毛白杨种毛形成中的蔗糖代谢与关键基因表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
毛白杨(Populus tomentosa Carr.)是优良的绿化和用材树种,但是毛白杨花期飞絮现象严重,不仅影响环境质量,而且存在安全隐患,给正常的生活生产秩序带来诸多不便。本文针对飞絮污染之一问题,通过石蜡切片技术研究了毛白杨雌花发育一般过程,首次揭示了毛白杨种毛纤维的形态发生规律,发现种毛纤维是由子房底部胎座及珠柄表面的一层细胞发育而来。进一步通过对种毛纤维发生过程中可溶性糖的积累与蔗糖代谢相关酶活性的分析发现:(1)子房中葡萄糖含量变化、SS活性变化存在密切的相关性;(2)SS活性和葡萄糖含量变化趋势与种毛纤维的形态发生在时间上相耦合。这些结果为种毛的形态发生提供了生理生化依据,说明SS是毛白杨种毛纤维发生过程中的一个关键酶。为进一步了解毛白杨SS酶相关基因在种毛形成的可能作用,采用semi-quantitative RT-PCR技术对编码SS的PtSS基因家族成员的表达规律进行了分析,发现PtSS1和PtSS2在毛白杨各个部位中均有表达,PtSS1在根及花芽中表达量较高,在茎、叶和叶芽中较低,PtSS2在各部位中近似恒定表达且表达量均较高,PtSS3、PtSS4和PtSS6除去茎和叶外各个部位均有表达,表达模式相似,而PtSS7则只在茎中有表达,且表达量较低。
     本文从形态解剖、生理生化、分子表达三个层次,由表及里研究了毛白杨种毛形成的形态学规律、生理生化基础和分子基础,首次揭示种毛始发于子房底部胎座及珠柄表层细胞和蔗糖合酶基因家族成员的组织表达模式,研究结果不仅对于阐明杨树种毛形成的分子生理机制具有重要的理论意义,而且为通过基因工程手段控制杨树飞絮污染,进而选育无种毛杨树新品种奠定了理论基础。
Populus tomentosa Carr. (Chinese white poplar) is a native species of great greening and timber value, yet serious catkin-caused pollution of which at flowering phase inconveniences people's normal work and life. Herein, our research on general process of floral development with female Populus tomentosa using paraffin section initially uncovers a complete morphogenesis of seed hair, and that seed hair developing from the superficial cells of ovary placentas and funicles was confirmed. Study on accumulation of soluble sugar and activity of sucrose-metabolizing enzyme in fibrogenesis reveals that, the change of glucose content and that of SS activity are temporally accordant with the morphology of seed hair fiber, thus providing convincing physiological supports for morphogenesis of seed hair, and identifying SS as a key enzyme during the whole fibrogenesis. Furthermore, analysis of PtSS family members encoding SS through semiquantitative PCR technique shows a far-ranging expression of PtSS1 and PtSS2 in all tissues, while essentially equal amounts of PtSS3 and PtSS4 and PtSS6 transcript in all tissues but stem and leaf, and a low transcript of PtSS7 in stem only. More specifically, PtSS1 expresses most highly in both root and floral bud, which is not the case for that in other tissues. PtSS2 expresses in all tissues in a critical high and constant fashion.
     A complete seed hair genesis process is firstly represented in this paper, and its physiological support has been obtained. Ultimately, expression patterns of each member in PtSS family for this process identify PtSS7 as a member expressing specifically to stem. The above-mentioned results do not only make a profound theoretical sense for illuminating molecular mechanism of such gene family in the genesis of seed hair, but also lay a theoretical foundation for addressing the flying catkin-caused pollution through gene engineering and further breeding a new poplar cultivar without seed hair.
引文
1. 安新民,徐昌杰,张上隆等.应用滤纸吸附-PCR法和改进的亚克隆方法快速筛选甜橙细胞壁转化酶基因(CS-CWI),细胞生物学,2003,25(1):59-62
    2. 安新民,陈大明,徐昌杰等.蔗糖代谢相关基因转化植株的研究进展.细胞生物学杂志,2001,23(3):136-141
    3. 安新民,王冬梅,王泽亮等.毛白杨PtLFY在花芽发育中的表达模式与花芽形态分化.林业科学,2010,46(2):31-38
    4. 陈大明,金勇丰,张上隆.柑橘LEAFY同源基因片段分离及特性研究.园艺学报,2001,28(4):295-300
    5. 曹慧娟主编.植物学.北京,中国林业出版社,1992,142
    6. 楚鹰.纤维发育相关基因的SNP研究与棉花蔗糖合酶基因片段的克隆及表达分析.南京农业大学硕士学位论文,2004
    7. 董源.毛白杨胚胎学观察.Ⅰ花药的结构及花粉的发育.北京林学院学报.1982,(4):80-92
    8. 董源.毛白杨胚胎学观察.胚珠、胚囊的构造、受精作用和胚的发育.北京林学院学报,1984,(1):83-94
    9. 胡桂兵,徐昌杰,陈大成等.毛叶枣APETALAI同源基因的克隆.华南农业大学学报,2001,22(3):43-46
    10.李玲,汪迎春.TA29-Barnase基因导致抗虫转基因欧洲黑杨雄性不育的研究.林业科学,2000,36(1):28-32
    11.李培环等,董晓颖,王永章等.‘新红星’苹果果实蔗糖合酶的活性及亚细胞定位.园艺学报,2002,29(4):375-377.
    12.李卫东.桃源库关系中源叶光合作用及其碳水化合物代谢的研究.中国农业大学博士学位论文,2005
    13.李文钿.小叶杨种子发育的胚胎学观察.林业科学,1982,18(02):113-119
    14.卢合全,沈法富,刘凌霄等.棉花蔗糖合酶(SuSy)分子结构特征与功能预测分析.西北植物学报,2005,25(7),1372-1376
    15.罗小英,肖月华,李德谋等.棉纤维蔗糖合酶基因SS3上游调控序列的克隆及其表达分析.中国生物化学与分子生物学报.2005,21(3):335-340
    16.王冬梅,张志毅,安新民等.毛白杨AP3同源基因PiAP3的克隆及其在烟草中的正反义转化初报.林业科学,2005,41:35-42
    17.王文静,王国杰,王永华.小麦灌浆期蔗糖代谢关键酶活性变化及其与籽粒淀粉积累的关系.作物学报,2007,33(7):1 122-1]28
    18.杨景华,张明方.植物蔗糖代谢关键酶的研究进展.细胞生物学杂志,2002,24(6),359-364
    19.张明方,李志凌.高等植物中与蔗糖代谢相关的酶.植物生理学通讯,2002,38(3):289-295
    20.张志毅,黄智慧,张东方等.毛白杨标本园无性系开花结实的研究.北京林业大学学报1992,14(增刊3):43-5 1
    21.张志毅,于雪松,朱之悌.三倍体毛白杨有性生殖能力的研究.北京林业大学学报.2000,22(6):1-4
    22.张建业.银杏LEAFY同源基因的分离克隆及其相关基础研究.浙江大学博士学位论文,2002
    23.中国科学院上海植物生理研究所,上海市植物生理学会编.现代植物生理学实验指南.北京,科学出版社,1999,127-128
    24.中国科学院植物研究所.中国高等植物图鉴(第一册).北京,科学出版社,1972,351
    25.朱大保.毛白杨有性生殖能力的研究.北京林业大学学报.1990,12(1):1-9
    26. An XM, Zhang ZY, Wang DM, Cloning and RNAi construction of LEAFY homologous gene from Populus tomentosa and preliminary study in tobacco. Forestry studies in China,2005,17 (3):15-21
    27 An XM, Zhang ZY, Wang DM, Isolation and Functional Analysis of Key Genes Involved in Flowering of Populus tomentosa The Fourth International Poplar Symposium Nanjing, China,June 5-9,2006,36-37
    28. Akira K, Analysis of sucrose genes in citrus suggests different roles and phylogenetic relationships. Journal of Experimental Botany,2002,53:61-71
    29. Batta SK, Singh R, Sucrose metabolism in sugar cane growth under varying climatic conditions: synthesis and storage of sucrose in relation to the activities of sucrose synthase, sucrose-phosphate synthase and acid invertase. Phytochem,1986,25:2431-2437
    30. Baud S, Vaultier MN,Rochat C, Structure and expression profile of the sucrose synthase multigene family in Arabidopsis. Journal of Experimental Botany,2004,55(396):397-409
    31. Bohlenius H, Huang T, Charbonnel-Campaa L, et al. CO/FT Regulatory Module Controls Timing of Flowering and Seasonal Growth Cessation in Trees. Science,2006,312:1040-1043
    32. Brunner AM, Mohamed R, Meilian R, et al. Genetic engineering of sexual sterility in shade trees. Journal of Arboriculture,1998,24(5):263-272
    33. Brunner AM, Rottmann WH, Sheppard LA, Structure and expression of duplicate AGAMOUS orthologues in poplar. Plant Mol. Biol,2000,44 (5):619-634
    34. Busov VB, Meilan R, Strauss SH, Ma C, Brunner AM, Ten lessons from 15 years of transgenic Populus research Forestry.2004,77(5):455-465
    35. Cardini CE, Leloir LF, Chiriboga J, The bio-synthesis of sucrose.Biol.Chem,1955,214:149-155
    36. Chengappa S, Guilleroux M, Phillips W, Transgenetic tomato plants with decreased sucrose synthase are unaltered in starch and sugar accumulation in the fruit. Mol Biol,1999,40:213-221
    37. Chourey PS, Taliercio EW, Carlson SJ, Genetic evidence that the two isozymes of sucrose synthase present in developing maize endosperm are critical, onefor cell wall integrity and the other for starch biosynthesis. Mol Gen Genet,1998,259(1):88-96
    38. Cosgrove D, Biophysical control of plant cell growth. Annual Rev Plant Physiol,1986,37:377-405
    39. D'Aoust MA,Yelle S, Quoc BN, Antisense inhibition of tomato fruit sucrose synthase decreases fruit setting and the sucrose un-loading capacity of young fruit.Plant Cell,1999,11:2407-2418
    40. Echverria E, Developmental transition from enzymatic to acid hydrolysis of sucrose in acid limes(Citrus aurantifolia). Plant Physiol,1990,92(1):168-171
    41. Elling L, Effect of metal ions on sucrose synthase from rice grains-a study on enzyme inhibition and enzyme topography. Glycobiology,1995,5(2):201-206
    42. Farrar J, Pollock C, Gallagher J, Sucrose and the integration of metabolism in vascular plants. Plant Sci,2000,154:1-11
    43. Filichkin SA, DiFazio AM, Brunner JM, Davis ZK, Yang UC, Kalluri RS, Arias E, Etherington GA, Tuskan and SH Strauss, Efficiency of gene silencing in Arabidopsis:direct inverted repeats vs transitive RNAi vectors. Plant Biotech,2007,5:615-626
    44. Fillatti JJ, Sellmer J, McCown J, et al. Agrobacterium-mediated transformation and regeneration of Populus. Mol Gen Genet,1987,206:192-199
    45. Fu H, Kim SY, Park WD, High-level tuber expression,and sucrose inducibility ora potato Sus4 sucrose synthase gene require 5'and 3'flanking sequences and the leader intron. The Plant Cell, 1995,7:1387-1394
    46.Fu H, Park WD, Sink and vascular-associated sucrose synthase functions are encoded by different gene classes in potato.The Plant Cell,1995,7:1369-1385
    47. Geigenbergre P and Stitt M, Sucrose synthase catalyses a readily reversible reaction in vivo in developing potato tubers and other plant tissues. Plant,1993,189:329-339
    48. Heschbach C, Kopriva S, Transgenic trees as tools in tree and plant physiology. Trees 2002,16:250-261
    49. Hesse H, Willmitzer L, Expression analysis of a sucrose synthase gene from sugar beet (Beta v ulgaris L.). Plant Mol Biol,1996,30:863-872
    50. Hesse H, Wilimizer L, Expression analysis of a sucrose synthase gene from sugar beet (Beta vulgaris L.).Plant Mol Biol,1996,30:863-872
    51. Huang JW, Chen, JT, Yu WP, et al. Complete structures of three rice sucrose synthase isogenes and differential regulation of their expression.Biosci. Biotech. Biochem,1996,60:233-239
    52. Hubbard NL, Huber SC, Pharr DM, Sucrose phosphate synthase and acid invertase as determinants of sucrose concentrationin developing muskmelon (cucumis melo L.) fruits.Plant Physiol,1989,91: 1527-1534
    53. Jha AB, Dubey RS, Carbohydrate metabolism in growing rice seedlings under arsenic toxicity. Journal of Plant Physiology,2004,161:101-108
    54. Kato T, Change of sucrose synthase activity in developing endosperm of rice cultivars. Crop Sci, 1995,35:827-831
    55. Kaul RB, Reproductive structure and organogenesis in a cottonwood, Populus deltoides (Salicaceae). Int. J Palnt Sci,1995,156:172-180
    56. Koch KE, Nolte KD, Duke ER, et al. Sugar levels modulate differetial expression of maize sucrose synthase genes. Plant Cell,1992,4:59-69
    57. Komastu A, Takanokura Y, Moriguchi T, Differential expression of three sucrose-phosphate synthase isoforms during accumulation in citrus fruit (Citrus unshiu Marc).Plant Sci,1999,140:169-178
    58. Komatsu A, Moriguchi T, Koyama K, et al. Analysis of sucrose synthase genes in citrus suggests different roles and phylogenetic relationships. Journal of Experimental Botany 2002,53:61-71
    59. Kotoda N, Wada M, Kusaba S, et al. Overexpression of MdMADS5, an APETALAI-like gene of apple, causes early flowering in transgenic Arabidopsis. Plant Science,2002,162:679-687
    60. Li CR, Zhang XB, Huang CH, et al. Cloning, characterization and tissue specific expression of a sucrose synthase gene from tropical epiphytic CAM orchid Mokara Yellow. Journal of Plant Physiology.2004,161:87-94
    61. Lingle SE, Dyer JM, Cloning and expression of sucrose synthase cDNA from sugarcane. Plant Physiol,2001
    62. Lowell CA, Tomlinson PT, Koch KE, Sucrose-metabolizing enzymes in transport tissue and adjacent sink structures in developing citrus fruit. Plant Physiol,1989,90:1394-1402
    63. McCarty DR, Shaw JR, Hannah LC, The cloning, genetic mapping, and expression of the constitutive sucrose synthase locus of maize. ProcNat AcadSci USA,1986,83:9099-9103
    64. Mccollum TG, Huber DJ, Cantliffe DJ, Soluble sugar accumulation and activity of related enzymes during musk melon fruit development. J Amer Soc Hort Sci,1988,113:399-403
    65. Meilian R, Brunner AM, Skinner JS, et al. Modification of flowering in transgenic trees. Molecular Breeding of Woody Plants N (Morohoshi and A Komamine, editors),2001,247-255
    66. Meilan R, Strauss SH, and Ma C, Agrobacterium mediated transformation of the genome-sequenced poplar clone, Nisqually-1 (Populus trichocarpa). PMBR,2004,22:1-9
    67. Moriguchi T, Abe K, Yamaki S, Levels and role of sucrose synthase,sucrose-phosphate synthase and acid inxertase in sucrose accumulation in fruit of Asian pear. J Amer Soc Hort Sci, 1992,117(2):274-278
    68. Moriguchi T, Sanada T, Yamaki S, Seasonal fluctuation of some enzymes relating to sucrose and sorbitol metabolism in peach fruit. J Amer Soc Hort Sci,1990,115:278-281
    69. Mouradva A, Glassick T, Hamdorf B, et al. A pinus radiata ortholog of FLORICAULA/LEAFY genes,expressed in both reproductive and vegetative meristems. Proc Natl Acad Sci USA, 1998,95(11):6537-6542
    70. Notle KD, Hendrix DL, Radrin JW, et al. Sucrose synthase localization during initiation od seed development and trichome differentiation in cotton ovules. Plant Physiol,1995,109,1285-1293
    71. Pillonel C, Meier H, Influence of external factors on callose and cellulose synthesis during incubation in vitro of intact cotton fibers with 14C sucrose.Planta,1985,165:76-84
    72. Rottmann WH, Meilan R, Sheppard LA, et al. Diverse effects of overexpression of LEAFY and PTLY,a poplar (Populus) homolog of LEAFY/FLORICAULA,in transgenic poplar and Arabidopsis: The Plant Journal,2000,2213:235-245
    73. Ruan YL,Churey PS, A fiberless seed mutation in cotton is associated with lack of fiber initiation in ovule epidermis and alterations in sucrose synthase expression and carbon partitioningin developing seeds. Plant Physiol,1998,118(2):399-406
    74. Ruan YL, Danny J Llewellyn, RT, Furbank Suppression of Sucrose Synthase Gene Expression Represses Cotton Fiber Cell Initiation, Elongation,and Seed Development. The Plant Cell, 2003,15:952-964
    75. Ruan YL, Llewellyn DJ, and Furbrank RT, The control of single-celled cotton fiber elongation by developmentally reversible gating of palsmodesmata and coordinate expression of sucrose and K transporters and expansin. Plant Cell,2001,13:47-63
    76. Ruan YL, Prem SC, Deborah PD, et al. The differential expression of sucrose synthase in relation to diverse patterns of carbon partitioning in developing cotton seed. Plant Physiol, 1997,115:375-385
    77. Salanoubat M, Belliard G, Molecular cloning and sequencing of sucrose synthase cDNA from potato (Solanum t uberosum L.) preliminary characterization of sucrose synthase mRNA distribution. Gene,1987,60:47-56
    78. Salnikov VV, Grimson MJ, Delmer DP, Haigler CH,'Sucrose synthase localizes to cellulose synthesis sites in tracheary elements. Phytochemistry,2001,57(6):823-833
    79. Samuga AJoshi CP, Cloning and characterization of cellulose synthase-like gene PtrCSLD2 from developing xylem of aspen tress. Physiologia Plantarum,2004,120:631-641
    80. Sato S, Kato T, Kakegawa KI, et al. Role of putative menbrane bound endo1-4 glucanse korrigan in cell elongation. Plant Cell Physiology,2001,42:251-263
    81. Sebkova V, Unger C, Hardegger M, et al. Biochemical, physiological, and molecular characterization of sucrose synthase from Daucus carota. Plant Physiol,1995,108:75-83
    82. Baud S, Vaultier MN, Rochat C, Structure and expression profile of the sucrose synthase multigene family in Arabidopsis. Journal of Experimental Botany,2004,55(396):397-409
    83. Shane C, Hardin, Steven C, Huber, Proteasome activity and the post-translational control of sucrose synthase stability in maize leaves. Plant Physiology and Biochemistry,2004,42:19-208
    84. Sheppard LA, PTD:A Populus trichocarpa gene with homology to floral homeotic transcription factors. PhD Dissertation, Genetics Programe, Oregon State University, Corvallis.1997
    85. Sheppard LA, Brunner AM, Krutovskii KV, et al. DEFICIENS homolog from the dioecious tree black cottonwood is expressed in female and male floral meristems of the two-whorled, unisexual flowers. Plant Physiol,2000,124 (2):627-640
    86. Southerton SG, Struss SH, Olive MR, et al. Eucalyptus has a functional equivalent of the Arabiodopsis floral meristem identity gene LEAFY. Plant Mol Biol,1998,37:897-910
    87. Strauss SH, Forest biotechnology-thriving despite controversy. New Phytol,2004,163:9-11
    88. Sturm A, Lienhard S, Schatt S, et al. Tissue-specfic expression of two genes for sucrose synthase in carrot(Daucua catota L). Plant Mol Biol,1999,39:349-360
    89. Sturm A, Tang GQ, The sucrose-cleaving enzymes of plants are crucial for development, growth and carbon partitioning. Trends in Plant Sci (Reviews),1999,4:401-407
    90. Tanase K, Yamaki S, Purification and characterization of two sucrose synthase isoforms from Japanese pear fruit. Plant Cell Physiol,2000,41:408-414
    91. Tang GQ, Strum A, Antisense repression of sucrose synthase in carrot (Daucuscaraota L.)affects growth rather than sucrose partitioning. Plant Molecular Bioology,1999,41:465-479
    92. Thole V, Kruger NJ, Martin C, Zrenner R, Smith AM, Analysis of the sucrose synthase gene family in Arabidopsis. Plant J,2007,49(5):810-28
    93. Vadim V, Salnikov, Mark J, Grimson, Robert W, Seagull, Candace H, Haigler, Localization of sucrose synthase and callose in freeze-substituted secondary-wall-stage cotton fibers. Protoplasm, 2003,221:175-184
    94. Wang AY, Kao MH, Differentially and developmentally regulated expression of three rice sucrose synthase genes. Plant Cell Physiology,1999,40(8):800-807
    95. Wang DM, An XM, Zhang ZY, Constitutive expression of sense & antisense PtAP3, an Ap3 homologue gene of Populus tomentosa, affects growth and flowering time in transgenic tobacco. 2005,17(3):22-27
    96. Wang DM, Zhang ZY, An XM, Cloning of an APETALA3 homologous gene (PtAP3) from Populus tomentosa and genetic transformation of its sense and anti-sense constructs in tobacco. Frontiers of Forestry in China,2006,1(4):404-412
    97. Weigel D, Nilsson O, A developmental switch sufficient for flower initiation in diverse plants. Nature.1995,377(6549):495-500
    98. Wei HR, Meilan AM, Brunner JS, Skinner C, Ma HT, Gandhi and SH Strauss, Field trial detects incomplete barstar attenuation of vegetative cytotoxicity in Populus trees containing a poplar LEAFY promoter::barnase sterility transgene. Molec Breed,2006,19:69-85
    99. Zhou L, Paull RE, Sucrose metabolism during Papaya (Carica papaya)fruit growth and ripening. J Amer Soc Hort Sci,2001,126(3):351-357
    100. Zrenner R, Salanoubay M, Willmitzer L, Evidence of the crucial role of sucrose synthase for sink strength using transgenic potato plant. Plant J,1995,797:10

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700