Yu J, and Akay M. Enhancement of spectral analysis of myoelectric signals during static contractions using wavelet methods. IEEE Trans. Biomed Eng.1999,46(6):670-684
    [114]Moulin P. Wavelet thresholding techniques for power spectrum estimation. IEEE Trans. Signal Processing.1994,42(11):3126-3136
    [115]Sparto P J, Parnianpour M, Barria E A, et al. Wavelet and short-time Fourier transform analysis of electromyography for detection of back muscle fatigue. IEEE Trans. on Rehabil. Eng.2000, 8(3):433-436
    [116]Kelly M, Parker P, Scott R. The application of neural networks to myoelectric signal analysis:a preliminary study. IEEE Trans. Biomed Eng.1990,37(3):221-229
    [117]Lester W T, Fernandez B, Gonzalez R V, et al. Neural network approach to electromyography signal processing for a motor control task. In:Proc.1994 American Control Conference.1994. 2548-2552
    [118]Heinz M, Knapp R B. Neural network based classifier for the identification of simple finger motion. In:Proc.1996 IEEE Inter. Conf. on Neural Networks.1996.1606-1609
    [119]Del Boca A, Park D C. Myoeletric Signal Recognition Using Fuzzy Clustering and Artificial Neural Networks in Real Time. In:Proc.1994 IEEE Int. Conf. on Neural Networks.1994. 3098-3103
    [120]Cortes C, Vapnik V. Support vector networks. Machine Learining.1995,20:273-297
    [121]Vapnik V. An Overview of Statistical Learning Theory. IEEE Trans. Neural Networks.1999, 10(5):988-999
    [122]Scholkopf B, Kah-Kay S, Burges, C J C, et al. Comparing Support Vector Machines with Gaussian Kernels to Radial Basis Function Classifiers. IEEE trans. Signal Processing.1997, 45(11):2758-2765
    [123]Wan V, Campell W M. Support Vector Machines for Speaker Verification and Identification. In:
    Proc. IEEE Workshop Neural Networks for Signal Processing. Sydne, Australia.2000.775-784
    [124]Osuna E, Freund R, Girosit F. Training Support Vector Machines:An Application to Face Detection. In:Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition.1997.130-136
    [125]Joachims T. Tranductive Inference for Text Classification Using Support Vector Machines. In: Proc. Int. Conf. Machine Learning. Slovenia.1999.200-209
    [126]Yom-Tov E, Inbar G F. Selection of relevant features for classification of movements from single movement-related potentials using a genetic algorithm. In:Proc.23rd Annual Int. Conf. on Engineering in Medicine and Biology Society,2001.1364-1366
    [127]Osowski S, Hoai L T, Markiewicz T. Support vector machine-based expert system for reliable heartbeat recognition. IEEE Transactions on Biomedical Engineering,2004,51(4):582-589
    [128]谢洪波等.基于灰色理论的表面肌电分类.生物医学工程学杂志.2004,21(6):901-904
    [129]Buchner H J, Hines M J, Hemami H. A dynamic model for finger interphalangeal coordination. J Biomechanics.1988,21(6):459-468
    [130]北拱,司系.扭力弹簧计算中的几个问题.机床与液压.2003,12(3):13-16
    [131]O'Conner R. Pistonless' actuator speeds paper punch. Design news.2001,57(6),70.
    [132]Tondu B, Boitier V, Lopez P. Naturally compliant robot-arms actuated by McKibben artificial muscles. In:Proc. IEEE Int. Conf. Systems, Man, and Cybernetics. San Antonio, USA.1994. 2635-2640.
    [133]Caldwell D G, Tsagarakis N, Medrano-Cerda G A, et al. A Pneumatic muscle actuator driven manipulator for nuclear waste retrieval. Control Engineering Practice.2001,9(1):23-26
    [134]Caldwell D G, Medrano-Cerda G A and Goodwin M J. Braided Pneumatic Actuator Control of a Multi-Jointed Manipulator. In:Proc. IEEE Int. Conf. Systems, Man, and Cybernetics. Le Touquet, France.1993.423-428
    [135]范伟,彭光正,黄雨.气动人工肌肉驱动器的研究现状及发展趋势.机床与液压.2003,35(1):32-36
    [136]张瑞红,王人成.人体下肢表面肌电信号的检测与分析.清化大学学报(自然科学版).2004,40(8):73-76
    [137]许虹岩,付宜利,王树国等.仿生机器人的研究.机器人.2004,26(3):91-96
    [138]Ahn K K, Nguyen H T C. Intelligent switching control of a pneumatic muscle robot arm using learning vector quantization neural network. Mechatronics.2007,17 (425):255-262
    [139]Noritsugu T and Tanaka T. Application of Rubber Artificial Muscle Manipulator as a Rehabilitation Robot. IEEE/ASME Transactions on Mechatronics.1997,2(4):259-267
    [140]Ferris D P, Czerniecki J M, Hannaford Blake. An Ankle-Foot Orthosis Powered by Artificial
    Pneumatic Muscles. Journal of Appl. Biomech.2005,21(2):189-197.
    [141]隋立明,张立勋.气动肌肉驱动仿生关节的理论分析.机床与液压.2007,35(6):113-116
    [142]Slotine J J and Li W. Applied Nonlinear Control. Englewood Cliffs, NJ:Prentice-Hall,1991: 276-310.
    [143]Cheng J, Yi J and Zhao D, Design of a sliding mode controller for trajectory tracking problem of marine vessels. IET Control Theory Appl.2007,1(1):233-237
    [144]Lilly J H, Yang L, Sliding Mode Tracking for Pneumatic Muscle Actuators in Opposing Pair Configuration. IEEE Transactions on Control Systems Technology.2005,13(4):550-558
    [145]Niu Y and Ho D W C. Design of sliding mode control for nonlinear stochastic systems subject to actuator nonlinearity. IEE Proc.-Control Theory Appl.2006,153(6):737-744
    [146]Koshkouei A J, Burnham K J and Zinober A S I. Dynamic sliding mode control design. IEE Proc.-Control Theory Appl.2005,152(4):392-396
    [147]Eom K S, Suh I H, Chung W K, et al. Disturbance Observer Based Force Control of Robot Manipulator without Force Sensor. In:Proc.1998 IEEE Int. Conf. Robotics & Automation. Leuven, Belgium.1998.3012-3017
    [148]Chen W H, Ballance D J, Gawthrop P J. A nonlinear disturbance observer for robotic manipulators. IEEE Trans. on industrial electronics.2000,47(4):932-937
    [149]Elmali H, Olgac N. Satellite attitude control via sliding mode with perturbation estimation. IEE Proc.-Control Theory Appl.1996,143(3):276-282
    [150]Chen W H. Nonlinear disturbance observer enhanced dynamic inversion control of missiles. Journal of Guidance, control, and Dynamics.2003,26(1):161-166.
    [151]Chen W H. A harmonic disturbance observer for nonlinear system. Transaction of the ASME Journal of dynamic systems, measurement and control.2003,125(1):114-117
    [152]Chen W H. Disturbance Observer Based Control for Nonlinear Systems. IEEE/ASME Transactions on Mechatronics.2004,9(4):706-710
    [153]Euntai Kim. A fuzzy disturbance observer and its application to control. IEEE Trans. on fuzzy system,2002,10(1):77-85
    [154]Lin F J, Chou P H, Kung Y S. Robust fuzzy neural network controller with nonlinear disturbance observer for two-axis motion control system. IET Control Theory Appl.2008,2(2): 151-167
    [155]历风满.数字PID控制算法的研究.辽宁大学学报(自然科学版).2005,32(4):367-370
    [156]刘金琨.先进PID控制MATLAB仿真.北京:电子工业出版社,2004:102-120
    [157]王俊国.基于神经网络的建模方法与控制策略研究:[博士学位论文].武汉:华中科技大学,2004
    [158]Jaeger H. The Echo State Approach to Analyzing and Training Recurrent Neural Networks. GMD Report 148, GMD-German National Research Institute for Computer Science,2001.
    [159]田社平,丁国清,颜德田等.人工肌肉系统神经网络建模与控制.中国生物医学工程学报.2003,22(4):300-308.
    [160]Atiya A F, Parlos A G. New results on recurrent network training:Unifying the algorithms and accelerating convergence. IEEE Trans. Neural Network.2000,11(3):697-709
    [161]Pearlmutter B A. Gradient calculation for dynamic recurrent neural networks:a survey. IEEE Trans. on Neural Networks.1995,6(5):1212-1228
    [162]Jaeger H. Short term memory in echo state networks. GMD-Report 152, GMD-German National Research Institute for Computer Science,2002
    [163]Maas W, Natschlager T, Markram H. Real-time Computing without Stable Stetes:A New Framwork for Neural Computing Based on Perturbatio. Neural Computing.2002,14(11): 251-2560
    [164]Jaeger H. A tutorial on training recurrent neural networks. GMD-Report 159, German National Research Institute for Computer Science,2002
    [165]Ploger P G, Arghir A, Gunther T, et al. Echo State Networks for Mobile Robot Modeling and Control. In:Proc. RoboCup.2003.157-168.
    [166]Cotter N E, Conwell P R. Fixed-weight networks can learn. In:International Joint Conference on Neural Networks (IJCNN 1990).1990.553-559
    [167]Back A D, Chen T. Universal approximation of multiple nonlinear operators by neural networks. Neural Computation.2002,14(11):2561-2566
    [168]Oubbati M, Schanz M, Levi P. Meta-learning for adaptive identification of non-linear dynamical systems. In:Proc.20th IEEE international symposium on intelligent control.2005. 473-478
    [169]Guo L, Ljung L and Priourei P. Performance analysis of the forgetting factor RLS algorithm. International Journal of Adaptive Control and Signal Processing.1993,7:525-537
    [170]Tham M T, Mansoori S N. Covariance Resetting in Recursive Least Squares Estimation. In:Int. Conf. Control,1988.128-133
    [171]Moustakides G V. Study of the transient phase of the forgetting factor RLS. IEEE Trans. on Signal Processing.1997,45(10):2468-2476
    [172]Kahn L E, Rymer W Z, Reinkensmeyer D J. Adaptive assistance for guided force training in chronic stroke. In:26th IEEE EMBS.2004.2722-2725
    [173]Burges C J C. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery.1998,2(2):1-48

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700