氮掺杂二氧化钛的制备及可见光下对有机物的降解研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
清洁能源―――太阳能的利用,环境污染的控制与治理是人类21世纪面临和亟待解决的重大课题,因此研究开发廉价、环境友好、高性能的可直接利用太阳能的光催化材料具有巨大的社会和经济效益。
     本文有目的的选择原料丰富、低毒甚至无毒、结构简单的尿素为有机氮源、碳酸铵、氨水为无机氮源,常温常压,采用条件温和的Sol-Gel方法制备了具有可见光活性的纳米N/TiO_2粉末。系统的研究了不同氮源、不同掺杂方式的氮掺杂二氧化钛的制备、表征以及不同光源下的光催化性能;采用兰格缪尔-欣谢尔伍德动力学方程中的积分动力学模型分析了染料甲基橙、无色巯基苯并噻唑降解过程中吸附平衡常数Ka、光降解速率常数kr对表观速率常数kap的影响;分析了降解终产物、降解过程中的pH变化以及降解体系中pH对降解的影响;并将N/TiO_2负载于γ-Al_2O_3空心球表面,应用于流化床反应器,对有机物的降解做了初步研究。运用XRD、TEM、BET、UV-Vis DRS、TG-DSC、XPS等测试手段,研究了
     不同氮源所制备N/TiO_2的性质,研究表明:
     ①350-500℃煅烧温度下制备的N/TiO_2均为锐钛矿相,随煅烧温度的升高,晶型渐趋完整,600℃以上为金红石相;晶粒因氮的掺杂而增大,且随N/Ti配比的增大而增大;
     ②396eV处β-N1s峰的存在证明氮掺杂进入TiO_2晶格中形成N-Ti-O键,且在O2p能带之上产生一个独立存在的N2p窄带,该窄带引起N/TiO_2在可见光区的光吸收,产生可见光活性;该窄带的存在没有引起N/TiO_2光吸收边带发生红移现象;黄色N/TiO_2粉末的可见光吸收强度随N/Ti配比的增大而增大,随煅烧温度的升高及煅烧时间的延长而降低,且存在颜色越深,可见光吸收强度越大的关系;
     ③由于尿素、碳酸铵为易分解物质,氨水为易挥发物质,加上部分氮元素在煅烧过程中氧化成NOx逸出,这些因素导致N/TiO_2为多孔材料,具有比TiO_2更多的孔道、孔型。尿素、碳酸铵、氨水为氮源所制备N/TiO_2的比表面积分别为139.31、132.76和116.32m~2/g,这与纯TiO_2相比,比表面积的增大约一倍,为有机物的吸附提供有利条件;
     ④氮的掺杂引起TiO_2晶格中的氧空缺,进而引起Ti~(3+)的产生;随N/Ti配比的增加,Ti~(3+)、表面羟基所占百分比含量增大。
     分别以卤钨灯、高压汞灯为激发光源,甲基橙、巯基苯并噻唑为分子探针,对比研究了不同制备条件所获得N/TiO_2的光催化性能,研究发现:
     ①在滤除紫外光的卤钨灯(可见光)照射下,N/TiO_2对于甲基橙、巯基苯并噻唑的可见光催化性能均高于TiO_2;受Ti~(3+)、表面羟基等因素的影响,对于不同的氮源(尿素、碳酸铵、氨水),均存在一个最佳N/Ti配比浓度(分别为20mol%、20mol%、4mol%),对应最佳的可见光催化活性;随煅烧温度的升高、煅烧时间的延长,N/TiO_2的可见光活性逐渐降低,600℃以上没有可见光活性;
     ②在高压汞灯(紫外光)照射下,N/TiO_2对有机物的降解速率远高于可见光下的降解速率,以及N/TiO_2的紫外光活性低于TiO_2的现象,均源于独立存在的N2p所引发的不同光激发机理;
     ③非均匀掺杂制备的催化剂的紫外光活性高于N/TiO_2,可见光活性正好相反。
     根据吸附等温线计算得到吸附平衡常数Ka,由于Ka值很大,KaC不可忽略,所以运用兰格缪尔-欣谢尔伍德动力学方程中的积分动力学模型分别对甲基橙、巯基苯并噻唑在可见光下的降解动力学进行了系统的研究,研究发现:
     不同氮源所制备的N/TiO_2均提高了有机物的吸附,巯基苯并噻唑的吸附量大于甲基橙;对于甲基橙降解体系,光降解速率常数对表观速率常数增大的作用较显著,对于巯基苯并噻唑体系,吸附作用的改善对表观速率常数的贡献更大,造成该差异的原因与有机物的分子结构、功能团等因素有关;不同氮源所制备的N/TiO_2催化剂与TiO_2相比,在甲基橙降解中,表观速率常数最大提高13.79倍,对巯基苯并噻唑的降解最大提高8.10倍。
     将N/TiO_2负载于γ-Al_2O_3空心球表面制得固定化光催化剂,应用于自制模拟流化床反应器中,在卤钨灯照射下,显示出一定的光活性;考察了浸涂方式、有氧、无氧状态以及外加H_2O_2对降解的影响,研究表明多层交叉浸涂、有氧状态及外加H_2O_2均提高了光催化活性。
     分别采用分光光度法、UV-Vis扫描、TOC、CODcr以及离子色谱对降解过程进行了分析。有机酸小分子的生成致使降解过程中pH略有下降。
     另外,改变巯基苯并噻唑体系的pH发现:碱性或酸性条件均不利于降解。
The utilization of solar energy, a clear energy, control and treatment of environmental pollution are important problem that should be faced and resolved in 21th century. So the research and development on cheap photocatalysts with high performance, which can utilize solar energy directly and environmental friendly, have enormous social and economic benefit.
     Nano N/TiO_2 powders with visible-light activity were prepared by Sol-Gel method under mild condition, with nitrogen source from urea, salvolatile and ammonia, respectively, which are all low toxic or nontoxic, abundant materials with simple structure. A systematic study of the preparation with different nitrogen source and different doping mode, characterization and photocatalytic activity under different kinds of light were presented. The influence of photoreaction kinetic constants kr and adsorption equilibrium constants Ka on the apparent reaction kinetic constants kap was analysed with the integral mode of the Langmuir-Hinshelwood kinetics in the photodegradation process of dye methyl orange and achromaticity 2-mercaptobenzothiazole. The end products, pH alteration of photodegradation process and the influence of pH on system were investigated. The application of N/TiO_2, loading on the surface of hollow sphere ofγ-Al_2O_3, to the fluid-bed reactor was investigated preliminarily.
     The crystal structure, particle size, surface area, and optical absorption properties of N/TiO_2 with different nitrogen source had been investigated by means of XRD, TEM, BET, UV-Vis DRS, TG-DSC and XPS. The results were showed as follows:
     ①The crystal structure of N/TiO_2 calcined at 350-500℃were all anatase, which was maturity with increase of calcination temperature, and changed into rutile at 600℃. The crystal size increased with doping, and augment with increase of N/Ti proportioning.
     ②Nitrogen doped into TiO_2 lattice to form N-Ti-O, which was proved byβ-N1s at 396eV by XPS. There was independent narrowband N_(2p) lied upper side of O_(2p), which induced no red-shift with N/TiO_2. The optical adsorption intensity of yellow N/TiO_2 enhanced with increase of N/Ti proportioning, and weakened with increase of calcination temperature and calcination time. The darker the color was, the stronger the optical adsorption was in visible light region.
     ③Due to decomposition of urea and salvolatile, volatilization of ammonia, and the oxidation of nitrogen into NOx, N/TiO_2 formed multiporous structure. The specific area of N/TiO_2 prepared with nitrogen source from urea, salvolatile, and ammonia were 139.31, 132.76, 116.32m~2/g, respectively, which were about two times as that of TiO_2, and supplied advantage condition for adsorption of organic substance on N/TiO_2.
     ④The doping of nitrogen induced the formation of oxygen-vacancy and then induced Ti~(3+), the percent of Ti~(3+) and surface hydroxyl group increased with increase of N/Ti proportioning.
     Photocatalytic degradation of methyl orange and 2-mercaptobenzothiazole in N/TiO_2 suspension with different nitrogen source irradiated by tungsten halide lamp and high-pressure mercury lamp was comparatively investigated. The results showed as follows:
     ①N/TiO_2 exhibited higher visible-light activity than TiO_2 in the degradation of methyl orange and 2-mercaptobenzothiazole under the irradiation of tungsten halide lamp filtered part of UV light. Due to effect of Ti3+ and surface hydroxyl group, there was an optimal doping of N/Ti proportioning exhibiting highest visible-light activity with 20mol%, 20mol% and 4mol% for urea, salvolatile and ammonia, respectively. The visible-light activity of N/TiO_2 weakened with increase of calcination temperature and calcination time, and N/TiO_2 calcined higher than 600℃showed no visible-light activity.
     ②Due to the presence of independent narrowband N2p, N/TiO_2 would exhibit much higher activity for degradation of organic substance under the irradiation of high-pressure mercury lamp than the irradiation of tungsten halide lamp, and it showed worse UV-light activity than TiO_2.
     ③Compared to N/TiO_2, N/TiO_2 with non-uniform doping showed higher UV-light activity and poor visible-light activity.
     According to the adsorption equilibrium constants Ka, the systematic study of kinetics should be adopted with integral mode of the Langmuir-Hinshelwood kinetics in the photodegradation process of methyl orange and 2-mercaptobenzothiazole. As a result, adsorption amount of organic substance on N/TiO_2 enlarged by nitrogen doping, and adsorption amount of 2-mercaptobenzothiazole was more than that of methyl orange. The effect of photoreaction was higher than that of adsorption in the system of methyl orange, and the reverse results in the system of 2-mercapbenzothiazole. The difference was related to molecular structure and function group of organic substance. Compared to TiO_2, kap of N/TiO_2 improved obviously, corresponding to about 13.79 times in the system of methyl orange, and 8.10 times in system of 2-mercaptobenzothiazole.
     The application of N/TiO_2 loading on the surface of hollow sphere ofγ-Al_2O_3 to the fluid-bed reactor was investigated preliminarily under irradiation of tungsten halide lamp, which exhibited some activity. Such factors as dip-coating mode, existence of oxygen or without oxygen, presence of H2O2 were all investigated. The results showed that multi-dip-coating mode, existence of oxygen and H2O2 would improve the photoactivity.
     The photocatalytic degradation process and products were investigated by means of UV-Vis adsorption spectra, TOC, CODcr, ion chromatography. Due to the formation of small molecule organic acid during the degradation process, the value of pH decreased appreciably.
     In addition, the condition of basic or acid would generate infaust effect in the system of 2-mercapbenzothiazole.
引文
1. 赵睿新. 环境污染化学. 北京: 化学工业出版社, 2004, 220
    2. 武宝玕, 韩博平. 环境与人类. 北京: 电子工业出版社, 2004, 134-137
    3. 戴树桂. 环境化学. 北京: 高等教育出版社, 1996, 112
    4. Fujishima A, Honda K, Kikuchi S. Photosensitized electrolytic oxidation on semiconducting n-type TiO_2 electrode. Kogyo Kagaku Zasshi. 1969, 72: 108-111
    5. Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238: 37-39
    6. Frank S N, Bard A J. Heterogeneous photo-catalytic oxidation of cyanide ion in aqueous solution at TiO_2 powders. J. Am. Chem. 1977, 99: 303-308
    7. Frank S N, Bard A J. Heterogeneous photo-catalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders. J. Phys. Chem. 1977, 81: 1484-1489
    8. Linsebigler A L, Guangquan L, Yate J T. Photocatalysis on TiO_2 surface: principles, mechanisms, and delected results, Chem. Rev. 1995, 95: 735-750
    9. Anpo M, Shima T, Kodama S, et al. Photocatalytic hydrogenation of propyne with water on small-particle titania: size quantization effects and reaction intermediates. J. Phys. Chem. 1987, 91(16): 4305-4310
    10. 陈士夫, 赵梦月, 陶跃武. 太阳光 TiO_2 薄层光催化降解有机磷农药的研究. 太阳能学报,1995, 16(3): 234-239
    11. Hsiao C Y, Lee C L, Ollis D F. Heterogeneous photocatalysis: degradation of dilute solutions of dichloromethane (CH2CI2), chlorofrm (CHCI3), and carbon tetrachloride (CHCI4), with illuminated photocatalyst. J Catal. 1983, 82: 418-423
    12. Lazzeri M, Vittadini A, Sellon A, et al. Structure and energetics of stoichiometric TiO_2 anatase surfaces. Phys. Rev. B: 2001, 63(15): (155409-1)- (155409-8)
    13. 张梅, 杨绪杰, 陆路德,等. 纳米 TiO_2—一种性能优良的光催化剂. 化工新型材料. 2001, 28(4): 11-13, 34
    14. Abdullah M. Effects of common inorganic anions on rates of photocatalytic oxidation of organic carbon over illuminated titanium dioxide. J Phys Chem. 1990, 94(17): 6820-6825
    15. 张立德, 牟季美. 纳米材料和纳米结构. 北京: 科学出版社, 2001, 92
    16. Hoffmann M F, Martin S T, Choi W, et al. Environmental application of semiconductor photocatalysis. Chem. Rev. 1995, 95 : 69-96
    17. 孙奉玉, 吴鸣, 李文钊,等. 二氧化钛表面光学特性与光催化活性的关系. 催化学报. 1998, 19(2): 121-124
    18. 李玉铭 , 李山东 , 林鸿溢 . 纳米半导体及其应用 . 物理化学学报 , 1997, 13(11): 1052-1055
    19. 徐悦华. 纳米二氧化钛光催化降解有机磷农药的研究, 华南理工大学博士学位论文, 2001,9
    20. Goswami DY. A review of engineering developments of aqueous phase solar photocatalytic detoxification and disinfection process. J. Solar Energy Eng. 1997, 119: 101-107
    21. 李庆霖, 席婵娟, 金振声. 多相光催化的一个分支—气固相光催化及其在环境治理方面的应用. 太阳能学报. 1994, 15(3): 279-282
    22. Ward M D, White J M, Bard A J. Electrochemical investigation of the energetics of particulate titanium dioxide photocatalysis—The methyl viologen-acetate system. J. Am. Chem. Soc. 1983, 105: 27-31
    23. Augugliaro V, Munoz M J L, Palmisano L. Influence of pH on the degradation kinetics of nitrophenol isomers in a heterogeneous photocatalytic system. Appl Catal. A: Chem. 1993, 101(1): 7-13
    24. 张志成, 包志军, 王克欧,等. 二氧化钛催化下的氯代二苯并对二恶英光解反应. 环境化学. 1996, 15(1): 47-51
    25. 陈士夫, 梁新, 陶跃武, 等. 光催化降解磷酸酯类农药的研究. 感光科学与化学. 2000, 18(1): 7-11
    26. 陈士夫,赵梦月, 陶跃武. 太阳光 TiO_2 薄层光催化降解有机磷农药的研究. 太阳能学报. 1995, 16(3): 234-239
    27. 郁志勇, 宋林, 朱燕, 等. 金属离子和氧化剂对 4-氯酚光化学降解的影响. 应用科学学报. 2003, 21(4): 419-422
    28. Abdullah M, Lew G K C, Matthews R.W. Effects of common inorganic anions on rates of photocatalytic oxidation of organic carbon over illuminated titanium dioxide. J. Phys. Chem. 1990, 94: 6820-6825
    29. Crittenden J C, Zhang Y, Hand D W. Solar detoxification of fuel-contaminated groundwater using fixed-bed photocatalysts. Wat. Environ. Res. 1996, 68: 270-278
    30. PelizzettiE E, Carlin V, Minero C, et al. Enhancement of the rate of photocatalytic degradation on TiO_2 of 2-chlorophenols, 2,7-dichlorodibenzodioxin and atrazine by inorganic oxidizing species by inorganic oxidizing species. New J. Chem. 1990, 15: 351-359
    31. Martin S T, Lee A T, Hoffmann M R. Chemical mechanism of inorganic oxidants in the TiO_2/UV process: Increased rates of degradation of chlorinated hydrocarbons. Environ. Sci. Technol. 1995, 29: 2567-2573
    32. Wang Y B, Hong C. Effect of hydrogen peroxide, periodate and persulfate on photocatalysis of 2-chlorobiphenyl in aqueous TiO_2 suspensions. Wat. Res. 1999, 33(9): 2031-2036
    33. Vinodgopal K, Kamat PV. Enhanced rates of photocatalytic degradation of an azo dye using SnO2/TiO_2 coupled semiconductor thin films. Environ. Sci. Technol., 1995, 29(3): 841-845
    34. 张金龙, 陈锋, 何斌. 光催化. 上海: 华东理工大学出版社, 2004, 35
    35. Jaffrezic-Renault N, Pichat P, Foissy A, et al. Study of the effect of deposited platinum particles on the surface charge of titania aqueous suspensions by potentiometry, electrophoresis, and labeled-ion adsorption. J. Phys. Chem. 1986, 90(12):2733-2738
    36. 姚晓斌,马颖,姚建年.贵金属对 TiO_2 悬浮液光照过程中 TiO_2 形成的促进作用. 感光科学与光化学. 1999, 17(2): 159-162
    37. Kitana M, Kikuchi H, Hosoda T, et al. Photocatlytic decomposition of water into H2 and O2 using the visible light responsive TiO_2 thin film photocatalysts. The 3rd Asia-Pacific Congress on Catalysis .Dalian: Dalian Institute of Chemical Physics Press. 2003, 574-575
    38. Bessekhouad Y, Robert D, Weber J V, et al. Bi2S3/TiO_2 and CdS/TiO_2 heterojunctions as an available configuration for photocatalytic degradation of organic pollutant. J. Photochem. Photobiol. A: Chem., 2004, 163: 569-580
    39. Kumar A, Kumar J A. Photophysics and photochemistry of colloidal CdS–TiO_2 coupled semiconductors — photocatalytic oxidation of indole. J. Mol. Catal. A: Chem., 2001, 165: 265-273
    40. Chen L S, Lin C F, Wu C H, et al. Capability of coupled CdSe/TiO_2 for photocatalytic degradation of 4-chlorophenol. J. Hazard. Mater. B, 2004, 114: 183-190
    41. Pilkenton S, Raftery D. Solid-state NMR studies of the adsorption and photooxidation of ethanol on mixed TiO_2–SnO2 photocatalysts. Solid State Nucl. Magn. Reson, 2003, 24: 236-253
    42. Li X Z, Li F B, Yang C L, et al. Photocatalytic activity of WOx-TiO_2 under visible light irradiation. J. Photochem. Photobiol. A: Chem., 2001, 141: 209-217
    43. Vogel R, Hoyer P, Weller H. Quantum-sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 particles as sensitiziers for various nanoporous wide-bandgap semiconductors. J. Phys. Chem, 1994, 98:3183-3189
    44. Idriss B, Prashant V K, Capped semiconductor colloids: synthesis and photoelectrochemical behavior of TiO_2-capped SnO2 nanocrystallites. J. Phys. Chem., 1995, 99:9182-9188
    45. Li X Z, Li F B, Yang C L, et al. Photocatalytic activity of WOx-TiO_2 under visible light irradiation. J. photochem. Photobiol. A: chem., 2001, 141:209-217
    46. 李芳柏,古国榜,李新军,等. WO3/TiO_2 纳米材料的制备及光催化性能. 物理化学学报. 2000,16(11):997-1002
    47. Jeon M S, Yoon W S, et al. Preparation and characterization of a nano-sized Mo/Ti mixed photocatalyst. Appl. surface sci., 2000,165:209-216
    48. Sakata Y, Yamamoto T, Gunji H, et al. Effect of Lead Oxide Addition to the Photocatalytic Behavior of TiO_2. Chem. Lett., 1998,131-132
    49. Yamashita H, Harada M, Misaka J, et al. Degradation of propanol diluted in water under visible light irradiation using metal ion-implanted titanium dioxide photocatalysts. J. photochem. Photobiol. A: chem., 2002,148:257-261
    50. Anpo M, Takeuchi M. The design and development of highly reactive titanium oxide photocatalyste operating under visible light irradiation. J. catal., 2003, 216:505-516
    51. Yamashita H, Harada M, Misaka J, et al. Photocatalytic degradation of organic compounds diluted in water using visible light-responsive metal ion-implanted TiO_2 catalysts: Fe ion-implanted TiO_2. Catal. Today. 2003,84(3-4):191-196
    52. Anpo M. New trends in the science and technology of TiO_2 photocatalysts: design and development of new types of highly functional titanium oxide-based photocatalysts. In: Li C. The 3rd Asia-Pacific Congress on Catalysis. Dalian: Dalian Institute of Chemical Physics Press. 2003,4-5
    53. 徐悦华, 古国榜, 陈小泉, 等. 复合纳米 Fe2O3/TiO_2 的制备、表征及光催化活性. 华南理工大学学报(自然科学版).2001,29(11):76-80
    54. 李芳柏,古国榜,李新军,等. 纳米复合的 Sb2O3/TiO_2 的光催化性能研究.无机化学学报.2001,17(1):37-42
    55. 周艺, 周琼花, 郏宇飞. 不同方法制备的掺钆 TiO_2 纳米粒子的自然光催化活性的研究[J]. 长沙电力学院学报. 2002, 17(2): 65-67
    56. 周艺,李志伟,徐协文. Pr3+,Ho3+掺杂 TiO_2 纳米粒子的光催化性能.湖南师范大学自然科学学报.2003,26(2):70-72
    57. 陈俊涛,李新军,杨莹,等.稀土元素掺杂对 TiO_2 薄膜光催化性能的影响.中国稀土学报. 2003,21:67-71
    58. 李芳柏,古国榜,李新军,等. 纳米复合 Y2O3/TiO_2 的制备、表征及其光催化性能研究. 中国稀土学报. 2001, 19(3): 225-228
    59. 赵秀峰,张志红,孟宪锋,等. B 掺杂 TiO_2/AC 光催化剂的制备及活性. 分子催化., 2003, 17(4):292-296
    60. Zhao W, Ma W, Chen C, et al. Efficient degradation of toxic organic pollutants withNi2O3/TiO_2-XBX under visible irradiation. J. Ame. Chem. Soc., 2004, 126: 4782-4783
    61. Lin L, Zhou Y, Zhu YX, et al. Effect of carbon content on photocatalytic activity of C/TiO_2 composite. Chinese J.Catal., 2006, 27 (1): 45-49
    62. Shankar K, Paulose M, Mor G K, et al. A study on the spectral photoresponse and photoelectrochemical properties of flame-annealed titania nanotube-arrays. J. Phys. D-Appl. Phys., 2005, 38 (18): 3543-3549
    63. Di Valentin C, Pacchioni G, Selloni A. Theory of carbon doping of titanium dioxide. Chem. Mater., 2005, 17 (26): 6656-6665
    64. Lin W Y, Han H X, Frei H. CO2 splitting by H2O to CO and O2 under UV light in TIMCM-41 silicata Sieve. J. Phys. Chem. B, 2004, 108:18269-18273
    65. Zhang L H, Ramesh V K. A study on the oxidation and carbon diffusion of TiC in alumina-titanium carbide ceramics using XPS and Raman spectrtoscopy. Mater. Chem. Phys., 1998, 57:23-32
    66. Kamisaka H, Adachi T, Yamashita K. Theoretical study of the structure and optical properties of carbon-doped rutile and anatase titanium oxides. J. Chem. Phys., 2005, 123:084704-1-084704-9
    67. Sakthivel S, Kisch H. Daylight photocatalysis by carbon-modified titanium dioxide. Angew. Chem. Int. Ed., 2003, 42:4908-4911
    68. Irie H, Watanake Y, Hashimoto K. Carbon-doped anatase TiO_2 powders as a visible-light sensitive photocatalyst. Chem. Lett., 2003, 32(8):772-773
    69. Shahed U M K, Mofareh Al-Shahry, William B, et al. Efficient photochemical water splitting by a chemically modified n-TiO_2. Science, 2002, 297:2243-2245
    70. Emanuele B, Anna M C, Iskandor K, et al. Nanostructured TiO_2 films with 2eV optical gaps. Adv. Mater.,2005, 17:1842-1846
    71. Janus M, Tryba B, Inagki M, et al. New preparation of a carbon-TiO_2 photocatalyst by carbonzition of n-hexane deposited on TiO_2. Appl. Catal.: B, 2004, 52:61-67
    72. Li Y, Hwang D S, Lee N H, et al. Synthesis and characterization of carbon-doped titania as an artificial solar light sensitive photocatalyst. Chem. Phys. Lett., 2005, 404:25-29
    73. Nagaveni K, Hegde M S, Ravishanker N, et al. Synthesis and structure of nanocrystallite TiO_2 with lower band gap showing high photocatalytic activity. Langmuir, 2004, 20:2900-2907
    74. Lin L, Lin W, Zhu Y X, et al. Uniform carbon-covered titania and its photocatalytic property. J. Molecular Catal. A: chem., 2005, 236:46-53
    75. Lettmann C, Hildenbrabd K, Kisch H, et al. Visible light photodegradation of 4-chlorophenol with a coke-containing titanium dioxide photocatlayst. Appl. Catal. B:environ., 2001, 32:215-227
    76. 田地, 余刚, 张彭义, 等. 碳黑改性二氧化钛对气相中甲苯的光催化降解. 太阳能学报., 2002, 23(1):66-68
    77. Yamaki T, Sumita T, Yamamoto S. Formation of TiO_2-xFx compounds in fluorine-implanted TiO_2. J. Mater. Sci. Lett. 2002, 21: 33-35
    78. Subbarao S N, Yun Y H, Kershaw R, et al. Electrical and optical properties of the system TiO_2-xFx. Inorg. Chem. 1979, 18(2): 488-492
    79. Yu J C, Yu J G, Ho W K, et al. Effects of F-doping on the photocatalytic activity and microstructures of nanocrystalline TiO_2 powders. Chem. Mater. 2002, 14(9): 3808-3816
    80. Hattor i A, Yamamoto M, Tada H, et al. A promoting effect of NH4F addition on the photocatalytic activity of sol-gel TiO_2 film. Chem. Lett. 1998, 188: 707-708
    81. Hattori A, Tada H. High photocatalytic activity of F-doped TiO_2 film on glass. J. Sol-Gel Sci. and Technol. 2001, 22: 47-52
    82. Hattori A, Shimoda K, Tada H, et al. Photoreactivity of sol-gel TiO_2 film formed on soda-lime glass substrates: effect of SiO2 underlayer containing fluorine. Langmuir. 1999, 15(16): 5422-5425
    83. Yu JC, Ho WK, Yu JG, et al. Effects of trifluoroacetic acid modification on the surface microstructures and photocatalytic activity of Mesoporous TiO_2 Thin Films. Langmuir. 2003, 19(9): 3889-3896
    84. Park and H, Choi W Y. Effects of TiO_2 Surface Fluorination on Photocatalytic Reactions and Photoelectrochemical Behaviors. J. Phys. Chem. B 2004, 108(13): 4086-4093
    85. Minero C, Mariella G, Maurino V, et al. Photocatalytic transformation of organic compounds in the presence of inorganic ions. 2. Competitive reactions of phenol and alcohols on a titanium dioxide-fluoride system. Langmuir. 2000, 16(23): 8964-8972
    86. Kawamoto Y, Ogura K, Shojiya M, et al. F1s XPS of fluoride glasses and related fluoride crystals. J. Fluorine Chem. 1999, 96: 135-139
    87. Umebayashi T, Yamaki T, Itoh H, et al. Band gap narrowing of titanium dioxide by sulfur doping. Appl. Phys. Lett. 2002, 81(3): 454-456
    88. Umebayashi T, Yamaki T, Tanaka S, et al. Visible light-induced degradation of methylene blue on S-doped TiO_2. Chem. Lett. 2003, 32(4): 330-331
    89. Ohno T, Mitsui T, Matsumura M. Photocatalytic activity of S-doped TiO_2 photocatalyst under visible light. Chem. Lett. 2003, 32(4): 364-365
    90. Lichtman D, Craig J H, Sailer V, et al. AES and XPS spectra of sulfur in sulfur compounds. Appl. of Surf. Sci. 1981, 7(4): 325-331
    91. Hebenstreit ELD, Hebenstreit W, Diebold U. Adsorption of sulfur on TiO_2(110) studied
    with STM, LEED and XPS: temperature-dependent change of adsorption site combined with O-S exchange. Surf. Sci., 2000, 461: 87-97
    92. Takashi T, Sachiko T, Kiyohiko K, et al. Photoxcatlaytic oxidation reactivity of holes in the surfur- and carbon-doped TiO_2 powders studies by time-resolved diffuse reflectance spectroscopy. J. Phys. Chem. B, 2004, 108: 19299-19306
    93. Ohno T. Preparation of visible light active S-doped TiO_2 photocatalysts and their photocatlaytic activities. Wat. Sci. Technol., 2004, 149: 159-163
    94. Yu J C, Ho W K, Yu J G, et al. Efficient visible-light-induced photocatalytic disinfection on sulfur-doped nanocrystalline titania. Environ. Sci. Technol., 2005, 39:1175-1179
    95. Kisch H, Macyk W. Visible-light photocatalysis by modified titania. CHEMPHYSCHEM, 2002, 3: 399-400
    96. Sato S. Photocatalytic of NOx-doped TiO_2 in the visible light region. Chem. Phys. Lett., 1986, 123: 126-128
    97. Noda H, Oikawa K, Ogata T, et al. Preparation of Titanium(Ⅳ ) oxides and its characterization. The Chemical Society of Japan. 1986, 8: 1084-1090
    98. Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science, 2001, 293: 269-271
    99. Aita Y, Komatsu M, Yin S, et al. Phase-compositional control and visible light photocatalytic activity of nitrogen-doped titania via solvothermal process. J. Solid State Chem., 2004, 177: 3235-3238
    100. Burda C, Lou Y, Chen X, et al. Enhanced nitrogen doping in TiO_2 nanoparticles. Nano Lett., 2003, 3(8): 1049-1051
    101. Yin S, Yamaki H, Komatsu M, et al. Preparation of nitrogen-doped titania with high visible light induced photocatalytic activity by mechanochemical reaction of titania and hexamethylenetetramine. J. Mater. Chem., 2003, 13: 2996-3001
    102. Chen X, Burda C. Photoelectron spectroscopic investigation of nitrogen-doped titania nanoparticles. J. Phys. Chem. B, 2004, 108: 15446-15449
    103. Ohno T, Mitsui T, Matsumura M. Photocatalytic activity of S-doped TiO_2 photocatalyst under visible light. Chem. Lett., 2003, 32: 364-365
    104. Wang J, Yin S, Zhang Q, et al. Mechanochemical synthesis of fluorine-doped SrTiO3 and its photo-oxidation properties. Chem. Lett., 2003, 32: 540-541
    105. Khan SUM, Al-Shahry M, Ingler Jr W B. Efficient photochemical water splitting by a chemically modified n-TiO_2. Science, 2002, 297: 2243-2245
    106. Sakatani Y, Koike H, Koike H. Titanium oxide, photocatalyst comprising same and photocatalytic coating agent. JP 2001072419, 2001-01-03
    107. Irie H, Watanabe Y, Hashimoto K. Nitrogen-concentration dependence on photocatalytic activity of TiO_2-XNX powders. J. Phys. Chem. B, 2003, 107: 5483-5486
    108. Lindgren T, Mwabora J. M, Avendano E, et al. Photoelectrochemical and optical properties of nitrogen doped titanium dioxide films prepared by reactive DC magnetron sputtering. J. Phys. Chem. B. 2003, 107: 5709-5716
    109. Nakamura R, Tanaka T, Nakato Y. Mechanism for visible light responses in anodic photocurrents at N-doped TiO_2 film electrodes. J. Phys. Chem. B, 2004, 108: 10617-10620
    110. Diwald O, Thompson T L, Zubkov T, et al. Photochemical activity of nitrogen-doped rutile TiO_2 (110) in visible light. J. Phys. Chem. B, 2004, 108: 6004-6008
    111. Ihara T, Miyoshi M, .Iriyama Y, et al. Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and nitrogen doping. Appl. Catal. B: Environ., 2003, 42: 403-409
    112. Salthivel S, Kisch H. Photocatalytic and photoelectrochemical properties of nitrogen-doped titanium dioxide. CHEMPHYSCHEM, 2003, 4: 487-490
    113. 谢晓峰,陆文璐,张剑平,等. 拓展作用光范围的 TiO_2-XNX 纳米制备和表征.材料科学与工程学报, 2004, 22(2): 212-215
    114. Wang JS, Yin S, Komatsu M, et al. Photo-oxidation properties of nitrogen doped SrTiO3 made by mechanical activation. Appl. Catal. B:Environ., 2004, 52 (1): 11-21
    115. Chen Songzhe, Zhang Pengyi, Zhu Wanping, et al. Nitrogen states and photocatalytic activity of nitrogen-doped TiO_2 films prepared by reactive magnetron sputtering. Chinese J. Catal., 2004, 25(7): 515-517
    116. Sano T, Negishi N, Koike K, et al. Preparation of a visible light-responsive photocatalyst from a complex of Ti4+ with a nitrogen-containing ligand. J. Mater. Chem., 2004, 14 (3): 380-384
    117. 陆文璐, 施利毅, 谢晓峰, 等. 可见光敏感型纳米氮氧化钛光催化剂的制备和表征. 上海大学学报(自然科学版), 2004, 10(3): 289-292
    118. 孙超, 黄浪欢, 刘应亮. 氮掺杂二氧化钛纳米管制备与光催化性能, 功能材料, 2005, 36(9): 1412-1417
    119. 唐玉朝, 黄显怀, 俞汉青,等. N 掺杂 TiO_2光催化剂的制备及其可见光活性研究. 无机化学学报, 2005,21(11): 1747-1751
    120. 张小宁, 曹文斌, 李艳红,等. 氮掺杂纳米 TiO_2 改性涂料及其抗菌性能. 中国涂料, 2005, 51: 26-31
    121. 费贤翔, 熊予莹. 具有可见光活性的纳米掺氮 TiO_2 制备和表征. 功能材料与器件学报, 2005, 11(2): 223-227
    122. 吴娇琦, 丁百泉, 房鼎业. 纳米 TiO_2 的流化床渗氮反应. 华东理工大学学报(自然科学版), 2005, 31(5): 575-579
    123. 赵明,方玲,张弓,等. 反应溅射 TiO_2-XNX 膜的可见光吸收性能. 材料研究学报, 2004, 18(1): 108-112
    124. 陈顺利, 刁训刚, 杨盟,等. 射频磁控溅射制备 TiO_2-XNX 薄膜以及光催化特性研究. 功能材料, 2005, 36(3): 464-466
    125. 杨松旺, 高濂. 简单有效掺氮氧化钛纳米晶的制备及其可见光催化性能. 无机材料学报, 2005, 20(4): 785-788
    126. 彭绍琴, 江风益,李越湘. N 掺杂 TiO_2 光催化剂的制备及其可见光降解甲醛. 功能材料, 2005, 36(8): 1207-1209
    127. 李威, 柳丽芬, 杨凤林,等. 以 ACF 为模板制备掺氮 TiO_2 及其光催化脱氨氮研究. 感光材料与光化学, 2005, 23(5): 374-381
    128. 陈崧 哲 , 张彭 义 , 祝万 鹏 , 等 . 可 见 光 响 应 光 催 化 剂 研 究 进 展 . 化学 进展 , 2004, 16(4):613-619
    129. Liu HY, Gao L. (sulfur, nitrogen)-codped rutile-titanium dioxide as a visible-light-activated photocatalyst. J. Am. Ceramic Soc., 2004, 87 (8): 1582-1584
    130. Nukumizu K, Nunoshige J, Takata T, et al. TiNXOYFZ as a stable photocatalyst for water oxidation in visible light(<570nm).Chem. Lett., 2003, 32(2): 196-197
    131. Wei HY, Wu YS, Lun N, et al. Preparation and photocatalysis of TiO_2 nanoparticles co-doped with nitrogen and lanthanum. J. Mater. Sci., 2004, 39 (4): 1305-1308
    132. Sakatani Y, Ando H, K Okusako, et al. Metal ion and N co-doped TiO_2 as a visible-light photocatalyst. J, Mater. Res., 2004, 19(7): 2100-2108
    133. 华南平, 吴遵义, 杜玉扣,等. Pt、N 共掺杂 TiO_2 在可见光下对三氯乙酸的催化降解作用. 物理化学学报, 2005, 21(10):1081-1085
    134. 杨鸿辉, 延卫, 张耀君,等. Pt/TiO_2-XNX 光催化剂的制备及其产氢活性研究. 西安交通大学学报, 2005, 39(5):514-516,530
    135. Wu T, Liu G, Zhao J, et al. Photoassisted degradation of dye pollutants V: self-photosensitized oxidative transformation of rhodamine B under visible light irradiation in aqueous TiO_2 dispersions. J. Phys. Chem. B. 1998, 102: 5845-5851
    136. Liu G, Zhao J. Photocatalytical degradation of dye sulforhodamine B: A comparative study of photocatalysis with photosensitization. New J. Chem., 2000, 24: 411-417
    137. Zhang F, Zhao J, Shen T, et al. Photoassisted degradation of dye pollutants Ⅱ : adsorption and degradation kinetics of eosin in TiO_2 dispersions under visible light irradiation. Appl. Catal. B: Environ., 1998, 15: 147-156
    138. Liu G, Wu T, Zhao J, et al. Photo-assisted degradation of dye pollutants Ⅷ: irreversibledegradation of alizarin red under visible light irradiation in air-equilibrated aqueous TiO_2 dispersions. Environ. Sci. Technol.,1999, 33: 2081-2087
    139. Zang L, Lange C, Abraham I, et al. Amorphous Microporous Titania Modified with Platinum(IV) Chloride-A New Type of Hybrid Photocatalyst for Visible Light Detoxification. J. Phys. Chem. B. 1998, 102:10765-10771
    140. Fujii H, Otaki M, Eguchi K, et al. Photocatalytic activities of CdS crystallites embedded in TiO_2 gel as a stable semiconducting matrix. J. Mater. Sci. Lett., 1997,16:1086—1088
    141. Harada H, Hosoki C, Kudob A. Overall water splitting by sonophotocatalytic reaction: the role of powdered photocatalyst and an attempt to decompose water using a visible-light sensitive photocatalyst. J. Photochem. Photobiol. A: Chem., 2001, 141:219-224
    142. 白树林,付希贤,王俊珍,等. LaFeO3 的光催化性.应用化学. 2000, 17(3): 343-345
    143. Ye JH, Zou ZG, Oshikiri M, et al. A novel hydrogen-evolving photocatalyst InVO4 active under visible light irradiation. Chem. Phys. Lett., 2002, 356: 221-226
    144. Zou ZG, Ye JH, Arakawa H. Substitution effects of In3+ by Fe3+ on photocatalytic and structural properties of Bi2InNbO7 photocatalysts. J. molecular catal. A: chem., 2001, 168: 289-297
    145. Wyness P. Performance of nonconcentrating solar photocatalytic oxidation reactors, Part Ⅰ:Flat-plate configuration. J. Solar Energy Engineering, 1994, 116: 2-7
    146. 张彭义, 余刚, 蒋展鹏. 倾角和循环流量对平板型光催化反应器性能的影响. 环境科学, 2000, 21(5):17-21
    147. Wyness P. Performance of nonconcentrating solar photocatalytic oxidation reactors, Part Ⅱ:shallow pond configuration.. J. Solar Energy Engineering, 1994, 116: 8-13
    148. Sunada K. Bacteridal and detoxification effects of TiO_2 thin film photocatalysts. Environ. Sci. Technol., 1998, 32(5): 726-728
    149. Matthews R W. Photooxidative degradation of coloured organics in water using supported catalysts TiO_2 on sand. Water Res., 1991, 25(10): 1169-1176
    150. Matthews R W. Destruction of phenonl in water with sun, sand, and photocatalysid. Solar Energy, 1992, 49(6): 507-513
    151. Sabate J, Anderson M A. A kinetic study of the photocatlaytic degradation of 3-chlorosalicylic acid over TiO_2 membranes supported on galss. J. Catal., 1991, 127: 167-177
    152. 王强. TiO_2-活性碳复合膜及其光电催化性能的研究.哈尔滨:哈尔滨工业大学, 2001
    153. 张桂兰. 染料废水在旋转式光催化反应器中的降解研究. 环境科学, 1999, 20(3): 79-81
    154. Puma G L, Yue O L. Comparision of the effectiveness of photon-based oxidation processes in a pilot falling film photoreactor. Environ. Sci. Technol., 1999, 33:3210-3216
    155. John C, Crittenden. Solar detoxification of fuel- contaminated groundwater using fixed-bed photocatalysts. Water Environmental Research, 1996, 68(3):270-278
    156. Zhang Y, John C, Crittenden. Fixed –bed photocatalysts for solar decontanmination of water. Environ. Sci. Technol., 1994, 28:435-442
    157. Robert A, Burns. Effect of inorganic ions in heterogeneous photocatalysis of TCE. J. Environ. Engineering, 1999, 16(1):77-85
    158. Angelidis T. Kinetic study of the photocatalytic recovery of Pt from aqueous solution by TiO_2, in a closed-loop reator. Appl. Catal. B: Environ., 1998, 16: 347-357
    159. Kobayakawa K. Continuous- flow photoreactor packed with titanium diozide immobilized on large siliea gel beads to decompose oxalie acid in excess water. J. Photochem. Photobiol. A: Chem., 1998, 188: 65-69
    160. Hisahiro E. Complete osidation of benzene in gas phase by platinized titania photocatalysts. Environ. Sci. Technol., 2001,35: 1880-1884
    161. Noel A H, Christopher H. Gas-phase photocatalytic oxidation of dichloro-butenes. Environ. Sci. Technol., 2001, 35: 2823-2827
    162. Nicola L P, Michael R H. Development and optimization of a TiO_2 coated fiber-optic cable reactor, Photocatalytic degradation of 4-chlorophenol. Environ. Sci. Technol., 1995, 29: 2974-2981
    163. Nicola L P, Michael R H. Chemical and physical Characterization of a TiO_2 coated fiber optic cable reactor. Environ. Sci. Technol., 1996, 30: 2806-2812.
    164. Andereas H. TiO_2-Assisted degradation of environmentally relevant organic compounds in wastewater using a novel fluridized bed photoreactor. Environ. Sci. Technol., 1996, 30: 817-824
    165. 江立文 ,李耀中 . 流化床光催化反应器动力学模式 .中国环境科学 , 2000, 20(6): 540-543
    166. Lynette A, Gregory D, Raupp B. Fludized-bed photocatalytic oxidation of trichloethylene in contaminated airstreams, Environ. Sci. Technol., 1992, 26: 492-495
    167. 崔鹏, 范益群. Design and application of fluidization bed photocatalytic reactor. 化工学报, 2001, 52(3):195-196
    168. 陈平.三相内循环流化床光催化氧化反应体系的研究. 哈尔滨: 哈尔滨工业大学,2002
    169. 贺飞, 唐怀军, 赵文宽, 等. 纳米 TiO_2 光催化剂负载技术研究. 环境污染治理技术与设备. 2001, 2(2): 47-58
    170. 李 旦 振 , 郑 宜 , 付 贤 智 . 微 波 - 光 催 化 耦 合 效 应 及 其 机 理 研 究 . 物 理 化 学 学报,2002,18(4):332-335
    171. 郑 宜 , 李 旦 振 , 付 贤 智 . C2H4 的 微 波 场 助 气 相 光 催 化 氧 化 . 高 等 学 校 化 学 学报,2001,22(3):443-445
    172. Fu X Z, Zeltner W A, Anderson M A, et al. Application Photocatalytic Purification of Air. Amsterdam: Elsevier Science B, 1996, 103:44
    173. Horikoshi S, Tokunaga A, Hidaka H. Thermal/non-thermal effects in the microwave-assisted photocatalyzed mineralization of bisphenol-A. J. Photochem. Photobiol. A:Chem., 2004,162:33-40
    174. Horikoshi S, Hidaka H, Serpone N. A simple modified domestic microwave oven integrating an electrodeless UV-Vis lamp to photodegrade environmental pollutants in aqueous media. J. Photochem. Photobiol. A:Chem.,2004,161:221-225
    175. Horikoshi S, Hidaka H, Serpone N. Microwave-assisted degradation of Rhodamine-B dye in aqueous TiO_2 dispersions. Environ. Sci. Technol., 2002, 36(6): 1357-1366
    176. Horikoshi S, Hidaka H, Serpone N. Enhanced formation of OH radicals probed by ESR techniques in microwave-assisted photo-catalysis in aqueous TiO_2 dispersions. Chem. Phys. Lett.,2003,376:475-480
    177. 艾 智 慧 , 姜 军 清 , 杨 鹏 , 等 . 微 波 辅 助 光 催 化 降 解 4- 氯 酚 的 研 究 . 工 业 水 处理,2004,24(11):41-44
    178. Mrowetz M, Pirola C, Elena S. Degradation of organic water pollutants through sonophotocatalysis in the presence of TiO_2. Ultrasonics Sonochemistry,2003,10:247-254
    179. Werner B. Ultrasound supported catalysis. Ultrasonics Sonochemistry, 2005, 12:103-106
    180. Mohammad H, Entezari, Heshmati A, et al. A combination of ultrasound and inorganic catalyst; removel of 2-chlorophenol from aqueous solution. Ultrasonics Sono-Chemistry, 2005,12:137-141
    181. Vittorio R, Elena S, Claudia L B, et al. Sono-photocatalytic degradation of 2-chlorophenol in water: kinetic and energetic comparison with other techniques. Ultrasonics Sonochemistry, 2001, 8:251-258
    182. Shirgaonkar I Z, Pandit A B. Sonophotochemical destruction of aqueous solution of 2,4,6-trichlorophenol.Ultrasonics Sonochemistry,1998,5:53-61
    183. Elena S, Claudia L B, Abbas H, et al. Degradation of methyl tert-butyl ether in water: effects of the combined use of sonolysis and photocatalysis. Ultrasonics Sono-chemistry, 2005,12:395-400
    184. Nakajima A, Tanaka M, Yoshikazu K, et al. Sonophotocatalytic destruction of 1,4-dioxane inaqueous systems by HF-treated TiO_2 powder. J. Photochem. Photobiol. A:Chemistry, 2004, 167:75-79
    185. 安太成,顾浩飞,等.超声协同纳米 TiO_2 光催化降解活性染料的初步研究.中山大学学报(自然科学版),2001,40(5):131-132
    186. 付贤智, 李旦振. 提高多相光催化氧化过程效率的新途径. 福州大学学报(自科版). 2001, 29(6): 104-114
    187. 王怡中,符雁,汤鸿霄.甲基橙溶液多相光催化降解研究.环境科学,1998,19(1):1-4
    188. Holzer F, Roland U, Kopinke F D. Combination of non-thermal plasma and heterogeneous catalysis for oxidation of volatile organic compounds. Appl. Catal. B, 2002,38:163-181
    189. 晏 乃 强 , 吴 祖 成 , 施 耀 . 电 晕 - 催 化 技 术 治 理 甲 苯 废 气 的 试 验 研 究 . 环 境 化学,1999,20(1):11-14
    190. Liu C J, Gheorghi P V. Catalyst preparation using plasma technologies. Catal.Today,2002,72:173-184
    191. Roland U, Holzer F, Kopinke F D. Improved oxidation of air pollutants in a nonthermal plasma. Catal. Today,2002,73:315-323
    192. Kang M, Kim B J, Cho S M, et al. Decomposition of toluene using an atmospheric pressure plasma/TiO_2 catalytic system. J. Mol. Catal. A: Chem,2002,180(1-2):125-132
    193. Mok YS, Ravi V, Kang HC, et al. Abatement of nitrogen oxides in a catalytic reactor enhanced by nonthermal plasma discharge. IEEE Transactions on Plasma Science, 2003, 31(1):157-165
    194. Vinodgopal K, Hotchandani S, Khmat P V. Electrochemically assisted photocatalysis TiO_2 particulate film electrodes for photocatalytic degradation of 4-chlophenol. J. Phys. Chem.,1993,97:9040-9044
    195. He C, Xiong Y, Zhu X H. A novel method for improving photocatalytic activity of TiO_2 film: the combination of Ag deposition with application of external electric field. Thin Solid Films,2002,422:235-238
    196. Maria V B. Zanoni, Jeosadaque J.Sene, et al. Photoeletrocatalytic degradation of Remazol Brilliant Orange 3R on titanium dioxide thin-film electrodes. J. Photochem. Photobiol. A:Chem.,2003,157:55-63
    197. Jiang Z P, Wang H Y, Huang H, et al. Photocatalysis enhancement by electric field: TiO_2 thin Film for degradation of dye X-3B. Chemosphere,2004,56:503-508
    198. 冷文华,张昭,成少安,等.光电催化降解苯胺的研究-单槽与双槽光反应器对比.环境科学学报,2002,22(1):40-44
    199. 王国全.磁化学研究进展及其应用.化工进展,1998(1),30-33
    200. Wakasa M, Hayashi H. Magnetic field effect on the dynamic behavior of a radical pair asstudied by a sub-nanosecond laser flash photolysis technique. Chem. Phys. Lett., 2000,327:343-350
    201. 姜焕伟,王郁,林逢凯.磁场对 TiO_2 光催化降解水中微量氯苯的影响.华东理工大学学报, 2003,29(2):166-169
    202. 王郁,朱润华,李俊杰,等.水中甲苯、对二甲苯磁化-光解耦合过程动力学研究.环境化学, 2002,21(5):458-464
    203. Parra S, Malato S, Pulgaria C. New integrated photocatalytic-biological flow system using supported TiO_2 and fixed bacteria for the mineralization of isoproturon. Appl. Catal. B: Environ., 2002(36):131-144
    204. Hu C. Decolorization and biodegrability of photocatalytic treated AZO dyes and wool textile wastewater.Chemosphere,1999,39(12):2107-2115
    205. 王怡中,陈梅雪,胡春,等.光催化氧化与生物氧化组合技术对染料化合物降解研究.环境科学学报, 2000, 20(6):772-775
    206. Christian L, Kunt H, Horst K, et al. Visible light photodegradation of 4-chlorophenol with a coke-containing titanium dioxide photocatalyst. Appl. Catal. B: Environ., 2001, 32:215-227
    207. Yoshio N, Masami M, Junichi N, et al. Nitrogen-doped titanium dioxide photocatalysts for visible response prepared by using orfganic compounds. Sci. Technol. Adv. Mater., 2005,6: 143-148
    208. Revathi B, John K, Teruhisa O, et al. testing and characterization of doped TiO_2 active in the peroxidation of biomolecules under visible light. J. Phys. Chem. B, 2005, 109:5994-6003
    209. Vold R D and Vold M J. Colloid and interface chemistry Addison Wesley, 1983
    210. 何余生,李忠,奚红霞,等. 气固吸附等温线的研究进展.离子交换与吸附, 2004, 20(4): 376-384
    211. Yu J G, Yu J C, Leung M K P, et al. Effects of acidic and basic hydrolysis catalysts on the photocatalytic activity and microstructures of bimodal mesoporous titania. J.Catal. 2003, 217:69-78
    212. Yu J C, Yu J C, Cheng B, et al. The effect of F?-doping and temperature on the structural and textural evolution of mesoporous TiO_2 powders. J. Solid State Chem., 2003, 174:372-380
    213. Yu J G, Yu J C, Ho W K, et al. Preparation of highly photocatalytic active nano-sized TiO_2 particles via ultrasonic irradiation. Chem.Commun. 2001, 19: 1942-1943
    214. Li F B, Li X Z, Ao C H, et al. Photocatlytic conversion of NO using TiO_2-NH3 catalysts in ambient air environment. Appl. Catal. B: Environ., 2004, 54: 275-283
    215. D.Briggs 等著[英], 桂琳琳, 黄惠忠, 郭国霖译. X 射线与紫外光电子能谱. 第一版. 北京:北京大学出版社,1984,02:59-76
    216. Morikawa T, Asahi R, Ohwaki T, et al. Band-gap narrowing of titanium dioxide by nitrogen doping. Jpn. J. Appl. Phys. Pt.2. 2001,40(6A): L561-L563
    217. Slavador P, Gonzalez Garcia M L, et al. J. Phys. Chem., 1992, 96(25):10349-10353.
    218. Yu J G, Zhao X J, Zhao Q N. Effect of surface structure on photocatalytic activity of TiO_2 thin films prepared by sol-gel method. Thin Solid Films. 2000, 379: 7-14
    219. Yu J G, Zhao X J, Zhao Q G. Photocatalytic activity of nanometer TiO_2 thin films prepared by the sol-gel method. Mater. Chem. Phys. 2001, 69: 25-29
    220. Trapalis C, Kozhukharov V, Samuneva B, et al. Sol-gel processing of titanium- containing thin coatings. Part III: XPS studies. J. Mater. Sci. 1993, 28: 1276-1282
    221. Linsebigler A L, Lu G, Yates J T. Photocatalysis on TiO_2 surfaces: principles, mechanisms and selected results. Chem. Rev. 1995, 95: 735-758
    222. Herrmann J. M. Heterogeneous photocatalysis: fundamentals and application to the removal of various types of aqueous pollutants. Catal. Today. 1999, 53(1): 115-129
    223. Fox M A, Dulay M T. Heterogeneous photocatalysis. Chem. Rev, 1993, 93: 341 –357
    224. Martin S T, Kesselman J M, Perk D S, et al. Surface structure of 4-chlorocatechol adsorbed on titanium dioxide. Environ. Sci. Technol., 1996, 30: 2536-2542
    225. Carole K G, Marie J, Micheal G. Decomposition of organophosphorus compounds on photoactivated TiO_2 surface. J. Mole. Cata., 1990, 60: 375-278
    226. Koch M, Yediler A, Lienert D, et al. Ozonation of hydrolyzed azo dye reaction yellow 84 (CI), Chemosphere, 2002, 46:109-113
    227. Li F B, Li X Z, Hou M F. Photocatalytic degradation of 2-mercaptobenzothiazole in aqueous La3+-TiO_2 suspension for odor control. Appl. Catal. B: Environ., 2004, 48: 185-194
    228. 高濂,郑珊,张青红.纳米氧化钛光催化材料及应用.北京:化学工业出版社,2002,86-88
    229. 金达莱,岳林海,金志敏,等.掺 C60 二氧化钛微晶特性和光催化活性研究.浙江大学学报(理学版), 2001, 28: 526-532
    230. 陈镜泓,李传儒.热分析及其应用. 北京: 科学出版社, 1985:162
    231. Kisch H, Macyk W. Visible-light photocatalysis by modified titania. CHEMPHYSCHEM, 2002, 3: 399-400
    232. Noda H, Oikawa K, Ogata T, et al. Preparation of Titanium(Ⅳ ) oxides and its characterization.The Chemical Society of Japan. 1986, 8: 1084-1090
    233. Slavador P, Gonzalez Garcia M L, Munoz F. Catalytic role of lattice defects in the photoassisted oxidation of water at (001) n-titanium(IV) oxide rutile. J. Phys. Chem.,1992, 96(25):10349-10353
    234. Serpone N, Pelizzetti E. Photocatalysis : fundamentals and applications. New York : Wiley-Interscience publication. 1989, 603-637
    235. Bredow T, Jug K. Theoretical investigation of water adsorption at rutile and anatase surfaces. Surf. Sci. 1995, 327: 398-408
    236. Stefanovich E V, Truong T N. Ab initio study of water adsorption on TiO_2 (110): molecular adsorption versus dissociative chemisorption. Chem. Phys. Lett. 1999, 299: 623-629
    237. 邓南圣,吴峰. 环境光化学. 北京: 化学工业出版社,2003, 328-331
    238. 章燕豪. 吸附作用. 上海: 上海科学技术文献出版社, 1989, 124-170
    239. 叶振华. 吸着分离过程基础. 北京:化学工业出版社,1988, 12
    240. 韩兆慧,赵化侨.半导体多相光催化应用研究进展.化学进展,1999(1):1-10
    241. 陈平,尤宏,罗薇楠.TiO_2 光催化反应器的研究.哈尔滨商业大学学报(自然科学版), 2003, 19(2):238-244
    242. Fu X Z, Louis C A, Qing Y, et al, Enhance photocatalytic performance of titania-based binary metal oxides: TiO_2/SiO2 and TiO_2/ZrO2. Environ. Sci. Techno., 1996, (30):647-653
    243. Anderson C, Bard A J. Improved photocatalytic activity and characterization of mixed TiO_2/SiO2 and TiO_2/Al2O3. J. Phys. Chem.B:1997,(101):2611-2616

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700