SiC材料及SiC基MOS器件理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
SiC以其优异的材料特性,在高温、大功率和抗辐射器件电子学应用方面显示出明显的优势。另外,在化合物半导体中唯有SiC存在本征氧化物SiO2,因此SiC基MOSFET的研究引起高度关注和极大兴趣。本文主要围绕SiC材料和SiC基MOS器件开展了系列研究。
     在p型SiC中杂质激发态的影响很大,但目前这方面的研究还很少。本文集中研究了激发态对杂质电离、n-MOSFET反型层电荷和MOS电容的影响。激发态的影响与温度、掺杂浓度以及杂质能级深度存在密切的关系。在杂质激发态的作用下,n-MOSFET的反型层电荷面密度降低,激发态主要影响亚阈值区。对于MOS电容的C-V特性曲线,其在平带附近的Kink效应因激发态的影响而减弱,且曲线产生一小的平移。
     在SiC中存在显著的基态施主能级分裂现象,但目前的电子分布函数并不包含能级分裂因素。在本文中,通过引进基态施主分裂能级的平均能量增量和平均配分函数,得到了包含此因素的分布函数。并研究了在不同条件下基态施主能级分裂对杂质电离、p-MOSFET反型层电荷和MOS电容的影响。在基态施主能级分裂的作用下,p-MOSFET的反型层电荷面密度降低,MOS电容C-V特性曲线平带附近的Kink效应被减弱。
     为了使电路设计师能够充分利用SiC基MOSFET的优势,必须构建精确有效的器件集约模型(compact model)。在集约模型的构建过程中,高温沟道电子迁移率模型的建立至关重要。本文在考虑到各种现有因素并引进新因素的条件下,建立了比较合理的高温沟道迁移率模型。同时,在这部分中提出了采用与温度—阈值电压实验曲线拟合,来确定界面态参数和固定氧物电荷的新方法。
     表面势基MOSFET的集约模型中,表面势的显性表达式占有重要地位。目前已有的Si基MOSFET的表面势显性式,没有考虑界面陷阱电荷并认为杂质完全电离,因此它不适用于SiC基MOSFET。本文在Si基MOSFET的表面势显性表达式的基础上,并考虑到杂质不完全电离和界面态这两种因素,推导出了适用于SiC基MOSFET的从积累到强反型区的表面势显性表达式。
     总之,本文围绕SiC材料和SiC基MOS器件主要进行了四个方面的研究,其中重点研究了MOS器件。
ii Silicon carbide shows the advantage in the application of device electronics which include high temperature, high power and radio resistance devices. In addition, silicon carbide is the only one among the compound semiconductors having the native oxide of silicon dioxide. Thus, silicon carbide based metal-oxide-semiconductor field effect transistor (MOSFET) has draw considerable attention and excited great interest. This dissertation aimed at the study of the material characteristics of silicon carbide and silicon carbide based MOS devices.
     In p-type silicon carbide, the excited states of dopants play an important role, but they are given a little attention. In this dissertation, the effect of excited states on ionization of dopants, inversion-layer charge density of n-channel MOSFET and MOS capacitor is investigated. The influence of excited states relates to temperature, the doping concentration and the depth of energy level of dopants. Under the effect of excited states, the inversion-layer charge density of n-channel MOSFET is lowered,and the impact of excited states are important under the threshold voltage. Under the influence of excited states, the kink effect of the C-V characteristic curve of the MOS capacitor round the flatband is weakened, and the curve produces a small horizontal displacement.
     There has remarkable valley-orbit splitting in n-type silicon carbide. However, the established distribution function for electrons did not include it. In this dissertation, a new distribution function for electrons is obtained by introducing the average increment and average partition function of all split levels. The influence of the valley-orbit splitting on ionization of dopants, inversion-layer charge density of p-channel MOSFET and MOS capacitor is investigated.Under the effect of the valley-orbit splitting, the inversion-layer charge density of p-channel MOSFET is lowered and the kink effect of the C-V characteristic curve of the MOS capacitor round the flatband is weakened.
     In order to utilize the advantage of silicon carbide for IC designer, the sufficient and accurate compact model of MOSFET has to be set up. During establishing the compact model, the temperature-dependent channel-electron mobility model is very important. In this dissertation, it is established by considering the existed and new factors. In addition, a new method extracting interface state parameters and fixed oxide charge density by simulating with the experimental temperature-threshold voltage curves is introduced.
     An explicit expression of surface potential is essential to the surface-potential-based MOSFET compact model. In the existed expression which suits silicon based MOSFET, interface trapped charge was not included, and dopants were considered to be ionized completely. However, it was not true for silicon carbide based MOSFET. High density interface states lie at SiC/SiO2, and freeze-out effect exists in silicon carbide. In this dissertation, we obtain the explicit expression of surface potential suitable to silicon carbide based MOSFET under the consideration of the two factors mentioned above.
     On the whole, this dissertation investigated four aspects around material characteristics of silicon carbide and silicon carbide based MOS devices. The most important part is about MOS devices.
引文
[1] Balda J C, Barlow F, Lostetter A B, et al. Silicon-Carbide (SiC) Electronics. (http://mixedsignal.eleg. uark. edu/siliconcarbide/SiC_whitepaper_short_b.doc)
    [2] Marckx D A. Breakthrough in Power electronics from SiC. National renewable energy laboratory. Sub- contract Report( NREL/SR-500-38515), 2006(http://www.nrel.gov/docs/fy06osti/38515.pdf)
    [3] Cooper J A Jr, Melloch M R, Singh R, et al. Status and Prospects for SiC Power MOSFETs. IEEE trans- actions on electron devices, 2002, 49(4): 658-664
    [4] Chinthavali M S, Ozpineci B, Tolbert L M. High-Temperature and high-Frequency Performance Evalu- ation of 4H-SiC Unipolar Power Devices. Applied Power Electronics Conference and Exposition, 2005. APEC 2005. Twentieth Annual IEEE. 2005, 1: 322- 328
    [5] Yu L C, Sheng K. Breaking the theoretical limit of SiC unipolar power device – A simulation study. Solid- State Electronics, 2006, 50: 1062–1072
    [6] Nilsson H E, Martinez A, Sannemo U. Numerical study of Bloch electron dynamics in wide band-gap semiconductors. Applied Surface Science, 2001, 184: 199–203
    [7] Linewih H, Dimitrijev S, Weitzel C E, et al. Novel SiC Accumulation-Mode Power MOSFET. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2001, 48(8):1711-1717
    [8] Rottner K, Frischholz M, Myrtveit T, e t al. SiC power devices for high voltage applications. Material Science & Engineering B, 1999, 61-62: 330-338.
    [9] Chafai M, Jaouhari A, Torres A, et al. Raman scattering from LO phonon-plasmon coupled modes and Hall-effect in n-type silicon carbide 4H–SiC. Jouunal of applied physics, 2001, 90(10):5211-5215
    [10]Lely J A. Darstellung von Einkristallen von Silicium Carbid und Beherrschung von Art and Menge der eingebauten Verunremigungen.Berichte der Deutschen Keramischen Gesellschaft, 1955, 32: 229-236
    [11] Tairov Y M, Tsvetkov V F. Investigation of growth processes of ingots of silicon carbide single crystals. Journal of crystal growth, 1978, 43(2):209-212
    [12] http://www.cree.com/products/pdf/MAT-CATALOG.00K.pdf
    [13] Raghuathan R, Alok D, Baliga B J. High voltage 4H-SiC Schottky barrier diodes.IEEE Electron Devices Letters,1995,16(6): 226–227
    [14] Singh R, Cooper J A Jr, Melloch M R, et al. SiC power Schottky and PiN diodes. IEEE Transactions on electron devices, 2002, 49(4):665-672
    [15] Alok D, Arnold E, Egloff R, et al. 4H-SiC RF Power MOSFETs. IEEE Electron Devices Letter, 2001, 22(12):577-578
    [16] Zhang J H, Alexandrov P, Zhao J H, et al. 1677 V, 5.7 mΩ?cm2 4H-SiC BJTs. IEEE Electron Devices Letter, 2005, 26(3):188-190
    [17] Tone K, Zhao J H, Fursin L, et al. 4H-SiC Normally-Off Vertical Junction Field-Effect Transistor With High Current Density. IEEE Electron Devices Letter, 2003, 24(7):463-465
    [18] Levinshtein M E, Palmour J W, Rumyanetsev S L, et al. Turn-on Process in 4H-SiC Thyristors. IEEE Transactions on electron devices, 1997, 44(7):1177-1179
    [19] Moore K E, Weitzel C E, Nordquist K J, et al. 4H-SiC MESFET with 65.7% power added efficiency at 850 MHz. IEEE Electron Devices Letter, 1997, 18(2):69-70
    [20] Henning J P, Przzadka A, Melloch M R, et al. A novel self-aligned fabrication process for microwave static induction transistors in silicon carbide. IEEE Transactions on electron devices, 2000, 21(12):578-580
    [21] http://www.cree.com/products/power_docs2.asp
    [22] Johnson E O. Physical limitations on frequency and power parameters of transistors. RCA Review, 1965, 26(2): 163-177
    [23] Keyes R W. Figure of merit for semiconductors for high-speed switches. Proceedings of the IEEE, 1972, 60(2):225-225
    [24] Baliga B J. Semiconductors for high-votage, vertical channel FET’s. Journal of applied physics, 1982, 53(3):1759-1764
    [25] Baliga B J. Power Semiconductor Device Figure of Merit for High-Frequency Applications. IEEE Elec- tron Devices Letter, 1989, 10(10):455-457
    [26]Tone K. SILICON CARBIDE VERTICAL JUNCTION FIELD-EFFECT TRANSTORS [Dissertation]. USA: The state university of New Jersey, 2002
    [27]Levinshtein M E, Rumyantsev S L, Shur M S. 先进半导体材料性能与数据手册. 北京: 化学工业出版社, 2003:130
    [28] Ozpineci B, Tolbert L M. COMPARISON OF WIDE-BANDGAP SEMICONDUCTORS FOR POWER ELECTRONICS APPLICATIONS. Technological report at Oak Ridge National Laboratory, 2003 (www. ornl.gov/~webworks/cppr/y2001/rpt/118817.pdf)
    [29] Shenai K, Scott R S, Baliga B J. Optimum semiconductors for high power electronics.IEEE Transactions on Electron Devices, 1989, 36(9):1811-1823
    [30] Cho W J, Kosugi R, Fukuda K, et al. Improvement of charge trapping by hydrogen post-oxidation anneal- ing in gate oxide of 4H–SiC metal–oxide–semiconductor capacitors. Applied physics letters, 2000, 77(8): 1215-1217
    [31] Ayalew T, Park J M, Gehring A, et al. Silicon Carbide Accumulation-Mode Laterally Diffused MOSFET. 33rd European Solid-State Device Research conference, 2003:581-584
    [32] Zeng Y, Softic A, White M H. Characterization of interface traps in the subthreshold region of implanted 4H and 6H-SiC MOSFETs. Solid-State Electronics, 2002, 46:1579–1582
    [33] Kurimoto H, Shibata K, Kimura C, et al. Thermal oxidation temperature dependence of 4H-SiC MOS interface. Applied Surface Science, 2006, 253(5): 2416-2420
    [34] Zolnai Z. Irradiation-induced crystal defects in silicon carbide [Dissertation]. Hungarian: Budapest University of Technology and Economics, 2005
    [35]李效白. SiC和GaN 电子材料和器件的几个科学问题.微纳电子技术,2004,41(11):1-7
    [36] Harris G L. Properities of silicon carbide. London: INSPEC, the institution of electrical engineers, 1995:85
    [37] DaliborT, Devaty R P, Giannozzi P, et al. Impurities and Defects in Group IV Elements, IV-IV and III-V Compounds. Part b: Group IV-IV and III-V Compounds. Germany: Springer-Verlag, 2003
    [38] Capano M A, Cooper J A Jr, Melloch M R.Ionization energies and electron mobilities in phosphorus- and nitrogen implanted 4H-silicon carbide. Journal of applied physics, 2000, 87(12):8773-8777
    [39] Lebedev A A. Deep level centers in silicon carbide: A review. Semiconductors, 1999, 33(2):107-130
    [40] Kuznetsov N I, Zubrilov A S. Deep centers and electroluminescence in 4H-SiC diodes with a p-type base region. Materials science & engineering B, 1995, 29(1-3):181-184
    [41]Sze S M. physics of semiconductor devices.second edition. USA: John Wiley & Sons, Inc., 1981:21
    [42] Onton A, Fisher P, Ramdas A K. Spectroscopic Investigation of Group-III Acceptor States in Silicon. Physical Review, 1967, 163(3): 686-703
    [43] Rome J J, Spry R J, Chandler T C, etal. Additional p3/2 and p1/2 infrared excited-state lines of gallium and indium in silicon. Physical Review B, 1982, 25(6): 3615-3618
    [44] Fisher D W, Rome J J. Additional structure in infrared excitation spectra of group-III acceptors in silicon. Physical Review B, 1983, 27(8): 4826-4832
    [45]夏建白.现代半导体物理.北京:北京大学出版社,2000:51
    [46] Suttrop W, Pensl G, Choyke W J, et al. Hall effect and infrared absorption measurements on nitrogen donors in 6H-silicon carbide. Journal of applied physics, 1992, 72(8): 3708-3713.
    [47] G?tz W, Sch?ner A, Pensl G, et al. Nitrogen donors in 4H-silicon carbide. Journal of applied physics, 1993, 73(7): 3332-3338
    [48]刘恩科,朱秉升,罗晋生,等.半导体物理学.西安:西安交通大学出版社,1998:379
    [49] Matsuura H. The influence of excited states of deep dopants on majority-carrier concentration in a wide- bandgap semiconductor. New Journal of Physics, 2002, 4(1): 12.1-12.15
    [50] Matsuura H. Influence of Excited States of Deep Acceptors on Hole Concentration in SiC. Materials Science Forum, 2002, 389-393: 679-682
    [51] Matsuura H, Sugiyama K, Nishikawa K, et al. Occupation probability for acceptor in Al-implanted p-type 4H–SiC. 2003, Journal of applied physics, 2003, 94(4): 2234-2241
    [52] Matsuura H, Katsuya D, Ishida T, et al. Influence of excited states of Mg acceptors on hole concentration in GaN. phys. stat. sol. (c), 2003, 0(7):2214–2218
    [53] Matsuura H, Nishikawa K. Ionization of deep Te donor in Te-doped Al0.6Ga0.4Sb epilayers. Journal of applied physics, 2005, 97(093711): 1-7
    [54] Matsuura H. Influence of excited states of a deep substitutional dopant on majority-carrier concentration in semiconductors. Physical review B, 2006, 74(245216):1-8
    [55] Matsuura H, Komeda M, Kagamihara S, et al. Dependence of acceptor levels and hole mobility on acceptor density and temperature in Al-doped p-type 4H-SiC epilayers. Journal of applied physics, 2004, 96(5): 2708-2715
    [56] Yacobi B G. Semiconductor Materials——An Introduction to Basic Principles. New York: KLUWER ACADEMIC PUBLISHERS, 2003:71
    [57]Peter Y Y, Cardona M. fundamental of semiconductors.third edition.北京:世界图书出版公司, 2005: 170
    [58]勃莱克莫尔 J S.半导体统计学.上海:上海科学技术出版社,1962: 120-121
    [59] Zetterling C M. process technology for silicon carbide.London: INSPEC, The institution of electrical engineers, 2002:61
    [60] Arnold E. charge-sheet model for silicon carbide inversion layers. IEEE Transactions on Electron Devices, 1999, 46(3):497-503
    [61] Matsuura H. Investigation of a distribution function suitable for acceptors in SiC. Journal of applied physics, 2004, 95(8): 4213-4218
    [62] Brews J R. A charge-sheet model of the MOSFET. Solid State Electronics, 1978, 21: 345–355
    [63]尚也淳, 张义门, 张玉明. 杂质不完全离化对SiC MOSFET的影响. 半导体学报, 2001,22(7):888-891
    [64] Van Langevelde R, Scholten A J, Klaassen D B M. Physical Background of MOS Model 11, Level 1101. Nat.Lab. Unclassified Report, Koninklijke Philips Electronics N.V., 2003(www.nxp.com/acrobat_ download/ other/models /nl_tn2003_00239.pdf)
    [65] Fistul V I. Impurities in semiconductors: solubility, migration, and interactions. Boca Raton: CRC Press, 2004
    [66]尼曼. 半导体器件导论. 北京: 清华大学出版社,2006:227
    [67] Raynaud C, Autran J L. Theoretical investigation of incomplete ionization of dopants on 6H-SiC metal- oxide-semiconductor capacitors. Journal of applied physics, 1999, 86(4): 2232-2236
    [68]Weinreich G, Boyle W S, White H G, et al. Valley-orbit splitting of arsenic donor ground state in germa- nium. Physical review letters. 1959, 2(3): 96-98
    [69] Son N T, Henry A, Isoya J, et al. Electron paramagnetic resonance and theoretical studies of shallow pho- sphorous centers in 3C -, 4H -, and 6H-SiC. Physical Review B, 2006, 73(075201):1-16
    [70] Aggarwal R L, Ramdas A K. Optical Determination of the Symmetry of the Ground States of Group-V Donors in Silicon. Physical Review, 1965, 140(4A): A1246-A1253
    [71] Colwell P J, Klein M V. Raman Scattering from Electronic Excitations in n-Type Silicon Carbide. Physical Review B, 1972, 6(2): 498-515
    [72] Isoya J, Ohshima T, Morishita N, et al. Pulsed EPR studies of shallow donor impurities in SiC. Physica B, 2003, 340-342:903-907
    [73] G?tz W, Sch?ner A, Pensl G, etal. Nitrogen donors in 4H-silicon carbide. Journal of Applied Physics, 1993, 73(7):3332-3338
    [74]Pernot J, Zawadzki W, Contreras S, et al. Electrical transport in n-type 4H silicon carbide. Journal of Applied Physics, 2001, 90(4): 1869-1878
    [75]Choyke W J, Matsunami H, Pensl G. Silicon Carbide: Recent Major Advances. Berlin:Springer-Verlag, 2003:518-519
    [76]勃莱克莫尔 J S.半导体统计学.上海:上海科学技术出版社,1962: 124
    [77] Colinge J P, Colinge C A. physics of semiconductor devices. Boston: KLUWER ACADEMIC PUBLI- SHERS, 2002:34
    [78]夏建白.现代半导体物理. 北京:北京大学出版社, 2000:113
    [79]Yu P Y, Cardona M.fundamental of semiconductors.third edition. 北京:世界图书出版公司,2005:173
    [80] Schaub R, Pensl G, Schulz M, et al. Donor states in tellurium-doped silicon. Applied Physics B,1984, 34(4):215-222
    [81]Morin F J, Maita J P. Electrical Properties of Silicon Containing Arsenic and Boron. Physical Review, 1954, 96:28-35
    [82]Choyke W J, Matsunami H, Pensl G. Silicon Carbide: Recent Major Advances.Berlin:Springer-Verlag, 2004:520
    [83] I. Example in FCCS; II. Matsuura H, Masuda Y, Chen Y, et al. 1st International Workshop on ultra -low-loss Power Device Technology, Nara, Japan, 2000 [http://www.osakac.ac.jp/labs/matsuura/English /index.html]
    [84]Hagen S H, van Kemenade A W C, van der Does de Bye J A W, et al. Donor-acceptor pair spectra in 6H and 4H SiC doped with nitrogen and aluminium. Journal of Luminescence, 1973, 8(1):18-31
    [85] Ikeda M, Matsunami H, Tanaka T. Photoluminescence Due to Al, Ga, and B Acceptors in 4H-, 6H-, and 3C-SiC Grown from a Si Melt.Journal of the electrochemical society, 1977, 124: 241-246
    [86] Ikeda M, Matsunami H. Free exciton luminescence in 3C, 4H, 6H, and 15R SiC. Physica status solidi(a), 1980,58:657-663
    [87] Slater D B Jr, Johnson G M, Lipkin L A, et al. Demonstration of a 6H-SiC CMOS technology. IEEE Device Research Conference, Santa Barbara, CA, 1996, Digest: 162–163
    [88] Ryu S H, Kornegay K T, Cooper J A Jr, et al. Digital CMOS IC’s in 6H-SiC Operating on a 5-V Power Supply. IEEE Transactions on Electron Devices, 1998, 45(1):45-53
    [89] Chen J S, Kornegay K T. Design of a Process Variation Tolerant CMOS Opamp in 6H-SiC Technology for High-Temperature Operation. IEEE Transactions on circuits and systems—Ι:fundamental theory and applications, 1998, 45(11): 1159-1171
    [90] Lam M P, Kornegay K T. Recent Progress of Submicron CMOS Using 6H–SiC for Smart Power Appli- cations. IEEE Transactions on Electron Devices, 1999, 46(3):546-554
    [91] Okamoto M, Tanaka M, Yatsuo T, et al. Effect of the oxidation process on the electrical characteristics of 4H–SiC p-channel metal-oxide-semiconductor field-effect transistors. Applied Physics Letters, 2006, 89 (0235 02):1-3
    [92] Yano H, Kimoto T, Matsunami H. Shallow states at SiO2/4H-SiC interface on (1 120)and (0001) faces. Applied Physics Letters, 2002, 81(2):301-303
    [93] Kosugi R, Fukuda K, Arai K.Thermal oxidation of (0001) 4H-SiC at high temperatures in ozone-admixed oxygen gas ambient. Applied Physics Letters, 2003, 83(5):884-886
    [94] Dhar S, Feldman L C, Wang S, et al. Interface trap passivation for SiO2 / ( 0001) C-terminated 4H-SiC. Journal of Applied Physics, 2005, 98(014902):1-5
    [95] McNutt T, Hefner A, Mantooth A, et al.Compact Models for Silicon Carbide Power Devices. Solid-State Electronics, 2004, 48: 1757–1762
    [96] Kimoto T, Itoh A, Matsunami H. Step bunching in chemical vapor deposition of 6H– and 4H–SiC on vicinal SiC(0001) faces. Applied physics letters, 1995, 66(26):3645-3647
    [97] Kimoto T, Itoh A, Matsunami H,et al. Step bunching mechanism in chemical vapor deposition of 6H–and 4H–SiC{0001}. Journal of applied physics, 1997, 81(8):3494-3500
    [98] Capano M A, Ryu S, Melloch M R, et al. Dopant activation and surface morphology of ion implanted 4H- and 6H–SiC. Journal of Electronic Materials.1998, 27(4):370–376
    [99] Ramaiah K S, Bhat I, Chow T P, et al. Growth and characterization of SiC epitaxial layers on Si- and C- face 4H SiC substrates by chemical-vapor deposition. Journal of applied physics, 2005, 98(106108):1-3
    [100]Lu P, Edgar J H. The influence of the H2 /Ar ratio on surface morphology and structural defects in homoepitaxial 4H-SiC films grown with methyltrichlorosilane. Journal of applied physics, 2007, 101 (054513):1-5
    [101] Friedrichs P, Burte E P, Sch?rner R. Interface properties of metal-oxide-semiconductor structures on n- type 6H and 4H-SiC. Journal of applied physics, 1996, 79(10):7814-7819
    [102] Saks N S, Mani S S, Agarwal A K. Interface trap profile near the band edges at the 4H-SiC/SiO2 inter- face. Applied physics letters, 2000, 76(16):2250-2252
    [103]Harada S, Kosugi R, Senzaki J, et al. Relationship between channel mobility and interface state density in SiC metal–oxide–semiconductor field-effect transistor. Journal of applied physics, 2002, 91(3):1568-1571
    [104]Kosugi R, Cho W J, Fukuda K, et al. High-temperature post-oxidation annealing on the low-temperature oxide/4H-SiC(0001). Journal of applied physics, 2002, 91(3):1314-1317
    [105] Pippel E, Woltersdorf J, ólafsson H ?, et al. Interfaces between 4H-SiC and SiO2: Microstructure, nano- chemistry, and near-interface traps. Journal of applied physics, 2005, 97(034302):1-8
    [106]徐静平, 吴海平, 黎沛涛, 等. SiO2/SiC 界面对 4H-SiC n-MOSFET 反型沟道电子迁移率的影响.半导体学报, 2004, 25(2):200-205
    [107] Powell S K, Goldsman N, Lelis A, et al. High-temperature modeling and characterization of 6H silicon carbide metal-oxide-semiconductor field-effect transistors. Journal of applied physics, 2005, 97(046106): 1-3
    [108] Zeng Y A, White M H, Das M K. Electron transport modeling in the inversion layers of 4H and 6H–SiC MOSFETs on implanted regions. Solid-State Electronics, 2005, 49: 1017-1028
    [109] Tomás P A, Godignon P, Mestres N, et al. A field-effect electron mobility model for SiC MOSFETs including high density of traps at the interface. Microelectronic Engineering, 2006, 83: 440-445
    [110] Potbhare S, Goldsman N, Pennington G, et al. A quasi-two-dimensional depth-dependent mobility model suitable for device simulation for Coulombic scattering due to interface trapped charges. Journal of applied physics, 2006, 100(044516): 1-7
    [111] Caughey D M, Thomas R E. Carrier mobilities in silicon empirically related to doping and field. Procee- dings of the IEEE, 1967 52: 2192–21931967.
    [112] Roschke M, Schwierz F. Electron Mobility Models for 4H, 6H, and 3C SiC. IEEE Transactions on Electron Devices, 2001, 48(7):1442-1447
    [113] Huang C L, Gildenblat G S. Measurements and Modeling of the n-Channel MOSFET inversion Layer Mobility and Device Characteristics in the Temperature Range 60-300 K. IEEE Transactions on Electron Devices, 1990, 37 (5): 1289-1330
    [114] Cheng B H, Woo J. A Temperature-Dependent MOSFET Inversion Layer Carrier Mobility Model forDevice and Circuit Simulation. IEEE Transactions on Electron Devices, 1997, 44(2):343-345
    [115] Powell S K, Goldsman N, McGarrity J M, et al. Physics-based numerical modeling and characterization of 6H-silicon carbide Metal–oxide–semiconductor field-effect transistors. Journal of applied physics, 2002, 92(7):4053-4061
    [116] Lombardi C, Manzini S, Saporito A, et al. A Physically Based Mobility Model for Numerical Simulation of Nonplanar Devices. IEEE Transaction on Computer-Aided Design, 1988, 7(11):1164-1171
    [117] Hartstein A, Ning T H, Fowler A B. Electron scattering in silicon inversion layers by oxide and surface roughness.Surface Science, 1976, 58:178-181
    [118] Ferry D K. Effects of surface roughness in inversion layer transport. IEDM Technical Digest, 1984: 605- 108
    [119] Chainy K, Huang Jianhui, Duster J, et al. A MOSFET electron mobility model of wide temperature range (77–400 K) for IC simulation. Semiconductor science and technology, 1997, 12:355-358
    [120] Potbhare S, Goldsman N, Pennington G, et al. Numerical and experimental characterization of 4H- silicon carbide lateral metal-oxide-semiconductor field-effect transistor. Journal of applied physics, 2006, 100: (044515):1-8
    [121] Baccarani G, Wordeman M R. An Investigation of Steady-State Velocity Overshoot in Silicon. Solid- State Electronics, 1985, 28(4): 407 –416
    [122] G?miz F, Rold?n J B, López-Villanueva J A, et al. Electron velocity saturation in quantized silicon carbide inversion layers. Applied physics letters, 1996, 69(15): 2219-2221
    [123] Vathulya V R, White M H. Characterization of inversion and accumulation layer electrontransport in 4H and 6H-SiC MOSFETs on implanted P-type regions. IEEE Transaction on Electron Devices, 2000, 47(11): 2018-2023
    [124]Levinshtein M E, Rumyantsev S L, Shur M S. 先进半导体材料性能与数据手册. 北京: 化学工业出版社, 2003:134
    [125] Yano H, Hirao T, Kimoto T, et al. A cause for highly improved channel mobility of 4H-SiC metal– oxide–semiconductor field-effect transistors on the ( 11 20) face. Applied Physics Letters, 2001, 78(3):374-376
    [126]曾树荣.半导体器件物理基础. 北京:北京大学出版社,2002:137-138
    [127] Gildenblat G, Cai X, Chen T L, et al. Reemergence of the Surface-Potential-Based Compact MOSFET Models. Electron Devices Meeting, 2003. IEDM '03 Technical Digest. IEEE International , 2003: 36.1.1- 36.1.4
    [128] Gildenblat G, Li X, Wu W M, etal. PSP: An Advanced Surface-Potential-Based MOSFET Model for Circuit Simulation. IEEE Transactions on Electron Devices, 2006, 53(9):1979-1993
    [129] Smit G D J, Scholten A J, Klaassen D B M, et al. PSP 102.1, 2006(http://pspmodel.asu.edu/downloads /PSP1021_Summary.pdf)
    [130] Van Langevelde R, Klaassen F M. An explicit surface-potential-based MOSFET model for circuit simulation. Solid-State Electronics, 2000, 44: 409-418
    [131] Chen T L, Gildenblat G. An extended analytical approximation for the MOSFET surface potential.Solid-State Electronics, 2005, 49: 267–270
    [132] Basu D, Dutta A K. An explicit surface-potential-based MOSFET model incorporating the quantum mechanical effects. Solid-State Electronics, 2006, 50:1299–1309
    [133] He J, Chan M, Zhang X, et al. A Physics-Based Analytic Solution to the MOSFET Surface Potential From Accumulation to Strong-Inversion Region. IEEE Transactions on Electron Devices, 2006, 53(9): 2008-2016
    [134] Raynaud C. Calculation of theoretical capacitance–voltage characteristics of 6H–SiC metal–oxide– semiconductor structures. Journal of applied physics, 2000, 88(1): 424-428
    [135]姬惠莲,杨银堂,郭中和,等. 碳化硅MOSFET反型沟道迁移率的研究.微电子学与计算机, 2003, 4:66 -69
    [136] Deng Y Q, Wang W, Fang Q Z ,et al. Extraction of SiO2/SiC Interface Trap Profile in 4H- and 6H-SiC Metal-Oxide Semiconductor Field-Effect Transistors from Subthreshold Characteristics at 25°C and 150 °C. Journal of electronic materials, 2006, 35(4): 618-624
    [137]王平, 杨银堂, 杨燕, 等. 基于表面势的N 沟4H-SiC MOSFET I-V 特性解析模型. 固体电子学研究与进展,2005,25(1):42-46
    [138] Corless R M, Gonnet G H, Hare D E G, et al. On the Lambert W function. Advances in Computational Mathematics, 1996, 5: 329-359
    [139]艾罗拉 N. 用于VLSI模拟的小尺寸MOS器件模型 理论与实践.北京: 科学出版社,1999:626-627

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700