一个调控拟南芥盐/干旱胁迫响应的基因功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
借助已有的基因表达谱分析,发现拟南芥中一个功能未知的基因DRS1被盐和干旱诱导表达。然而,DSR1基因是否在盐和干旱胁迫响应中起重要的作用尚不清楚。
     为阐明DSR1基因在耐盐和抗旱中作用,获得了两个T-DNA插入DSR1基因的功能缺失型等位系dsr1-1和dsr1-2,本文研究了拟南芥野生型WT和突变体dsr1-1、dsr1-2对盐和干旱胁迫响应的特征。研究结果如下:
     1.在不同浓度的NaCl胁迫条件下,dsr1-1突变体的存活率都明显高于野生型:在175mM NaCl条件下,dsr1-1的存活率比野生型高出40%;在125mM的NaCl条件下,突变体dsr1-1、dsr1-2比野生型WT的发芽率分别高出21.62%和27.03%;竖培实验中在100mM的NaCl条件下,突变体dsr1-1、dsr1-2比野生型WT的根长长1.5cm,突变体鲜重比野生型高4.5mg/5株。表明突变体dsr1-1、dsr1-2的耐盐能力显著高于野生型。
     2.盐胁迫相关基因表达的QRT-PCR分析结果也表明,这种耐受性的提高可能与在盐胁迫下突变体dsr1-1、dsr1-2中MYB2/MYC2及其下游靶基因的表达水平提高有关,表明DSR1基因可能通过调控MYB2/MYC2介导的信号转导途径来调节盐胁迫响应。
     3.在干旱胁迫条件下,突变体dsr1-1、dsr1-2的存活率显著高于野生型;突变体dsr1-1、dsr1-2对渗透胁迫的耐受性比野生型更强,且突变体体内可溶性总糖和脯氨酸的积累均比野生型高,这表明突变体dsr1-1、dsr1-2比野生型更加耐受干旱胁迫。
     4.干旱胁迫相关基因表达的QRT-PCR分析结果表明,突变体dsr1-1、dsrl-2对干旱胁迫的耐受性可能与在干旱胁迫下突变体中脯氨酸合成基因P5CS及一些下游胁迫相关基因的表达水平升高有关。
     5.ABA发芽率实验中,在5mM的ABA条件下,突变体dsr1-1、dsr1-2比野生型发芽率分别高出29.73%和32.43%,差异显著;而在ABA竖培实验中根长鲜重表型没有差异,相关胁迫基因的表达也几乎没有差异,说明突变体dsr1-1、dsr1-2的耐盐抗旱性可能与ABA依赖途径有关。
     6.在KCl、LiCl胁迫实验中进一步证实了突变体dsr1-1、dsr1-2耐盐性可能与离子平衡机制相关,H2O2耐受又说明DSR1基因也参与了活性氧清除机制的调节,而甘露醇胁迫下的相关基因表达则说明了突变体dsr1-1、dsr1-2高盐及干旱胁迫的主要调节方式是通过渗透调节。
     总之,所有这些结果表明,DSR1基因在调控盐和干旱胁迫响应过程中起着重要的作用。
Expression of the DSR1 gene encoding a unkown protein was found to be induced by salt and drought stresses by using gene expression microarray analysis data. However, it is unclear whether the DSR1 gene plays important roles in the regulation of the responses of Arabidopsis plants to salt and drought stresses.
     To clarify the role of the DSR1 gene in salt/drought-stress responses, we studied the characteristics of responses of wild-type Arabidopsis and mutants dsr1-1, dsr1-2 to salt and drought stresses. The results are as follows:
     1. Under different concentrations of NaCl stress conditions, the survival rate of dsr1-1 mutant is significantly higher than that of wild type. In 175mM NaCl conditions, survival rate of the mutant dsr1-1 was 40% higher than that of the wild type; in germination rate experiment, in 125mM NaCl conditions, the germination rates of mutants dsr1-1, dsr1-2 were higher than the wild type 21.62% and 27.03%, respectively; under vertical culture experiment conditions of 100mM of NaCl, the root length of mutant dsr1-1, dsr1-2 was about 1.5cm longer than that of the wild type, Fresh weight of mutant was approximately 4.5mg/5plants higher than that of the wild type. suggesting that the mutants dsr1-1, dsr1-2 are more resistant to salt stress than the wild type.
     2. QRT-PCR analysis of salt stress-related gene expression also showed that enhanced resisitance of mutants dsr1-1, dsr1-2 to salt stress may be related to the increases in expression levels of MYB2/MYC2 and their downstream targeting genes, indicating that DSR1 gene could regulate MYB2/MYC2-mediated signal transduction pathway to regulate salt stress responses.
     3. Under drought stress, the survival rate of mutants dsr1-1, dsr1-2 wereas significantly higher than that of wild type; and the tolerance of mutants dsr1-1, dsr1-2 to osmotic stress was more resistant to osmotic stress than the wild type, and. InUnder drought stress conditions, the levels of mutants soluble sugar and proline accumulation in mutants were significantly higher than those of the wild type, indicating that enhanced resistance of mutants dsr1-1 and dsr1-2 is assiacted with increases in the levels of soluble sugar and proline accumulationmore tolerant than wild-type to drought stress.
     4. QRT-PCR analysis of drought stress-related gene expression showed that enhanced tolerance of mutants dsr1-1 and dsr1-2 to drought stress may be related to increases in the expression levels of the proline synthesis gene P5CS and some stress downstream genes under drought stress.
     5. In the ABA germination experiments, in 5mM ABA condition, the germination rates of mutants dsr1-1 and dsr1-2 were significantly higher than the wild-type 29.73% and 32.43%, respectively, indicating responses of mutants dsr1-1and dsr1-2 to salt and drought stresses may be ABA dependent.
     6.In KC1, and LiCl stress experiments further confirmed enhanced salt tolerance of mutants dsr1-1, and dsr1-2 are was associated with the mechanism of ion balance to salt tolerance. In addition, mutants also showed, there is another explanation of enhanced H2O2 resistance compared with the wild type,mutants suggesting that enhanced salt/drought resistance of mutants is also assicated with oxygen scavenging mechanism.
     In sum, all these results show that DSR1 gene in the regulation of salt and drought stress plays an important role in the regulation of salt and drought stress responses.
引文
[1]张恒,付畅,崔继哲.植物耐盐基因工程研究进展.黑龙江农业科学,2008(2):11-4.
    [2]王宝山.植物液泡膜质子泵的研究[J].植物学通报,1997(14):25-30.
    [3]贾晋,赵秀娟,等.盐生植物耐盐相关基因克隆的研究进展.安徽农业科学,2009,37(22):10382-10383,10402.
    [4]杨平,蔡小宁,钟小仙,等.拟南芥AtNHX1基因克隆和Cre(lox)植物表达载体的构建[J].江苏农业科学,2007(6):348-350.
    [5]孙兰菊,等.植物耐盐机制的研究进展.海洋科学,2001,25(4):28-3.
    [6]邴雷,赵宝存,等.植物耐盐性及耐盐相关基因的研究进展.河北师范大学学报,2008,32(2):243-248.
    [7]张晓磊,聂玉哲,李玉花.盐胁迫下植物的细胞信号转导.生物技术通讯,2008,19(3):468-471.
    [8]HASEGAWA P M, BRESSAN R A, ZHU J K, et al. Plant cellular and molecular responses to high salinity [J]. Annu Rev Plant Physiol Plant Mol Biol,2000, 51:463-499.
    [9]Munns R, Gardner A, Tonnet M L, Rawson H M. Growth and development in NaCl treated plants.II.Do Na+or Cl- concentrations in dividing or expanding tissues determine growth in barley? Aust J Plant Physiol,1988,16:529-5403.
    [10]杨少辉,季静,等.盐胁迫对植物影响的研究进展.分子植物育种,2006,3(4):139-142.
    [11]Kurban H.,Saneoka H.,Nehira K.,Adilla R.,Premachandra G.S.,and Fujita K. Effect of salinity on growth,photosynthesis and mineral composition in leguminous plant Alhagi pseudoalhagi. Soil Sci.Plant Nutr.,1999,45:851-862.
    [12]Parida A K, Das A B, Mittra B. Efects of salt on growth, ion accumulation, photosynthesis and leaf anatomy of the mangrove, Bruguierap arviflora. Trees Structure Function.2004,18(2):167-174.
    [13]Cramer GR. Effects of sodium, potassium, and calcium on salt-stress barley[J]. Physiol Plant,1990,80:1907-1912.
    [14]汪良驹,刘友良.无花果耐盐机理的研究Ⅰ-盐逆境下脯氨酸和可溶性蛋白的积累[J].南京农业大学学报,1989,12(4):124-125.
    [15]惠红霞,许兴,李守明.盐胁迫抑制光合作用的可能机理[J].生态学杂志,2004,23(1):5-9.
    [16]马焕成,陈绍良,王沙生.脱落酸与胡杨抗盐性的关系[J].西南林学院学报,1998,18(1):8-14.
    [17]Giraudat J, Parcy F, Bertauche N, Gosti F, Leung J, Morris P C, Bouvier-Durand M,Vartanian N. Current advances in abscisic acid action and signaling. Plant Mol Biol,1994,26:1557-1577.
    [18]Cohen A, Bray E A. Characterization of three mRNAs that accumulate in wilted tomato Leaves i n response to elevated levels of endogenous abscisic acid. Planta,1990,182:27-33.
    [19]陈沁,刘友良.谷胱甘肽对盐胁迫大麦叶片活性氧清除系统的保护作用[J].作物学报,2000,26(3):365-371.
    [20]Hassanein A.M., Alterations in protein and esterase patterns of peanut in response to salinity stress. Biol.Plant.,1999,42:241-248.
    [21]Mitsuya S.,Takeoka Y.,and Miyake H., Effects of sodium chloride on foliar ultrastructure of sweet potato plantlets grown under light and dark conditions in vitro. J.Plant Physiol.,2000,157:661-667.
    [22]Bruns S.,and Hecht-Buchholz C., Light and electron-microscope studies on the leaves of several potato cultivars after application of salt at various developmental stages. Potato Res.,1990,33:33-41.
    [23]Nir 1, Kleins, Poljakof-MayberA. Changes in fine structure of root cells from maize seedings exposed to water stress. Aust J Biol Sci,1970,23:489-491.
    [24]Peterson T A. Sodium-flux, ion-compartmentation and membrane-ultrastructure studies related to plant salt tolerance.D issertation AbstractsI nternational. Sciences and Engineering,1985,46 (2):382-386.
    [25]余叔文,汤章诚.植物生理与分子生物学.北京:科学出版社,1998.
    [26]牛东玲,王启基.柴达木盆地弃耕地水盐动态分析.草业学报,2002,11(4):35-38.
    [27]Hasegawa P M, Bressan R A, Zhu J K, Bohnert H J. Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 2000,51:463499.
    [28]尹尚军,石德成,颜红.Na2CO3胁迫下星星草胁变反应部位的差异.草业学报,2001,10(4):101-106.
    [29]Haro R, Baneulos M.A., Quintero F.J, et al. Genetic basis of sodium exclusion and sodium tolerance in yeast. A model for plants. Physiol Plant,1993, 89:868-874.
    [30]Petrusa L M, Winicol L. Proline status in salt tolerant and salt sensitive alfalfa cell lines and plants in response to NaCl [J]. Plant Physiol Biochem,1997, 35:303-310.
    [31]Soussi M, Ocana A, Lluch C. Effects of salt stress on growth, photosynthesis and nitrogea fixation inchick-pea(Cicer ariet(Cicer arietinum L.). J Exp Bot, 1998,49:1329-1337.
    [32]Sanada Y., Veda H.,Kuriba Yashi K,et al. Novel light-dark change of proline levels in halophyte(Mesembryanthemum crystallinum L.)and glycophytes (Hordeum vulgareL. andTrigcum aestivum L.)leaves and roots under salt stress. Plant cell Physiol,1995,36(6):965-970.
    [33]Sauta-Cruz Arm, Acosta Manuel, et al. Short-term salt tolerance mechanisms in differentially salt tolerant tomato species. Plant Physiol Biochem,1999, 37(1):65-71.
    [34]Pollard A, Wyn jones RG. Enzyme activities in concentrated solutions of glycine betalze and other solute. Planta,1979,14:291-298.
    [35]刘勤,曹志洪.磷硒交互作用对水稻硒吸收累积的影响[J].扬州大学学报(农业与生命科学版),2003(4):67-70.
    [36]Miehelet, B., and Boutry, M. The Plasma Membrane H+-ATPase(A Highly Regulated Enzyme with Multiple Physiological Functions). Plant Physiol, 1995,108:1-6.
    [37]Mittova V,Tal M,Volokita M,et al.2002.Salt stress induces up-regulation of an efficient chloroplast antioxidant system in the salt-tolerant wild tomato species Lycopersion pennellii but not in the cultivated species.Physiol Plant,115:393-400.
    [38]Shigeoka S, Ishikawa T, Tamoi M, et al. Regulation and function of ascorbate peroxidase isoeazymes[J]. J Exp Bot,2002,53:1305-1319.
    [39]Henriksson E, Henriksson K N. Salt-stress signalling and the role of calcium in the regulation of the Arabidopsis ATHB7 gene[J]. Plant Cell Environ,2005, 28:202.
    [40]Uozumi N, Kim E J, Rubio F, et al. The Arabidopsis HKT1 gene homolng mediates inward Na+ currents in Xenopus lnsvis oocytes and Na+ uptake in Saccharomyces cerevisiae[J]. Plant Physiol,2000,122:1249.
    [41]Finkelstein R R, Gampala S S L, Rock C D. Abseisic acid signaling in seeds and seedlings[J]. Plant Cell,2002,14(soppl.):S15.
    [42]Hnsegawa P M, Bressan R A, Zhu J K, et al. Plant cellular and molecular responses to high salinity[J]. Annu Rev Plant Physiol Mol Boil,2000,51:463.
    [43]Yeo A R. Molecular biology of salt tolerance in the context of whole plant physiology[J]. J Exp Bot,1998,49:915.
    [44]Zhu JK. Salt and drought stress signal transductionin plants. Annu Rev Plant Biol,2002,53:247-73.
    [45]Xiong L, Schumaker KS, Zhu JK. Cell signaling during cold,drought,and salt stress. Plant Cell,14:165-83.
    [46]ShinozakiK, Yamaguchi-ShinozakiK, SekiM. Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol, 2003,6:410-7.
    [47]徐兴友,张风娟,龙茹,等.6种野生耐旱花卉幼苗叶片脱水和根系含水量与根系活力对干旱胁迫的反应[J].水土保持学报,2007,21(1):180-184.
    [48]孙梅霞,相朝龙,徐经年.干旱对植物影响的研究进展.安徽农业科学,2004,32(2):365-367,384.
    [49]PAUK K P, THOMPSON J E. Invitro simulation of senescencerelated membrane damage by ozone-induced lipid proxidation[J]. Nature,1980, 283:504-506.
    [50]CUTLER J M. Influence of water deficits and osmotic adjustment on leaf elongation in rice[J]. Crop Sci,1980,20:314-318.
    [51]胡守景,张治礼,黄荣峰.植物应答干旱胁迫的基因表达调控.中国农业科技导报,2008,10(4):1-6.
    [52]刘欣,李云.转录因子与植物抗逆性研究进展[J].中国农学通报,2006,22(4):61-65.
    [53]Zabadal T J. A water potential threshold for the increase of abscisic acid in leaves. Plant Physiol,1974,53:125-127.
    [54]Pierce M, Raschke K. Correlation between loss of turgor and accumulation of abscisic acid in detached leaves. Planta,1980,148:174-182.
    [55]Boger L, Ligternk W, Boes E B,et al. Mechanosensors in plants. Nature,1996, 383:489-490.
    [56]王静英,李永春,尹钧,刘昊英,司志飞.干旱胁迫下植物的信号转导及基因表达研究进展.中国农学通报,2008,24:271-275.
    [57]Takahashi K, Isobe M, Mato S. An increase in cytosolic calcium ion concentration precedes hypoosmotic shock-inducedactivation of protein kinases in tobacco suspersion culture cells. FEBS Lett,1997,40 1:202-206.
    [58]Van der Luit AH, Olivari C, Haley A, Knight MR, Trewavas AJ. Distinct calcium signalling pathways regulate calmodulin gene expression in tobasso. Plant Physiology,1999,121:705-714.
    [59]Haltter U, shitani M, Zhu J K. The Arabidopsis SOS2 protein kinase physically in teracts with and is activated by the calcium-binding protein SOS3. Proceedings of the National Academy of Science,USA,2000,97:3735-3740.
    [60]Schroeder J I, Allen G J, Hugouvieux V, Kwak J M, Warier D. Guard cell signal transduction. Annu Rev Plant Mol Boil,2001,52:627-658.
    [61]Shinozaki K, et a. Gene expression and signal transduction in water-stress response. Plant Physiology,1997,115:327-334.
    [62]刘强,张贵友,陈受宜.植物转录因子的结构与调控作用.科学通报,2000,45(14:1465-1474.
    [63]Shinozaki K, and Yamaguchi-Shinozaki. Molecular responses to dehydration and low temperature:differences and cross-talk between two stress signaling pathways. Curr. Opin.Plant Bio,2000,3:217-223.
    [64]Ingram J, Bartels D. The molecular basis of dehydration tolerance in plant. Plant Mol Biol,1996,47:377-403.
    [65]Bray EA. Plant responsesto water deficit. Trends Plant Sci,1997,2:48-54.
    [66]Sunkar R, Chinnusamy V, Zhu J, Zhu J K. Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends Plant Sci,2007,12: 301-309.
    [67]Kazuo Nakashima, Yusuke Ito, and Kazuko Yamaguchi-Shinozaki. Transcriptional Regulatory Networks in Response to Abiotic Stresses in Arabidopsis and Grasses. Plant Physiology,2009,149:88-95.
    [68]Kazuo Shinozak, Kamaguchi-Shinozaki. Gene networks involved in drought stress response and tolerance. Journal of Experiraental Botany,2007, 2(58):221-227.
    [69]郝林.拟南芥——植物发育生物学和分子生物学的好材料.植物生学通讯.1999,35(3):218-219.
    [70]Miklos G L, Rubin G M.2000. The Arabidopsis genome initiativ Analysis on the genome sequence of the flowering plant Arabidopsis thaliarm. Nature. 408:796-815.
    [71]陈璋.植物分子生物学研究的模式物种.植物学通报.1994,11(1):6-11.
    [72]Detlef Weigel, and Jane Glazebrook.2004. Arabidopsis:a laboratory manual. Chemical industry press [M]. 化学工业出版社.
    [73]郝林.1999.拟南芥——植物发育生物学和分子生物学实验的好材料.植物生理学通讯.35(3):218-220.
    [74]毛培培,刘瑞霞,赵云云.2007.拟南芥基因的图位克隆技术.生物学通报.42:11-14.
    [75]王义华,金玉岭,张风林.农业数据手册.长春:吉林人民出版社.1980,482.
    [76]Clarke J M. Differential excised leaf water cetention capabiluies of Triticum cultivates grown in field and controlled environments. Can J PlantSci.1983,63: 539~541.
    [77]Dedio W. Water relations in wheat leaves as screening tests for drought resistance. Can J PlantSci.1975,55:369~378.
    [78][苏]波钦洛克X H.植物生物化学分析方法.荆家海,丁钟荣.北京:科学出版社.1981,384~386.
    [79]高俊凤.植物生理学实验技术.西安:世界图书出版社:2000,201~202.
    [80]张殿忠,王沛洪,赵惠贤.测定小麦游离氨基酸含量的方法.植物生理学通讯.1990,26(4):6-8.
    [81]Hyman Rosen. A modified ninhydrin colorimetric analysis for animo acids. Arch Biochem and Biophys.1957, (67):10~15.
    [82]李纲军,龚月桦,王俊儒,等.茚酸铜法测定脯氨酸含量中茚酸铜与脯氨酸反应探讨.植物生理学通讯.2005,41(3).
    [83]潘瑞炽.植物生理学[M].第4版.北京:高等教育出版社.2001.
    [84]刘进元,张淑平,武耀廷.分子生物学实验指导.第二版.高等教育出版社.2006.
    [85]Chen Zhizhong, Hong Xuhui, Zhang Hairong, Wang Youqun, Li Xia, Zhu Jiankang and Gong Zhizhong. Disruption of the cellulose synthase gene, AtCesA8/IRX1, enhances drought and osmotic stress tolerance in Arabidopsis. The Plant Journal.2005,43:273-283.
    [86]Clarke JM, and Mccaig TN. Evaluation of techniques for screening for drought resistance in wheat. Crop Science.1982,22:503-506.
    [87]Jordan W R, Shouse P J, Blum A, Miller F R, Monk R L. Environmental physiology of sorghum. Epicuticular wax load and cuticular transpiration. Crop Science.1984,24:1168-1173.
    [88]Ruggiero B, Koiwa H, Manabe Y, Quist T M, Inan G, Saccardo F, Joly R J, Hasegawa P M, Bressan R A and Maggio A. Uncoupling the effects of abscisic acid on plant growth and water relations. Analysis of sto1/nced3, an abscisic acid deficient but salt stress tolerant mutant in Arabidopsis. Plant Physiol.2004,136:3134-3147.
    [89]Bray E A. Plant responses to water deficit. Trends Plant Sci.1997,2:48-54.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700