金鱼PR55/B家族基因cDNA的克隆及表达分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蛋白质的可逆磷酸化修饰,是生物体内普遍存在的信号传导调节方式。蛋白磷酸酶行使的去磷酸化作用在调控细胞内各种生命过程中起了重要的作用。PP2A是主要的丝/苏氨酸蛋白磷酸酶之一,它参与DNA复制、转录、细胞周期调控、信号转导等生命活动。PR55/B家族是PP2A已知的调节亚基家族之一。
     本文运用RACE和RT-PCR技术克隆得到金鱼PP2A调节亚基PR55/B家族中PR55δ,PR55β基因全长序列以及PR55γ基因编码区部分序列。结果显示PR55δ基因全长2163bp,其中编码区1347bp编码,推测编码448aa的序列。PR55β基因全长1940bp,其中编码区1332bp编码,推测编码443aa的序列。PR55γ基因部分cDNA长1218bp,编码的多肽共含405个氨基酸。通过序列分析发现PR55/B家族各亚基基因编码的蛋白与已知其他物种对应的蛋白质均有着很高的同源性。通过系统发育树的构建发现其系统发育关系与传统的分类基本一致,符合脊椎动物的进化规律,暗示了该家族基因在进化上和功能上的保守性。但是PR55δ和PR55β在氨基末端有显著差异,可能与各调节亚基功能,如决定底物特异性和细胞内定位有关。运用ExPASy和SMART等序列分析软件在PR55δ、PR55β、PR55γ三个基因推测的蛋白质中分别找到了WD40重复序列结构。PR55/B家族成员在WD40重复序列上的保守性使我们推测这一结构作为与PP2A结构亚基A相结合的区域,为PR55/B家族调节亚基参与PP2A三聚体的装配提供了支点。
     在组织表达方面,金鱼PR55/B家族基因呈现明显的差异性表达。PR55δ基因的mRNA和蛋白水平都在各个组织中呈现广泛但不均一的表达。PR55β基因的mRNA和蛋白表达仅在大脑和心脏中检测到。PR55γ基因mRNA特异表达于在大脑和鳍中。其中,PR55β基因在心脏中的表达和PR55y基因在鳍中的表达是第一次报道。而且金鱼(低等脊椎动物)PR55/B在组织中的表达模式与小鼠(高等脊椎动物)有显著的差异。这也提示我们PR55β基因可能在鱼类(低等脊椎动物)心脏的发育和心脏组织行驶功能时具有非常重要的作用。而PR55γ基因在调控金鱼鳍的发育和功能方面也可能具有不可替代的作用。
     在金鱼胚胎发育过程中,PR55δ基因的mRNA和蛋白以及PR55p的mRNA基因在胚胎发育的各个时期都有较高表达。但是,我们没有检测到PR55β基因在蛋白水平上的表达。PR55δ和PR55β基因在金鱼胚胎中的表达模式与小鼠胚胎中的表达模式又呈现了明显的差异,它们可能在调节不同物种的发育中有着不同的作用。PR55y基因的mRNA在胚胎发育早期没有表达,直到神经胚期才开始出现,随后呈现逐渐升高的表达模式。PR55γ基因从神经胚开始表达的特点让我们推测它在神经发育系统中的重要作用。
     另外,我们设计构建PR55δ基因反义表达载体,通过显微注射到金鱼胚胎来抑制PR55δ基因的表达,观察其对胚胎发育的影响。结果表明,当PR55δ基因表达下调后,金鱼胚胎出现了不正常的组织器官分化。脑和眼的发育受到了影响,表现为无脑、脑发育缓慢、无眼、小眼等。这些结果证明了PP2A调节亚基直接控制着组织器官生成,PR55δ基因对于金鱼胚胎发育是至关重要的。
     综上所述,我们的结果表明PR55/B家族在可能在金鱼不同组织和胚胎发育的不同时期过程中起着多种重要作用。
The reversible phosphorylation of proteins is an important posttranslational modification in eukaryotes. Phosphatases play a key role in various cellular process by dephosphorylation. Protein phosphatase 2A (PP2A) is one of the major serine/threonine-specific phosphatases and involved in many cellular processes such as cell cycle progression, DNA replication, transcription, and signal transduction. PR55/B family is one of identified regulatory B subunits of PP2A.
     Using 3'-and 5'-RACE,PR55δ, PR55βand partial PR55γof PR55/B family of PP2A were cloned from goldfish. The full length of PR55δcDNA is 2163 bp, containing an open reading frame (ORF) of 1347 that encodes a deduced protein of 448 amino acids. Full-length PR55βconsists of 1940 bp with an ORF of 1332 nucleotides coding for a deduced protein of 443 amino acids. The partial PR55γcontains 1218 nucleotides, which encodes a deduced part protein of 405 amino acids. Sequence analysis showed that goldfishβ,δandγisoforms of PR55/B family show high identities with their counterparts in other species, thus suggesting the conservation of PR55/B family members through animal kingdom. The PR55/B phylogenetic tree based on the amino acid sequences from various species fits well with the traditional phylogenetic tree. Among the three isoforms of PR55/B family members, the N-termini were significantly divergent between PR55δand PR55β, suggesting that a short, divergent stretch of amino acids may confer specific targeting information. Amino acid sequence analysis through ExPASy and other program revealed that the WD 40 tandem repeats were conserved in PR55δ, PR55βand PR55γisoforms. It is predicted that this domain is important for their binding to the PP2A-A subunits.
     RT-PCR and Western blot analysis showed that PR55βgene could be only detected in brain and heart, whereas the PR55δwas expressed ubiquitously but non-uniformly in 9 tissues examined. And PR55γgene mRNA specifically expressed in brain and fin. Our demonstration of the PR55βmRNA in heart and the PR55γmRNA in fin provides the first evidence regarding their tissue-specific expression patterns. In addition, goldfish (lower vertebrates) and murine (higher vertebrates) displayed distinct difference in the tissue-specific expression patterns of PR55δ/β/γ. Our results suggest that PR55βmay play an important role in heart and PR55γin fin.
     The PR55δis highly expressed at both mRNA and protein levels from early to later developmental stages of goldfish. The PR55βmRNA was also detected in goldfish embryo, but we rarely detected any PR55βprotein expression at the 12 different developmental stages examined. Distinct difference exists in the temporal expression patterns of the PR55δ&βbetween lower (goldfish) and higher vertebrates (murine), which suggests that PR55δ/βmay play different roles in regulating the developmental processes of the two types of vertebrates. The PR55γexpression was first detected at neurula stage, and then gradually enhanced. This expression pattern suggests that PR55γmay be important for development of the nervous system.
     To explore PR55δfunction in regulating development, we expressed the anti-sense RNA from the exogenous PR55δcDNA which can block translation of the PR55δmRNA from the endogenous PR55δgene. When PR55δwas downregulated, the development of goldfish embryos displayed severe abnormality in organogenesis. We observed that during brain differentiation stage, the expression of the antisense PR55δRNA led to absence of a differentiated brain, while the expression of the vector (mock) had little effect on the brain development. In addition, the eye development was also interrupted, displaying microphthalmia in the embryos with reduced PR55δexpression. These results provide the first evidence that the regulatory subunit of PP2A directly controls organogenesis. Our demonstration that downregulation of PR55δby anti-sense RNA led to severe abnormality in the brain and eye development suggests that the specific PP2A activity contributed by PR55δregulatory subunit is crucial for development. In this case, the PP2A containing PR55δregulatory subunit may modulate a set of specific targets important for development that can't be dephosphorylated by PP2A with non-PR55δregulatory subunit.
     Together, our results suggested that PR55/B family members have versatile functions during goldfish development and tissue homeostasis.
引文
[1]Cozzon, A.J.. Protein phosphorylation in prokaryotes[J]. Ann. Rev. Microbiol., 1988(42):97-125.
    [2]Stock, J.B., A.J. Ninfa and A.M. Stock. Protein phosphorylation and regulation of adaptive responses in bacteria[J]. Microbiol. Rev.,1989,53(4):450-490.
    [3]Chang, C.& R.C. Stewart. The Two-Component System[J]. Plant Physiol., 1998(117):723-731.
    [4]Barford D., A.K. Das and MP. Egloff. The Structure and mechanism of protein phosphatases:Insights into Catalysis and Regulation[J]. Annu Rev Biophys Biomol Struct.,1998(27):133-164.
    [5]Wera S.& B A.Hemmings. Serine/threonine protein phosphatases[J]. Biochem J, 1995,311(1):17-29.
    [6]石继祥,施杞.蛋白磷酸酶及其抑制剂研究近况[J].国外医学临床生物化学与检验学分册,2005,26(5):281-284.
    [7]Hunter,Tony. Protein kinase classification[J]. Methods Enzymol.,1991(200):3-37.
    [8]Y. Shi. Assembly and structure of protein phosphatase 2A. Sci China C Life Sci, 2009.52(2):135-146.
    [9]Shi L., M.Potts and PJ. Kennelly. The serine, threonine, and/or tyrosine-specific protein kinases and protein phosphatases of prokaryotic organisms:a family portrait[J]. FEMS Microbiol Rev,1998,22(4):229-253.
    [10]Jia Z. Protein phosphatases:structures and implications [J]. Biochem Cell Biol, 1997,75(1):17-26.
    [11]马瑞欣,耿美玉,李晋萍.蛋白组氨酸磷酸酶研究进展[J].生物化学与生物物理进展,2005,32(12):1103-1108.
    [12]Cohen PT. Protein phosphatase 1-targeted in many directions[J]. J Cell Sci.2002, 115(2):241-256.
    [13]Ruediger R., JE.Van Wart Hood, M.Mumby, et al. Constant expression and activity of protein phosphatase 2 A in synchronizedcells[J]. Mol Cell Biol,1991, 11(8):4282-4285.
    [14]JANSSENS V.& J.GORIS. Protein phosphatase 2A:a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling[J]. Biochem. J.,2001 (353):417-439.
    [15]Schonthal AH. Role of serine/threonine protein phosphatase 2A in cancer[J]. Cancer Lett,2001,170 (1):1-13.
    [16]Zhou, J., et al., Characterization of the Aalpha and Abeta subunit isoforms of protein phosphatase 2A:differences in expression, subunit interaction, and evolution. Biochem J.,2003,369 (Pt2):387-398.
    [17]李天祝,向本琼.蛋白磷酸酶PP2A的结构及其肿瘤抑制因子功能.生物化学与生物物理进展.2009,36(2):133-142.
    [18]Janssens,V., S.Longin, and J.Goris. PP2A holoenzyme assembly:in cauda venenum(the sting is in the tail) [J]. Trends Biochem Sci,2008,33(3):113-121.
    [19]Kamibayashi C., RL.Lickteig, et al. Expression of the A subunit of protein phosphatase 2A and characterization of its interactions with the catalytic and regulatory subunits[J]. J Biol Chem,1992,267(30):21864-21872.
    [20]Ruediger R., D.Roeckel, et al. Identification of binding sites on the regulatory A subunit of protein phosphatase 2A for the catalytic C subunit and for tumor antigens of simian virus 40 and polyomavirus[J]. Mol Cell Biol,1992,12(11): 4872-4882.
    [21]Millward, T. A., S. Zolnierowicz, and B. A. Hemmings. Regulation of protein kinase cascades by protein phosphatase 2A. Trends Biochem Sci,1999,24 (5):186-191.
    [22]Arroyo, J. D., and W. C. Hahn. Involvement of PP2A in viral and cellular transformation. Oncogene,2005,24 (52):7746-7755.
    [23]Strack S, JA Zaucha, FF Ebner, et al. Brain protein phosphatase 2A:
    Developmental regulation and distinct cellular and subcellular localization by B subunits[J]. J Comp Neurol.,1998,392(4):515-527.
    [24]Eichhorn P.J.A., P.C.Menno.Rene Bernards. Protein phosphatase 2A regulatory subunits and cancer, Biochim. Biophys. Acta.2008,05(005):1-15.
    [25]Neer E. J., C. J. Schmidt, R.Nambudripad, et al. The ancient regulatory-protein family of WD-repeat proteins[J]. Nature (London),1994,(371):297-300.
    [26]Griswold-Prenner, I., C.Kamibayashi, E. M.Maruoka, et al. Physical and functional interactions between type I transforming growth factor b receptors and Ba, a WD-40 repeat subunit of protein phosphatase 2A[J]. Mol. Cell. Biol,1998,(18):6595-6604.
    [27]Chen, R.H., P. J.Miettinen, E. M. Maruoka, et al. A WD-domain protein that is associated with and phosphorylated by the type II TGF-p receptor[J]. Nature (London),1995,(377):548-552.
    [28]Kuo Y.C., K.Y. Huang, C.H. Yang, et al. Regulation of phosphorylation of Thr308 of Akt, cell proliferation and survival by the B55alpha regulatory subunit targeting of the protein phosphatase 2A holoenzyme to Akt[J]. J. Biol. Chem (2007).
    [29]Adams D.G., R.L. Coffee Jr., H. Zhang, et al. Wadzinski, Positive regulation of Raf1-MEK1/2-ERK1/2 signaling by protein serine/threonine phosphatase 2A holoenzymes[J]. J. Biol. Chem,2005,(280):42644-42654.
    [30]R. Bajpai, K. Makhijani, P.R. Rao, L.S. Shashidhara, Drosophila Twins regulates Armadillo levels in response to Wg/Wnt signal, Development.2004,(131): 1007-1016.
    [31]Mochida S, S Ikeo, J Gannon,et al. Regulated activity of PR55/B delta is crucial for controlling entry into and exit from mitosis in Xenopus egg extracts. The EMBO Journal.2009(28):2777-2785.
    [32]Pieter J. A. Eichhornl, Menno P.A RNA Interference Screen Identifies the Protein Phosphatase 2A Subunit PR55y as a Stress Sensitive Inhibitor of c-SRC[J]. PLoS Genetics.2007,(12)3:2381-2394.
    [33]Virshup DM. Protein phosphatase 2A:a panoply of enzymes[J]. Curr Opin Cell Biol,2000,12(2):180-185.
    [34]Hubbard MJ.& P.Cohen. On target with a new mechanism for the regulation of protein phosphorylation[J]. Trends Biochem Sci,1993,18(5):172-177.
    [35]Virshup DM, AA Russo, TJ Kelly. Mechanism of activation of simian virus 40 DNA replication by protein phosphatase 2A[J]. Mol Cell Biol,1992,12(11): 4883-4895.
    [36]Qin JC, HG Chen, Q Yan, et al. Protein phosphatase-2A is a target of EGCG and modulates the p53-Bak apoptotic pathway[J]. Cancer Res,2008,68(11): 4150-4162.
    [37]Li DW, H Xiang, Fass U, et al. Analysis of expression patterns of protein phosphatase-1 and phosphatase-2A in rat and bovine lenses [J]. Invest Ophthalmol Vis Sci,2001,42(11):2603-2609.
    [38]Liu WB, Y Li, L Zhang, et al. Differential expression of the catalytic subunits for PP-land PP-2A and the regulatory subunits for PP-2A in mouse eye[J]. Mol Vis, 2008,14:762-773.
    [39]Waskiewicz AJ, Cooper JA. Mitogen and stress response pathways:MAP kinase cascades and phosphatase regulation in mammals and yeast[J]. Curr Opin Cell Biol.1995,7:798-805.
    [40]Robinson MJ, Cobb MH. Mitogen-activated protein kinase pathways[J]. Curr Opin Cell Biol.1197 9:180-186.
    [41]Widmann C, Gibson S, Jarpe MB, et al. Mitogen-activated protein kinase: conversation of a three-kinase module from yeast to human[J]. Physiol Rev,1999, 79(1):143-180.
    [42]Ory,s., et al. Protein phosphatase 2A positively regulates Ras signaling by dephosphorylating KSR1 and Raf-1 on critical 14-3-3 binding sites. Curr Biol, 2003,13(16):1356-1364.
    [43]Adams, D.G., et al. Positive regulation of Raf1-MEK1/2-ERK1/2 signing by protein serine/threonine phosphatase 2A holoenzyme. J Biol Chem,2005, 280(52):42644-42654.
    [44]Wang, Y.X., J.H. Zhang, and Z.W.Gu. Wnt/beta-catenin signal pathway and malignant hematological disease—review. Zhongguo Shi Yan Xue Ye Xue Za Zhi, 2009(17):234-237.
    [45]Bienz,M. Bio-sketch for oncogene review issue on Wnt signalling. Oncogene, 2006,25(57):7441.
    [46]Bienz,M.& H. Clevers. Linking colorectal cancer to Wnt signing. Cell,2000, 103(2):311-320.
    [47]Zhang,W., et al. PR55 alpha, a regulatory subunit of PP2A, specifically regulates PP2A-mediated beta-catenin dephosphorylation. J Biol Chem,2009, 284(34):22649-22656.
    [48]Patturajan,M., et al. DeltaNp63 induces beta-catenin nuclear accumulation and signaling. Cancer Cell,2002, 1(4):369-379.
    [49]Creyghton, M.P., et al. PR72, a novel regulator of Wnt signaling required for Naked cuticle function.Genes Dev,2005,19(3):376-386.
    [50]Smith,N.D., et al. The p53 tumor suppressor gene and nuclear protein:basic science review and relevance in the management of bladder cancer. J Urol,2003, 169(4):1219-1228.
    [51]Li,H.H., et al. A specific PP2A regulatory subunit, B56 gamma, mediates DNA damage-induced dephosphorylation of p53 at Thr55. Embo J,2007, 26(2):402-411.
    [52]Qin, J., et al., Protein phosphatase-2A is a target of epigallocatechin-3-gallate and modulates p53-Bak apoptotic pathway. Cancer Res,2008,68(11):4150-4162.
    [53]Mi, J., et al. PP2A regulates ionizing radiation-induced apoptosis through Ser46 phosphorylation of p53. Mol Cancer Ther,2009,8(1):135-140.
    [54]王治.反义核酸——研究基因功能的有效工具[J].国外医学遗传学分册.2002(25)1:1-3.
    [55]刘萍,赵西彪,邱欣,等.反义核酸技术及其应用[J].猪与禽.2008(28)1:78-80.
    [56]桂建芳,易梅生.发育生物学[M].北京:科学出版社,2002,49-50.
    [57]童英,李冰霞,陈金辉,等.金鱼Vsxl基因结构及其内含子多态性分析[J].激光生物学报,2007,16(4):418-423.
    [58]彭凤兰,罗琛.金鱼胰岛素样生长因子2基因克隆与组织表达[J].湖南师范大学自然科学学报,2007,30(2):103-107.
    [59]罗敏娜,李冰霞,童英,等.与脊椎动物脑室空间模式形成相关的两个基因座位[J].自然科学进展,2006,16(10):1331-1335.
    [60]Huang L, B Li, C Luo, et al. Proteome comparative analysis of gynogenetic haploid and diploid embryos of goldfish (Carassius auratus) [J]. Proteomics, 2004,4(1):235-243.
    [61]郑春兵,马海立,付虎,等.金鱼PP2A-B"家族Alpha和Gamma调节基因的cDNA克隆及mRNA表达.自然科学进展.2009(19):36-42.
    [62]Fu H, Zheng CB, Ma HL, et al. Molecular cloning and differential expression of the gene encoding the B'δ regulatory subunit of PP-2A SP from goldfish (Carassius auratus) [J]. Sci Sin C Life Sci.2009(39):460-468.
    [63]Ma HL, YL Peng, LL Gong, et al. The Goldfish SG2NA Gene Encodes Two a-Type Regulatory Subunits for PP-2A and Displays Distinct Developmental Expression Pattern[J]. Gene Regulation and Systems Biology.2009(3):115-129.
    [64]Lee AJ, RE Isaac, D Coates. The construction of a cDNA expression library for the sheep scab mite Psoroptes ovis[J]. Vet Parasitol,1999,83(3-4):241-252.
    [65]Li X, Virshup D M. Two conserved domains in regulatory B subunits mediate binding to the A subunit of protein phosphatase 2A[J]. Eur J Biochem,2002, 269(2):546-552.
    [66]Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding[J]. Anal Biochem,1976(72):248-254.
    [67]刘妍.MAP激酶在四倍体鲤鲫及亲本不同组织中的表达模式[D].长沙:湖南师范大学,2006.
    [68]Schmidt K., Kins S., Schild A., et al. Diversity, developmental regulation and distribution of murine PR55/B subunits of protein phosphatase 2A. European Journal of Neuroscience,2002(16):2039-2048.
    [69]Hatano, Y., H. Shima, T. Haneji, et al. Expression of PP2A B regulatory subunit beta isotype in rat testis. FEBS Lett,1993,324 (1):71-75.
    [70]Naoko A, Hiroshi S, Yoshiaki H., et al. cDNA cloning of BR gamma, a novel brain-specific isoform of the B regulatory subunit of type-2A protein phosphatase[J]. Eur. J.Biochem,1995(230):766-772.
    [71]刘文彬.蛋白磷酸酶PP1和PP2A在脊椎动物体内分化表达模式的研究[D].长沙:湖南师范大学,2007:43-74.
    [72]Jaekel M, R. E., H. Ohkura, P. Ferrigno, et al. Drosophila mutants in the 55 kDa regulatory subunit of protein phosphatase 2A show strongly reduced ability to dephosphorylate substrates of p34cdc2. J Cell Sci,1994,107 (9):2609-2616.
    [73]Weintraub, H.M. Antisense RNA and DNA [J]. Sci Am,1990,262(1):40-46.
    [74]Wagner, R.W. Gene inhibition using antisense oligode- oxynucleotides [J]. Nature,1994,372(6504):333-335.
    [75]Lee, T. H., M. J. Solomon, M. C. Mumby, et al. INH, a negative regulator of MPF, is a form of protein phosphatase 2A. Cel,l 1991,64 (2):415-423.
    [76]Sola, M. M., T. Langan, and P. Cohen. p34cdc2 phosphorylation sites in histone H1 are dephosphorylated by protein phosphatase 2A1. Biochim Biophys Acta, 1991,1094 (2):211-216.
    [77]Lorca, T., J. C. Labbe, A. Devault, et al. Dephosphorylation of cdc2 on threonine 161 is required for cdc2 kinase inactivation and normal anaphase. EMBO J,1992, 11(7):2381-2390.
    [78]Goedert, M., E. S. Cohen, R. Jakes, et al. p42 MAP kinase phosphorylation sites in microtubule-associated protein tau are dephosphorylated by protein phosphatase 2A1. Implications for Alzheimer's disease [corrected]. FEBS Lett, 1992,312 (1):95-99.
    [79]Ferrigno, P., T. A. Langan, and P. Cohen. Protein phosphatase 2A1 is the major enzyme invertebrate cell extracts that dephosphorylates several physiological substrates for cyclin- dependent protein kinases. Mol Biol Cell,1993,4 (7):669-677.
    [80]Strack S., D Chang, A.Julie, et al.Cloning and characterization of Bδ, a novel regulatory subunit of protein phosphatase 2A[J]. FEBS Letters.1999(460): 462-466.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700