重组巴斯德毕赤酵母发酵生产几丁质酶的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
几丁质广泛分布于动物、微生物体内,是自然界中含量仅次于纤维素的生物多聚物,年生物合成量达100亿吨。作为自然界中唯一大量合成的碱性多糖,其具有很多不同于其他多糖的特性,并显现出独特的应用价值,是糖生物学开发应用研究的一个热点。
     几丁质酶(EC3.2.1.14)能将几丁质β-1,4糖苷键水解,最终分解为N-乙酰氨基葡萄糖(GlcNAc)。在作物抗真菌病害、人类治疗真菌病、几丁质深加工等领域前景看好。因此,几丁质酶的批量生产势在必行。本研究的内容即是采用一株Mut+表型的重组巴斯德毕赤酵母生产水稻碱性几丁质酶,对发酵过程进行优化,并对其理化性质进行分析。
     试验在摇瓶水平对巴斯德毕赤酵母表达几丁质酶的诱导条件进行了研究,得到的结果为:培养基以有机培养基BMMY为宜;离心与否对外源蛋白表达影响不大;添加0.5%的(NH4)2SO4、0.05%的油酸、添加1.0%的甲醇混合0.1%的甘油、0.67%的YNB、1.5%的酵母抽提物、pH6.0、每12 h补加一次甲醇、诱导108 h,重组几丁质酶表达量最高,提高甲醇浓度稳定性有利于蛋白表达量的提高;而添加氧载体抑制外源蛋白表达;表面活性剂诱导杂蛋白分泌;降低诱导温度不利于重组几丁质酶的表达。可以此作为发酵罐培养流加成分的参考。
     在7 L发酵罐进行了放大试验,发现该菌株利用甲醇能力较强,完全能够以溶氧振荡为指针指示甲醇流加,通过蠕动泵连续流加甲醇诱导,外源蛋白表达量峰值比摇瓶诱导提前了近24 h,在84 h蛋白表达量达462.41 mg/L,单位得率提高了近2.7倍;几丁质酶酶活达到77.61 U/mL。
     为进一步提高几丁质酶的表达量,在诱导阶段进行了甘油-甲醇混合碳源流加策略和甘油-甲醇交替流加策略。甘油-甲醇混合流加过程中甘油的限制性流加改善了菌体生长状况,菌体密度达到一个更高的水平,酵母生理活性的提高使诱导期得以延长,带动甲醇进一步诱导蛋白表达,表达量达到了495.33 mg/L,几丁质酶酶活达到88.31 U/mL;甘油-甲醇碳源交替流加策略打破了毕赤酵母细胞内AOX1的平衡,延缓了酵母细胞内AOX1饱和的时间,外源蛋白表达速率下降的趋势得以缓解,在120 h外源蛋白最高表达量达到516.45 mg/L,几丁质酶酶活达到99.3 U/mL。
     对发酵上清液进行了硫酸铵分级沉淀和Sephadex G-100柱层析,得到纯化的几丁质酶。发现该几丁质酶对热不敏感;在酸性pH范围内酶活性较高,并且表现为双峰型,在碱性pH中酶活性降低,印证巴斯德毕赤酵母正确表达了水稻碱性几丁质酶。该几丁质酶对病原真菌(Rhizopus stolonifer,Botrytis cinerea)扩展初期表现出抑制作用,但后期抑制效果不明显。
Chitin is aβ-1,4-linked,insoluble linear polymer of N-acetylglucosamine (GlcNAc)and is the second most abundant organic compound on our planet following cellulose, biosynthesize 10 billion per year. And it’s distributed in animal, microbe. As the exclusive alk polysaccharide of the nature, there are some special characteristics of chitin. It is became the focal point of the exploratory development for its particular function.
     Chitinase(EC3.2.1.14) is a glycosyl hydrolase that catalyzes the hydrolytic degradation of chitin. It has good prospects in territories as follow, for higher plants is a part of defense mechanism against fungal pathogens, cure disease of human inducing by fungal, deep processing of chitin, and so on. So it’s imperative to produce chitinase in large-scale. In this study a recombinant strain of Pichia pastoris with a phenotype of Mut+ was used to produce alk rice chitinase, which was secreted into the culture. The aim of the present work was to enhance the expression level of chitinase expressed by the recombinant Pichia pastoris, and analyze the biochemistry character.
     In shake-flask, the conditions of the induction phase were investigated. The optimal medium was BMMY. The concentration of (NH4)2SO4 was 0.5%, oleic acid was 0.05%,YNB was 0.67%,yeast extract was 1.5%,1.0% methanol mixed-feed with 0.1% glycerol. The optimal pH condition was 6.0. Add methanol to final concentration of 1.0% every 12 hours to maintain induction without centrifuging after the growth phase. The highest productivity of chitinase was obtained when inducing for 108 hours. And it was propitious to enhance production by enhanced the stability of methanol concentration. But the oxygen vector, surface active agent, lower the induction temperature were not propitious to production. The above data could be used to direct the fed-batch fermentation.
     By 7 L fermentor, different methanol feeding modes were evaluated. For the strong ability to utilize methanol, the methanol feed rate could be directed by the dissolve oxygen vibration. Continue feed methanol through peristaltic pump, the highest production level of recombinant chitinase obtained earlier nearly 24 hours than the shake-flask, and high to 462.41 mg/L, was 2.7 folds than shake-flask. And the chitinase activity was 77.61 U/mL.
     In order to further enhance the recombinant chitinase expression level, the glycerol-methanol mixed-feed mode and the feeding mode of two carbon sources alternatively were evaluated. The feed of glycerol during glycerol-methanol mixed feed phase, improved the growth environment for cell, and the biomass became more. The improved activity of cell’s physiology, prolong the induction phase, to spur the methanol induced more recombinant chitinase, the expression level was high to 495.33 mg/L and the chitinase activity was 88.31 U/mL. When feeding of two carbon sources alternatively, the blance of AOX1 was broken. And the prolong of saturation time of AOX1 activity, staved the decline rate of heterologous protein production rate, and at the 120 hours the highest level was 516.45 mg/L,99.3 U/mL.
     The fast purification of fermentation broth was conducted with (NH4)2SO4 and Sephadex G-100, and got pure chitinase. The pure chitinase was thermostable, keep higher activity in acid environment, and the profile showed the double summit in wide pH limit. In alk environment the activity became lower, proved the recombinant chitnase was alk. The pathogen(Rhizopus stolonifer, Botrytis cinerea) could be inhibited by the enzyme in a certain extent.
引文
[1] 蒋挺大.甲壳素[M].北京:化学工业出版社,2003.
    [2] Takeshi Tanaka,Toshiaki Fukui,Tadayuki Imanaka.Different Cleavage Specificities of the Dual Catalytic Domains in Chitinase from the Hyperthermophilic Archaeon Thermococcus kodakaraensis KOD1 [J].The Journal of Biological Chemistry,2001,276(38):35629-35635.
    [3] Cassandra M.More.Chintinase:the vertebrate side of the story[D].University of Maryland,College Park in partial fulfillment of the requirements for the degree of Doctor of Philosophy,2001.
    [4] Goodday,G.W.The ecology of chitin degradation[J]. Advances in Microbial Ecology [C]. London: Plenum Press, 1990.387-430.
    [5] Surarit R,Gopel PK,Shepherd MG.Evidence for a glycosidic linkage between chitin and glucan in the cell wall of Candida albicans[J].Journal of General Microbiology,1988,13(6):1723-1730.
    [6] 杨丽,姜亦文.甲壳素物降解的现状[J].青岛化工学院学报,2000,21(4):301-304.
    [7] Semino,C.E.,M.L.Allende.Chitin oligosaccharides as candidate patterning agents in zebrafish embryogenesis [J].International Journal of Developmental Biology, 2000, 44: 183-193.
    [8] 张树政.糖生物学与糖生物工程[M].北京:清华大学出版社,2002.
    [9] Ouchi T,Banba Matsumoto T,et al.Synthesis and antitum or activity of conjugates of 5-fluorouracil and chito-oligosaccharides involving a hexamethylene spacer group and carbam oyl bonds[J].Drug Des Dellv,1990,6(4):281.
    [10] 王中和,陆顺娟,胡海生,等.低分子壳多糖对癌症放疗患者免疫功能的影响[J].首都医科大学学报,1997,18(1):80
    [11] Suzuki K,Tokro A,Okawa Y,et al.Enhancing effects of N-acetyl-chito-oligosaccharides on the active oxygen-generating and microbicidal activities of peritoneal exudates cells in mice[J].Chem Pharm Bull,1985,33(2):886.
    [12] Kakuji Mitsunaga,Minoru Iwase,Wimal Ubhayasekera.Molecular Cloning of a Genomic DNA Encoding Yam Class Ⅳ Chitinase[J].Biosci. Biotechnol. Biochem., 2004, 68(7): 1508-1517.
    [13] Wietse De Boer,Paulien J.A.Klein Gunnewiek,George A.Kowailchuk,et al.Growth of Chitinolytic Dune Soil β-Subclass Proteobacteria in Response to Invading Fungal Hyphae[J].Applied and Enviromental Microbiology,2001,67(8):3358-3362.
    [14] Nemat O.Keyhani,Xi-Bing Li,Saul Roseman.Chitin Catabolism in the Marine Bacterium Vibrio furnissii[J].The Journal of Biological Chemistry,2000,275(42):33068-33076.
    [15] Takahisa Ikegami,Terumasa Okada,Masayuki Hashimoto,et al.Solution Structure of the Chitin-binding Domain of Bacillus circulans WL-12 Chitinase A1[J].The Journal of Biological Chemistry, 2000,275(18):13654-13661.
    [16] Huber M., J.St?hr, S.Hohenhaus, et al. Thermococcus chitinophagus, sp. nov., a novel chitin-degrading, hyperthermophilic archaeum from a deep-sea hydrothermal vent environment [J].Archive of Microbiology,164:255-264.
    [17] Yamano N.,Oura N.,Wang J.,et al. Cloning and sequencing of the genes for N-acetylglucosamine use that construct divergent operons (nagE-nagAC) from Vibrio cholerae non-01[J].Biosci. Biotechnol.Biochem.,1997,61(8):1349-1353.
    [18] 林稚兰,黄秀梨.现代微生物学与实验技术[M].北京:科学出版社,2000.
    [19] AR Butler,RW O’Donnell,VJ Martin,et al.Kluyveromyces lactis toxin has an essential chitinase activity[J]. European Journal of Biochemistry,199:483-488.
    [20] Alexander V.Bartsev,William J.Deakin,Nawal M.Boukli,et al.Nopl,an Effector Protein of Rhizobium sp.NGR234, Thwarts Activation of Plant Defense Reactions[J].Plant Physiology, 2004,134:871-879.
    [21] 张志忠,吴菁华,吕柳新,等.植物几丁质酶及其应用研究进展[J].福建农林大学学报(自然科学版),2005,34(4):494-499.
    [22] Neuhaus J.M.,Fritig B.,Linthorst H.J.,et al.A revised nomenclature for chitinas genes [J].Plant Molecular Biology Reporter,1996,14(2):102-104.
    [23] Luis O?ate-Sánchez,Karam B.Singh.Identification of Arabidopsis Ethylene-Responsive Element Binding Factors with Distinct Induction Kinetics after Pathogen Infection [J]. Plant Physiology, 2002,128:1313-1322.
    [24] Schlumbaum A.,Mauch F.,Vogeli U.et al.Plant chitinase are petent inhibitors of fungal growth[J]. Nature,1986,324:365-367.
    [25] 陈崇顺,朱雪峰,郁志芳.不同豇豆品种几丁质酶粗提液对尖镰孢菌生长的影响[J]. 南京农业大学学报,1999,22(4):23-26.
    [26] Broglie K.E.,Chet I.,Holliday M.,et al.Transgenic plants with enhanced resistance to the fungal pathogen Rhizoctonia solani[J].Science(Washington D.C.), 1991, 254: 1194-1197.
    [27] Mauch F.,Mauch-Mani B.,Boller T.Antifungal hydrolases in pea tissueⅡ.Inhibition of fungal growth by combinations of chitinase and β-1,3-glucanase[J].Plant Physiol., 1988,88:936-942.
    [28] Marilyn Griffith,Paul Ala,Daniel S.C.Yang ,et al.Antifreeze Protein Produced Endogenously in Winter Rye Leaves[J].Plant Physiol.,1992,100:593-596.
    [29] Maja Stressmann,Satoshi Kitao,Marilyn Griffith,et al.Calcium Interacts with Antifreeze Proteins and Chitinase from Cold-Acclimated Winter Rye[J].Plant Physiology, 2004,135:364-376.
    [30] 杨承勇,周世宁.几丁质酶的研究及应用前景[J]. 仲恺农业技术学院学报, 1999,12(1):64-69.
    [31] Zhicheng shen,Marcelo Jacobs-Lorena. Characterization of a Novel Gut-specific Chitinase Gene from the Human Malaria Vector Anopheles gambiae[J].The Journal of Biological chemistry, 1997, 272(46):28895-28900.
    [32] 刘欣洁 , 谭振波 . 昆虫几丁质酶及其在植物抗虫品种改良中的应用 [J]. 生物技术通报,2004,3:18-22.
    [33] 吴青君,张文吉,张友军.昆虫几丁质酶及其在植物保护中的应用[J].昆虫知识,2000,37(5):314-317.
    [34] Josep Guarro,Josepa Gene.Developments in Fungal Taxonomy[J].Clinical Microbiology Review,1999, 12(3):454-500.
    [35] M.J.Pozo,C.Azcon.Chitosanase and chitinase activities in tomato roots during interactions with arbuscular mycorrhizal fungi or phytophthora parasitica[J].Journal of Experimental Botany,1998, 49(327):1792-1739.
    [36] 吴志刚,朱旭芬.几丁质酶的分子生物学特性及其在转基因植物中的应用[J].生命科学,2002,14(2):117-121.
    [37] Amy L.Svitil, David L.,Kirchman.A chitin-binding domain in a marine bacterial chitinase and other microbial chitinases:implications for the ecology and evolution of 1,4-β-glycanases[J].Microbiology, 1998,144:1299-1308.
    [38] 林毅,关雄.苏云杆菌 HD224 菌株几丁质酶基因的克隆与序列分析[J].生命的化学,2004,24:54-55.
    [39] 蓝海燕,田颖川,王长海,等.表达 β-1,3-葡聚糖酶及几丁质酶基因的转基因烟草及其抗真菌病的研究[J].遗传学报,2000,27(1):70-77.
    [40] 吴家和,张献龙,罗晓丽,等. 转几丁质酶和葡聚糖酶基因棉花的获得及其对黄萎病的抗性[J].遗传学报,2004,31(2):183-188.
    [41] 陈 三 凤 , 刘 德 虎 , 李 季 伦 . 植 物 几 丁 质 酶 的 结 构 、 基 因 及 其 表 达 [J]. 生 物工 程 进展,1998,18,(2):33-36.
    [42] Meins F. J., Bernard F., Linthorst H. U. M.,et al. Plant chitinase genes[J]. Plant Mol. Bio. Reptr., 1994, 12(2):S22-S28.
    [43] 何迎春.外源几丁质酶基因转化水稻的研究[D].2002,湖南农业大学博士学位论文.
    [44] H.de la Vega.Chitinases are a multi-gene family in Aedes,Anopheles and Drosophila [J].Insect Molecular Biology,1998,7(3):233-239.
    [45] Kramer K.J.,Corpuz L.,M.,Choi H.,et al.Sequence of cDNA and expression of the gene encoding epidermal and gut chitinases of Manduca sexta[J]Insect Biochemistry and Molecular Biology,1993, 23: 691-701.
    [46] M.G. Kim.Molecular cloning of chitinase cDNAs from the silkworm,Bombyx mori and the fall webworm,Hyphantria cunea[J].Insect Biochemistry and Molecular Biology, 1998, 28:163-171.
    [47] Koga D.,Sasaki Y.,Uchiumi Y.,et al.Purification and characterization of Bombyx mori chitinases[J]. Insect Biochemistry and Molecular Biology,1997,27(8-9):757-767.
    [48] 肖业臣,罗晓斌,冯佩富,等.昆虫几丁质酶的研究进展[J].生物技术,2003,13(1)38-39.
    [49] Zenjiro Sampei,Yuri Nagao,Tetsuya Fukazawa, et al.Gene cloning and deletion analysis of chitinase J from alkaliphilic Bacillus sp.strain J813[J].Nucleic Acids Symposium Series,2004,48:167-168.
    [50] 刘晨光,陈西广,刘万顺.几丁质酶 Hevamine 的三级结构和催化机理[J].生命的化学,1999,19(2):72-74.
    [51] 冯俊丽,朱旭芬.微生物几丁质酶的分子生物学研究[J].浙江大学学报,2004,30(1):102-108.
    [52] Zhicheng Shen,Marcelo Jacobs Lorena.Evolution of chitin-binding proteins in invertebrates[J].Journal of Molecular Evolution,1999,48:341-347.
    [53] Yamagani T,Funatsu G.The complete amino acid sequence of chitinase-a from the seeds of ryc(Secale cereal)[J].Biosci Biotechnol Biochem,1994,58(2):322-329.
    [54] S. Chareonpornwattana , K. V. Thara , L. Wang, S. K. ,et al. Inheritance, expression, and silencing of a chitinase transgene in rice[J]. Theor. Appl. Genet., 1999, 98: 371-378.
    [55] Hideto U ,Kiyotaka M,Yasuo S. Purification and some properties of extracel2 lular Chitinase from Streptomyces sp. S - 84 [J] . Gen. Appl. Microbiol., 1990 ,36 :377 – 392.
    [56] 赵艳,黄大年.植物基因工程食品采用的转基因策略及其安全性[J].现代生物及食品技术[C].北京:中国轻工业出版社,2002.1-7.
    [57] 吴云汉,邱立友.几丁质酶对 Bt 菌剂增效作用的研究[J].全国生物防治学术讨论会论文摘要集[C].北京,1995,10.
    [58] G.Gellissen.Heterologous protein production in methylotrophic yeasts[J].Appl. Microbiol. Biotechnol., 2000,54:741-750.
    [59] 樊建勇.毕赤酵母表达系统[J].国外医学预防、诊断、治疗用生物制品分册,2003,26(5):217-219.
    [60] 陈杏洲.毕赤酵母植酸酶工程菌的改造及其初步发酵工艺研究[D].华中农业大学硕士研究生学位论文,2004.
    [61] 唐元家,余柏松.巴斯德毕赤酵母表达系统[J].国外医药抗生素分册,2002,23(6):246-251.
    [62] 孙亚范,王海宽,向微,等.甲醇毕赤酵母 Pichia methanolica 的高效电转化方法[J].食品与发酵工业,2004,30(5):35-39.
    [63] Michael A. Romanos , Carol A. Scorer , Jeffrey J. Clare . Foreign gene expression in yeast: a review[J]. Yeast,1992,8(6):423-488.
    [64] Montesino R., García R., Quintero O., et al. Variation in N-Linked Oligosaccharide Structures on Heterologous Proteins Secreted by the Methylotrophic Yeast Pichia pastoris[J]. Protein Expression and Purification, 1998, 14(2): 197-207.
    [65] Jason Pritchett, Susan A. Baldwin. The effect of nitrogen source on yield and glycosylation of a human cystatin C mutant expressed in Pichia pastoris[J]. J. Ind. Microbiol. Biotechnol. ,2004, 31: 553–558.
    [66] Sue Macauley-Patrick, Mariana L.Fazenda, Brian McNeil,et al. Heterologous protein production using the Pichia pastoris expression system[J].Yeast,2005,22:249-270.
    [67] Joan Lin Cereghino, James M. Cregg.Heterologous protein expression in the methylotro -phic yeast Pichia pastoris[J].FEMS Microbiology Reviews,2000,24:45-66.
    [68] 王洪海,高卜渝,陈佩丽,等.酵母表达基因工程产物不均一性分析及其对策[J].中国科学(B 辑),1994,24(12):1270-1274.
    [69] Thomson J A,Itskovitz-Eldor J,Shapiross,et al.Embryonic stem cell lines derived from human blastocysts [J].Science,1998,282:1145-1147.
    [70] 赵翔,霍克克,李育阳.毕赤酵母的密码子用法分析[J].生物工程学报,2000,16(3):308-311.
    [71] Jose Hanquier, Yannick Sorlet, Dominique Desplancq, et al.A Single Mutation in the Activation Site of Bovine Trypsinogen Enhances Its Accumulation in the Fermentation Broth of the Yeast Pichia pastoris[J].Applied and Environmental Microbiology, 2003,69(2):1108-1113.
    [72] Stephanie L.Nilsen, Mary Prorok, Francis J.Castellino. Enhancement through Mutagenesis of the Binding of the Isolated Kringle 2 Domain of Human Plasmonigen to ω-Amino Acid Ligands and to an Internal Sequence of a Streptococcal Surface Protein[J].The Joournal of Biological Chemistry, 1999,274(32):22380-22386.
    [73] 韩雪清,刘湘涛,尹双辉.毕赤酵母表达系统[J].微生物学杂志,2003,23(4):35-40 .
    [74] Clare J J, Rayment F B, Ballantine S P, et al. High-level expression oftetanus toxin fragment C in Pichia pastoris strains containing multiple tandem integration of the gene[J]. Bio/Technology, 1991a, 9:455-460.
    [75] 路蓉,安云庆.巴斯德毕赤酵母表达系统及其分泌型蛋白表达的研究进展[J].临床和实验医学杂志,2004,3(1):43-47.
    [76] Nozomi Koganesawa, Tomoyasu Aizawa, Kazuo Masaki, et al. Construction of an expression system of insect lysozyme lacking thermal stability:the effect of selection of signal sequence on level of expression in the Pichia pastoris expression system[J].Protein Engineering,14(9):705-710
    [77] Marc Charles d’Anjou.Production of Recombinant Antifreeze Proteins in the Methylotrophic Yeast Pichia pastoris[D].Kingston,Ontario,Canada,Queen’s University, 1999.
    [78] 杨国武,袁保红,何国平,等.人 DNA 拓扑异构酶酶在毕赤酵母中的表达及发酵条件优化[J].生物 工程学报,2004,20(2):181-186.
    [79] 马善康,李强,顾小勇.双碳源交替刺激毕赤酵母高效表达人尿激酶原[J].过程工程学报,2002,2(5):448-452.
    [80] 郭勇.酶的生产与应用[M].北京:化学工业出版社,2003.
    [81] Bingze Xu,Daniel Sellos,Jan-Christer janson.Cloning and expression in Pichia pastoris of a blue mussel(Mytilus edulis) β-mannase gene [J].Eur.J.Biochem,2002,269: 1753-1760.
    [82] Mehmedalija Jahic, Fredrik Wallberg, Monika Bollok, et al. Temperature limited fed-batch technique for control of proteolysis in Pichia pastoris bioreactor cultures [J].Microbial Cell Factories,2003,2(6):1-11.
    [83] Xiang-shan Zhou, Jian Lu, Wei-Min Fan, et al. Development of a responsive methanol sensor and its application in Pichia pastoris fermentation[J].Biotechnology Letters, 2002,24:643-646.
    [84] Emma D.Thorpe, Marc C.d’Anjou, Andrew J.Daugulis. Sorbitol as a non-repressing carbon source for fed-batch fermentation of recombinant Pichia pastoris[J]. Biotechnology Letters,1999,21:669-672.
    [85] 李茹,陈鹏,梁运祥.毕赤酵母高密度发酵产植酸酶的研究[J].广西农业科学,2004,35 (6):500-502.
    [86] 刘彦丽,刘永东,王艳辉,等.毕赤酵母发酵生产重组人血清白蛋白高密度培养条件的研究[J].北京化工大学学报,2003,30(4):25-28.
    [87] 孙战胜,陈劲春.重组人血清白蛋白在毕赤酵母表达中的降解控制[J]. 北京化工大学学报,2004,31(4):10-15.
    [88] Boze H, Laborde C, Chemardin P, et al. High-level secretory production of recombinant porcine follicle-stimulating hormone by Pichia pastoris[J].Process Biochem., 2001, 36: 907-913.
    [89] D.R.Higgins,J.M.Cregg.Methods in Molecular Biology, Vol 103:Pichia Protocols[M]. Totowa. NJ: Humana Press Inc.
    [90] Villatte F, Hussein AS, Bachmann TT, et al.Expression level of heterologous proteins in Pichia pastoris is influenced by flask design[J].Appl. Microbiol. Biotechnol, 55:463-465.
    [91] Narendar K, Khatri, Frank Hoffmann. Oxygen-limited control of methanol uptake for improved production of a single-chain antibody fragment with recombinant Pichia pastoris[J].Appl.Microbiol. Biotechnol,2005,10:253-260.
    [92] Theppanya Charoenrat, Mariena Ketudat-Cairns, Helle Stendahl-Andersen, et al. Oxygen-limited fed-batch process:an alternative control for Pichia pastoris recombinant protein processs[J]. Bioprocess Biosyst Eng,2005,27:399-406.
    [93]Frankel, A. E., D. M. Neville, T. A. Bugge, et al. Immunotoxin therapy of hematologic malignancies. Semin. Oncol. 2003,30:545–557.
    [94] Jung Hee Woo, D. M. Neville. Separation of bivalent anti-T cell immunotoxin from P. pastoris glycoproteins by borate anion exchange. Bio-Techniques 2003,35:392–398.
    [95] Jung Hee Woo,Yuan Yi Liu , A. Mathias, et al. Gene optimization is necessary to express a bivalent anti-human anti-T cell immunotoxin in Pichia pastoris. Protein Expr. Purif. 2002,25:270–282.
    [96] Jung Hee Woo,Yuan Yi Liu,Scott Stavrou,et al. Increasing Secretion of a Bivalent Anti-T-Cell Immunotoxin by Pichia pastoris[J].Applied and Enivironmental Microbiology,2004,70(6):3370-3376.
    [97] Katakura Y, Zhang G, Omasa T, et al. Effect of methanol concentration on the production of human beta2-glycoprotein Ⅰ domianⅴ by a recombinant Pichia pastoris :a simple system for the control ofmethanol concentration using a semiconductor gas sensor[J].J Ferment Bioeng,1998,86:482-487.
    [98] 周祥山,范卫民,张元兴. 不同甲醇流加策略对重组毕赤酵母高密度发酵生产水蛭素的影响[J].生物工程学报,2002,18(3):348-351.
    [99] Wenhui Zhang, K. J. Hywood Potter, B.A.Plantz, et al. Pichia pastoris fermentation with mixed-feeds of glycerol and methanol: growth kinetics and production improvement[J].J Ind Microbiol Biotechnol, 2003,30:210-215.
    [100] McGrew JT,Leiske D,Dell B et al.Expression of trimeric CD40 ligand in Pichia pastoris :use of a rapid method to detedt high-level transformants[J]. Gene, 1997, 187: 193-200.
    [101] 邓兵兵,方宏清,薛冲,等.甲醇营养型酵母高密度培养过程中甲醇和乙醇的 GC 快速检测[J].工业微生物,2001,31(2):26-29
    [102] C.Almuzara, O.Cos, M.Baeza, et al. Methanol determination in Pichia pastoris cultures by flow injection analysis[J].Biotechnology Letters,2002,24:413-417.
    [103] Surribas A, Cos O, Montesinos J.L ,et al.On-line monitoring of the methanol concentration in Pichia pastoris cultures producting an heterologous lipase by sequential injection analysis[J].Biotechnol letters,2003,25:1795-1800.
    [104] R.Ramon, J.X.Feliu, O.Cos, et al. Improving the monitoring of methanol concentration during high cell density fermentation of Pichia pastoris[J]. Biotechnology Letters,2004,26:1447-1452.
    [105] Buchner P,Rochat C,Wuilleme S,et al.Characterization of a tissue-specific and developmentally regulated beta-1,3-glucanase gene in pea(Pisum sativum)[J].Plant Mol. Biol,2002,49(2):171-186.
    [106] 杨仁祥.几丁质酶在医学真菌学中的研究现状[J].海南医学,2004,15(7):128-129.
    [107] 陈凌.几丁质酶在抗真菌感染中的研究现状及展望[J].国外医学预防诊断治疗用生物制品分册,2005,28(5):208-210.
    [108] 陈坚,李寅.发酵过程优化原理与实践[M].北京:化学工业出版社,7-8.
    [109] 徐晨东,易蕴玉,全文海.利用苯酚-次氯酸盐反应测定铵离子方法的探讨[J].无锡轻工大学学报,1998,17(1):34-38.
    [110] 曹锦芳.保湿霜中的甘油含量测定[J].精细化工原料及中间体,2004,12:6-7.
    [111] 汪家政,范明.蛋白质技术手册[M].北京:科学出版社,2000.
    [112] 檀建新.Bt cry 基因克隆和环状芽孢杆菌几丁质酶的研究[D].中国农业科学院研究生院博士学位论文,2001.
    [113] 何忠效.生物化学实验技术[M].北京:化学工业出版社,2004.
    [114] William B. Snyder, Klaas Nico Faber,Thibaut J. Wenzel ,et al. Pex19p Interacts with Pex3p and Is Essential for Peroxisome Biogenesis in Pichia pastoris[J].Molecular Biology of the Cell, 1999, 10: 1745-1761.
    [115] Kaoru Kobayashi, Shinobu Kuwae, Tomoshi Ohya, et al. Addition of oleic acid increases expression of recombinant human serum albumin by the AOX2 promoter in Pichia pastoris[J].Journal of Bioscience and Bioengineering,2000,89(5):479-484.
    [116] 张励,叶勤,辛利,等.铵离子浓度对重组毕赤酵母的生长和血管生长抑制素表达的影响[J].微生物学通报,2002,29(1):23-26.
    [117] 刘元帅,石国领,吴建勇.添加液态烷烃氧载体对法夫酵母发酵生产虾青素的影响[J].食品与发酵工业,2005,31(6):43-46.
    [118] 刘明启,孙建义,翁晓燕,等. 重组毕赤酵母产木聚糖酶条件的优化[J]. 浙江大学学报(农业与生命科学版),2006,32(2):222-226.
    [119] Clare JJ,Romanos MA,Rayment FB,et al.Production of mousse epidermal growth factor in yeast: high-level secretion using Pichia pastoris strains containing multiple gene copies[J]. Gene, 1991, 105: 205-212.
    [120] Christopher Dale,Aaron Allen,Scott Fogerty,et al.Pichia pastoris:A eukaryotic system for the large- scale production of biopharmaceuticals[J].Process Development,1999,12(11):36-40.
    [121] 叶勤.发酵过程原理[M].北京:化学工业出版社,167-168.
    [122] Jahic M,Rotticci-Mulder JC,Martinelle M,et al.Modeling of growth and energy metabolism of Pichia pastoris producing a fusion protein[J].Bioprocess Biosyst Eng,2002,24(6):385-393.
    [123] Hiroshi Tsujibo,Takahiro Kubota,Mitsugu Yamamoto,et al.Characterization of Chitinase Genes from an Alkaliphilic Actinomycete,Nocardiopsis prasina OPC-131[J].Applied and Environmental Microbiology,2003,69(2):894-900.
    [124] 肖湘,周樱,王风平.高效几丁质降解菌 CB101 的分离、鉴定及其几丁质酶系的研究[J].海洋学报,2003,25(1):138-142.
    [125] 曾艳,赵南明,刘进元.几丁质酶与植物防卫反应[J].生物工程进展,1997,17(4):31-34.
    [126] 王维荣,郑春辉,蔡倜,等.黄瓜几丁质酶的诱导、提取纯化及其基本性质(简报)[J].植物生理学通讯,1994,30(5):333-336.
    [127] J.Eleazar Barboza-Corona,Elizabeth Nieto-Mazzocco,Rocio Velázquez-Robledo, et al. Cloning, Squencing,and Expression of the Chitinase Gene chiA74 from Bacillus thuringiensis[J]. Applied and Enviromental Microbiology,2003,69(2):1023-1029.
    [128] 马汇泉,甄惠丽,孙伟萍.几丁质酶及其在抗植物真菌病害中的作用[J].微生物学杂志,2004,24(3):50-53.
    [129] Wubben J.P.,et al.Subcellular localization of plant chitinases and 1,3-β-glucanase in Cladosporium ful-vum(syn.Fulvia fulva)-infected tomato leaves.Physiol. Mol. Plant Pathol.,1992,41(1):23-32.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700