黄土高原半湿润区苜蓿—粮食作物轮作效应模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
紫花苜蓿是多年生豆科牧草作物,在黄土高原半湿润区大面积栽培。苜蓿具有强烈的耗水性能,导致半湿润区苜蓿草地发生干燥化,草地退化较为严重。为了克服和缓解苜蓿草地高强度耗水效应,逐步提高和恢复苜蓿草地深层土壤湿度,需要采取雨季休闲或轮作耗水量较小的粮食作物等措施,促进干燥化苜蓿草地的更新和高效再利用。
     本研究采用野外实地测定和EPIC模型模拟相结合的方法研究了黄土高原半湿润区苜蓿草地土壤干燥化特征和草粮轮作土壤水分恢复效应。首先,对黄土高原半湿润区镇原不同生长年限苜蓿草地深层土壤水分进行了测定,分析了不同生长年限苜蓿草地深层土壤干燥化特征。同时,对连作10年苜蓿翻耕后轮作不同生长年限粮食作物农田的深层土壤水分进行了测定,探讨了采用不同年限草粮轮作方式对苜蓿草地土壤水分恢复效果。其次,选取黄土高原半湿润区镇原为试验站点,组建逐日气象要素序列、典型土壤剖面理化性状、作物生长参数等一系列数据库,借助EPIC0509模型,模拟研究了1~16年生苜蓿草地水分生产力和土壤干燥化效应,并设置了10年生苜蓿与21年“连作春大豆”、“连作冬小麦”、“连作春玉米”、“冬小麦→冬小麦→春大豆(WWS)”、“冬小麦→冬小麦→春玉米(WWC)”、“春大豆→春大豆→冬小麦(SSW)”和“春大豆→春大豆→春玉米(SSC)”等7种草粮轮作的长周期定量模拟试验,对苜蓿草地轮作不同类型粮食作物后的逐年产量变化以及深层土壤干层湿度恢复规律进行了动态模拟分析,依据试验结果,选择出了适应半湿润区的最优草粮轮作方式。研究取得的进展:
     1.镇原实测结果:
     (1)黄土高原半湿润区15~28年生苜蓿草地0~1 000 cm土层土壤湿度平均为10.20%,土壤干燥化速度34.2 mm·a~(-1),土壤干层最大分布深度超过了1 400 cm。苜蓿草地适宜翻耕和轮作粮食作物的生长年限为10年生。
     (2)苜蓿草地翻耕并轮作3~25年粮食作物后土壤干层湿度能够逐步恢复,土壤干层恢复厚度为583 cm,土壤湿度恢复度为83.3%,达到极好恢复程度,土壤湿度恢复速率为77.3 mm·a~(-1)。通过粮草轮作方式使15年生苜蓿草地土壤湿度恢复到当地土壤稳定湿度需要8年以上。有利于土壤水分恢复的适宜粮草轮作模式是“10年生苜蓿→8年以上粮食作物”。
     2.模拟结果:
     (1)苜蓿草地产量和土壤水分变化模拟结果表明,10年生苜蓿草地0~1000 cm土层土壤有效含水量波动较小,土壤湿度趋于不稳定,土壤发生严重干燥化,导致草地产量下降。所以苜蓿生长10~12年后,应采取草粮轮作等适当措施来缓解土壤水分亏缺加剧。
     (2)不同草粮轮作方式下土壤湿度恢复模拟结果表明,草粮轮作利于干燥化苜蓿草地土壤水分的恢复,土壤水分恢复效果与轮作年限成正比。在7种轮作方式中,连作春大豆、轮作WWS和SSW达到完全恢复程度所需年限为15年,连作冬小麦、轮作WWC和SSC达到完全恢复程度所需年限为21年,7种轮作方式中WWS土壤水分恢复状况最为显著,轮作方式比连作方式的恢复效果要好。
     (3)不同草粮轮作方式下粮食作物产量模拟结果表明,在整个轮作过程中,产量呈现“倒U”型。苜蓿草地翻耕后种植15年左右的粮食作物为宜,此时土壤水分就已经恢复到了较好水平。
     (4)不同草粮轮作方式下土壤养分演变模拟结果表明,种植苜蓿对土壤有机碳和有机氮的积累起到了促进作用,有机碳和有机氮积累与苜蓿生长年限成正比,有机磷、活性磷和NO_3-N含量则略有降低。7种轮作模式中的粮食作物均消耗土壤有机碳、有机氮和有机磷,损耗最大的是冬小麦,损耗最小的是春大豆,二者轮作则有利于冬小麦田有机质含量的积累。表明WWS轮作模式有利于土壤养分的均衡。
     (5)综上所述,既要考虑到不同轮作模式下土壤湿度和水分生产力的变化动态,又要结合养分变化动态,得出“10年生苜蓿→15年WWS”为黄土高原半湿润区的最优草粮轮作方式。
Alfalfa(Medicago sativa L.)is a perennial legume grass which was cultivated widely on semi-humid areas of the loess plateau.Due to its strong consumption of soil water,soil desiccation and grassland degradation happened quite frequently at this zone.In order to overcome and slow down the effects of high-intensity water consumption,then promote deep soil moisture to recover gradually,We found that these kinds of grasslands should be treated through fallow during rainy season or rotated with cereal grains that consumed little soil water, which helped to update and efficiently reuse the dried alfalfa grassland.
     We used the field soil water observation combined with EPIC model simulation to study soil desiccation characters of alfalfa grassland and effects of its water recovery on the semi-arid areas of the loess planteau.Firstly,we investigated soil moisture on different growth age alfalfa grasslands and analysed soil desiccation characters,at the same time,the deep soil moisture of 10-year-old alfalfa field after rotated with different years crops were measured, and effects of soil water restoration by alfalfa-grain rotation were explored.Secondly, we used EPIC0509 model developed by USA to simulate the productivity and soil desiccated effects of 1~16-year-old alfalfa at Zhenyuan station,on the basis of creating different kinds of databases,such as the daily weather elements series,the typical profile of physicochemical properties of soil,the crop growth parameters,the field tillage mearsures,the fertilizer characteristic parameter and cropping system database.Seven disposals were designed, concluding 21 years continuous cultivation of spring soybean,winter wheat and spring corn, and the same years of rotation,which were"winter wheat-winter wheat-spring soybean (WWS)","winter wheat-winter wheat-spring corn (WWC)","spring soybean-spring soybean-winter wheat (SSW)","spring soybean-spring soybean-spring corn(SSC)"and so on,after plowing 10-year-old alfalfa.Which could help quantitatively analysis the dynamic change of annual yield and the restoration rule of soil moisture in deep soil layer.According to the quantitative simulation of long period results,we could select the optimal alfalfa-grain rotation pattern that adapted to Zhenyuan station.
     The main progresses were as follows:
     (1)Field experimental results in Zhenyuan showed as following:
     A: The mean soil moisture in the 0~1 000 cm soil layers of alfalfa fields 15~28 years old at semi-humid zones was 10.20%,the soil desiccation rate 34.2 mm per year and the maximum distribution depth of desiccated soil layer over 1 400 cm,and only 10 years old or younger alfalfa fields were fit for tillage and crop rotation.
     B: Soil moisture in the desiccated soil layer of the alfalfa fields could be restored gradually after 3~25 years of tillage and crop rotation,with the thickness of the desiccated soil layers reduced to 583 cm or by 77.3 mm·a~(-1) and the average soil water restoration index (SWRI)reaching up to 83.3%,an extremely significant level.It took at least 8 years for a 15 year-old alfalfa field to restore its soil moisture to a stable level(15.5%)common in the region by following alfalfa-grain crop rotation.Therefore,alfalfa-grain crop rotation for over 8 years was a suitable pattern to restore soil moisture in 10-year-old alfalfa fields.
     (2)EPIC model simulation results showed as following:
     A: The simulation results of the productivity and soil moisture change of alfalfa fields on semi-humid of the loess plateau showed that,after alfalfa 10 years’growth,the available water content in 0~1 000 cm soil layers fluctuated at a low value,soil desiccation was serious,which resulted in the instability of alfalfa yield and soil moisture situation.Therefore,proper measures should be taken to ease soil water deficit when alfalfa was planted for 10 to 12 years,such as alfalfa-grain crop rotation.
     B: The simulation results of soil moisture restoration under different alfalfa-grain rotation measures showed that,the restoration effects of alfalfa-grain crop rotation were excellent,the longer the year,the better the effects.Among the seven disposals,the year for continuous cultivation of spring soybean,WWS and SSW to reach full restoration degree was 15 years,and it needed 21 years for continuous cultivation of winter wheat,WWC and SSC.We could find that WWS has the remarkable restoration of soil moisture,and the effect of rotation was better than other continuous cultivation of crops.
     C: The simulation results of cereal crop yield under different alfalfa-grain rotation measures showed that,The yield played "inverted U"-type movement.15-year was suitable for crop rotation after alfalfa plowed in terms of yield components.Because the soil water restoration reached to a good level at this time.So we could plant alfalfa again after 15-year crops rotation.
     D: The simulation result of soil nutrient evolution showed that,planting alfalfa was conductive to the accumulation of soil organic carbon and organic nitrogen.The year of alfalfa were longer,it would accumulate more,however,that was different for organic phosphorus, labile phosphorus and NO_3-N.Seven disposals all consumed soil organic carbon,organic nitrogen and organic phosphorus.And the continuous cultivation of winter wheat had the maximun loss of organic carbon,while the continuous cultivation of spring soybean had the least loss.Then if spring soybean rotated with winter wheat,which could relieve the loss of organic matter.All of those indicated that"WWS"was beneficial to balance soil nutrient.
     E: In sum,we must think over soil moisture dynamics and soil nutrient dynamics combined with yeild dynamics by various rotation measures,then determined the suitable alfalfa-grain rotation pattern for Zhenyuan,which was"10 years alfalfa→15 years WWS".
引文
陈兵,李军,李小芳.黄土高原南部旱塬地苜蓿水分生产潜力模拟研究[J].干旱地区农业研究.2006(3).31~35
    程积民.人工草地优良牧草栽培技术试验研究[J]水土保持研究,1998,5(1):88~96
    程积民,万惠娥,王静.黄土丘陵区紫花苜蓿生长与土壤水分变化.应用生态学报,2005,16(3): 435~438 樊军,郝明德,邵明安.黄土高原沟壑区草地深层土壤干燥化与氮素消耗.自然资源学报,2004,19(2):201~206
    樊廷录,周广业,王勇,丁宁平,高育锋,王淑英.甘肃省黄土高原旱地冬小麦—玉米轮作制长期定位施肥的增产效果[J].植物营养与肥料学报2004,10(2):127~131
    关秀琦,邹厚远,鲁子瑜.黄土高原草地生产持续发展研究,水土保持研究,1994,1(3):56~60
    韩仕峰.宁南山区苜蓿草地土壤水分利用特征.草业科学,1990,7(5):47~53
    郝明德,王旭刚,党廷辉,李丽霞,高长青.黄土高原旱地小麦多年定位施用化肥的产量效应分析[J].作物学报,2004,22(3):1 108~1 102
    姜峻,李代琼,都全胜.安塞黄土丘陵区人工草地优良牧草引种研究[J].水土保持通报,2003,23(2):46~49
    康绍忠,邵明安.作物蒸发蒸腾量的计算方法研究[z].陕西杨凌:中国科学院水利部西北水土保持研究所集刊,1991.89
    来璐,郝明德,彭令发,张振明.黄土高原旱地长期施肥条件下土壤有机磷的变化[J].土壤, 2003,35(5):413~418
    李代琼,姜峻,梁一民,刘国彬,黄瑾.安塞黄土丘陵区人工草地水分有效利用研究[J].水土保持研究,1996,3(2):66~71
    李代琼,梁一民,刘国彬,姜峻,黄瑾.黄土丘陵区优良牧草引种驯化试验研究.[J]西北植物学报, 1996,16(5):53~62
    李军,陈兵,李小芳,程积民,郝明德.黄土高原不同干旱类型区苜蓿草地深层土壤干燥化效应.生态学报,2007,27(1):75~89
    李军,陈兵,李小芳,邵明安,程积民.黄土高原不同类型旱区苜蓿草地水分生产潜力与土壤干燥化效应模拟.应用生态学报,2007,18(11):2 418~2 425
    李军,邵明安,张兴昌.EPIC模型中农田水分运移与利用的数学模拟[J].干旱地区农业研究,2004,22(2):72~75
    李军,邵明安,张兴昌.EPIC模型中土壤氮磷运转和作物营养的数学模拟[J].植物营养与肥料学报,2005,11(2):166~173
    李军,邵明安,张兴昌,Williams J R. EPIC模型中作物生长与产量形成的数学模拟[J].西北农林科技大学学报(自然科学版),2004,32(增刊):25~30
    李军,邵明安,张兴昌.黄土高原地区EPIC模型数据库组建[J].西北农林科技大学学报(自然科学版),2004,32(8):21~26
    李军,邵明安,张兴昌,李世清.黄土高原旱塬区高产玉米田土壤干燥化与产量波动趋势模拟研究[J].中国生态农业学报,2007,15(2):54~58
    李军,邵明安,张兴昌.黄土高原旱塬地冬小麦水分生产潜力与土壤水分动态的模拟研究[J].自然资源学报,2004,19(16):738~745
    李军,王立祥,邵明安,樊廷录.黄土高原地区小麦生产潜力模拟研究[J].自然资源学报,2001,16(2):161~165
    李军,王立祥,邵明安,樊廷录.黄土高原地区玉米生产潜力模拟研究[J].作物学报,2002,28(4):555~560
    李军.作物生长模拟模型的开发应用进展[J].西北农业大学学报,1997,25(4):39~42
    李巍.黄土高原沟壑区不同种植系统土壤水分消耗和恢复研究[J].农业工程学报,正在印刷中
    李小芳,李军,王学春,赵玉娟,程积民,邵明安.半干旱黄土丘陵区柠条林水分生产力和土壤干燥化效应模拟研究[J].干旱地区农业研究,2007,25(3):113~119
    李玉山.苜蓿生产力动态及其水分生态环境效应.土壤学报,2002,39(3):404~411
    李玉山.黄土区土壤水分循环特征及其对陆地水分循环的影响.生态学报,1983,3(2):91~101
    刘建栋,傅抱璞,金之庆,卢其尧,林振山.应用ARID CROP模型对中国黄海地区冬小麦气候生产力的数值模拟研究[J].自然资源学报,1997,12(3):282~287
    刘晓清,赵景波,于学峰.黄土高原气候暖干化趋势及适应对策.干旱地区研究,2006,23(4):627~631
    沈慧,姜凤岐,杜晓军,郭浩,王世忠.水土保持林土壤肥力及其评价指标[J].水土保持学报,2000,14(2):60~65
    孙洪仁,刘国荣,张英俊,高飞,逯涛林,韩建国.紫花苜蓿的需水量、耗水量、需水强度、耗水强度和水分利用效率研究.草业科学,2005,22(12):24~30
    孙洪仁,武瑞鑫,李品红,邵帅,戚琳璐,韩建国.紫花苜蓿根系入土深度.草地学报,2008,16(3): 307~312
    万素梅,贾志宽,韩清芳,杨宝平.黄土高原半湿润区苜蓿草地土壤干层形成及水分恢复.生态学报, 2008,28(3):1 045~1 051
    王尔大,WyatteHarman,郑大玮,常欣,程序.旱作农区轮作和留茬处理方式对风蚀的影响—应用EPIC模型进行模拟和分析的武川案例[J].中国农业科学.2002,35(11):1 330~1 336
    王俊,刘文兆,李风民.半干旱区不同作物与苜蓿轮作对土壤水分恢复与肥力消耗的影响[J].土壤学报,2004,44(1):179~183
    王学春,李军,樊廷录.黄土旱塬不同施肥水平下麦玉轮作的产量与土壤水分效应模拟研究[J].植物营养与肥料学报.2008,14(2):235~241
    王学春,李军,胡伟,蒋斌.黄土高原晋中半干旱区不同肥力水平下连作春玉米产量与土壤干燥化效应模拟[J].干旱地区农业研究,2008,26(1):1~11
    王志强,刘宝元,路炳军.黄土高原半干旱区土壤干层水分恢复研究[J].生态学报,2003,23(9):1 944~1 950
    王宗明,梁银丽.黄土塬区主要粮食作物增产潜力分析[J].干旱区资源与环境,2002,16(3):33~37
    肖国举,邓国凯,王振亚,邓向贵.降水与土壤肥力对海原小麦产量影响的探讨[J].干旱地区农业研究,1998,16(1):94~99
    徐炳成,山仑.苜蓿和沙打旺苗期需水及其根冠比[J].草地学报,2003,11(1):78~82
    张春霞,郝明德,魏孝荣,王旭刚.黄土高原沟壑区苜蓿地土壤水分剖面特征研究.植物营养与肥料学报,2004,10(6):604~607
    张树兰,同延安,梁东丽,吕殿青,Ove Emteryd.氮肥用量及施用时间对土体中硝态氮移动的影响.土壤学报,2004,41(2):270~277
    赵玉娟,李军,王学春,李小芳,邵明安.延安油松人工林地水分生产力与土壤干燥化效应模拟研究[J].西北农林科技大学学报(自然科学版),2007,35(7):62~68
    中国科学院黄土高原综合考察队.黄土高原地区农业气象资源图集.[M]北京:气象出版社,1990.125
    周怀平,杨治平,李红梅,关春林.施肥和降水年型对旱地玉米产量及水分利用的影响[J].干旱地区农业研究,2004,22(3):27~31
    朱香宁,郭继勋,梁存柱,祝廷成.华北平原地区灌溉对苜蓿产量及土壤水分的影响[J].中国草地,2002,24(6):32~37
    A.Bouniols,M.Cabelguenne,C.Jones,A.Chalamet,J.Charpenteau and J.Marty.Simulation of Soybean Nitrogen Nutrition for a Silty Clay Soil in Southern France[J].Field Crops Res,1991,26(1):19~34
    A.Sharpley and J.Williams.EPIC–Erosion/Productivity Impact Calculator:1.Model Documentation. Washington,DC:USDA Technical Bulletin No.1768[M],1990
    A.Touré,D.Major and C.W.Lindwall.Sensitivity of Four Wheat Simulation Models to Climate Change[J]. Plant Sci,1995,75(1):61~68
    A.Thomson,R.Brown and S.Ghan.Elevation Dependence of Winter Wheat Production in Eastern Washington State with Climate Change:A Methodological Study[J].Climatic Change,2002,54(1~2):141~164
    C.Campbell,R.P.Zentner,B.C.Liang,G.Roloff,E.C.Gregorich and B.Blomert.Organic C Accumulation in Soil Over 30 Years in Semiarid Southwestern Saskatchewan—Effect of Crop Rotations and Fertilizers[J].Soil Sci,2000,80:179~192
    C.Jones,P.Dyke,J.Williams,J. Kiniry,V. Benson and R.Griggs.EPIC:An Operationa Model for Evaluation of Agricultural Sustainability[J].Agric.Syst,1991,37:341~350
    C.J.Kueharik and K.R.Brye.Integrated Biosphere Simulator(IBIS) yield and nitrate loss predictions for Wisconsin maize receiving varied amounts of nitrogen fertilizer[J].Journal of Environmental Quality,2003,32:247
    C.Stockle,J.Williams,C. Jones and N.Rosenberg. A Method for Estimating the Direct and Climatic Effects of Rising Atmospheric Carbon Dioxide on Growth and Yield of Crops. I. Modification of the EPIC Model for Climate Change Analysis[J]. Agric. Syst,1992,38(3): 225~238
    C.Stockle,P. Dyke,J.Williams and C.Jones.A Method for Estimating the Direct and Climatic Effects of Rising Atmospheric Carbon Dioxide on Growth and Yield of Crops.II.Sensitivity Analysis at Three Sites in the Midwestern USA[J].Agric.Syst,1992,38(3):239~256
    F.Meza and D.Wilks.Use of Seasonal Forecasts of Sea Surface Temperature Anomalies for Potato Fertilization Management:Theoretical Study Considering EPIC Model Results at Valdivia,Chile[J]. Agric.Syst,2004,82(2): 161~180
    G.Sabbagh,R.Bengston and J.Fouss.Modification of EPIC to Incorporate Drainage Systems[J].Trans. ASAE,1991,34(2):467~471
    G.Tan,R.Shibasaki.Global Estimation of Crop Productivity and the Impacts of Global Warming by GIS and EPIC Integration[J].Ecol. Model,2003,168:357~370
    H.Apezteguía,R.C. Izaurralde,and R. Sereno. Simulation of Soil Organic Matter Dynamics as Affected byLand Use and Agricultural Practices in Semiarid Córdoba,Argentina[J].Agronomy Abstracts,CD~ROM,2002
    H.Purveen,R.Izaurralde,D.Chanasyk,J.Williams and R.Grant.Evaluation of EPIC’s Snowmelt and Water Erosion Submodels using data from the Peace River Region of Alberta[J].Soil Sci,1997,77:41~50
    I.de Barros,J.Williams and T.Gaiser.Modeling Soil Nutrient Limitations to Crop Production in Semiarid NE of BRAZIL with a Modified EPIC Version I:Changes in the Source Code of the Model[J].Ecol. Model,2004,178:441~56
    J.N.Bernardos,E.F.Viglizzo,V.Jouvet,et a1.The use of EPIC model to study the agroecological change during 93 years of farming transformation in the Argentine pampas[J].Agricultural Systems,2001,69:215
    J.Kiniry,R.Blanchet,J.Williams,V.Texier,C.Jones and M.Cabelguenne.Sunflower Simulation using the EPIC and ALMANAC Models[J].Field Crops Research,1992,30(3~4): 403~423
    J.Kiniry,D.Major,R.Izaurralde,J.Williams,P.Gassman and Morrison.EPIC Model Parameters for Cereal, Oilseed and Forage Crops in the Northern Great Plains Region[J].Can.J.Plant Sci,1995,75(3):679~688
    J.J.Lee,D.I.Phillips and R.F.Dodsonh.Sensitivity of the US corn belt to climate change and elevated CO2 II:Soil Erosion and Organic Carbon[J].Agricultural systems,1996,52:503
    J.Reilly and M. Anderson. Economic Issues in Global Climate Change: Agriculture,Forestry and Natural Resources[M].CO: Westview Press.1992
    J.Williams.The Erosion Productivity Impact Calculator (EPIC) Model:A Case History.Phil.Trans,1990,329: 421~428
    J. Williams. The EPIC Model. In Computer Models of Watershed Hydrology,pp 909~1000. Edited by V.P. Singh. Highlands Ranch,CO: Water Resources Publications.1995
    J.Williams,C.Jones,J. Kiniry and D.Spanel.The EPIC Crop Growth Model[J].Trans.ASAE,1989,32(2): 497~511
    J.Williams,J.Arnold and R.Srinivasan. The APEX Model[R].Exten.Service,Texas A&M University,2000
    J.Williams,J.Putnam and D.Sawyer.Using the Erosion-Productivity Impact Calculator(EPIC)to Estimate the Impact of Soil Erosion for the 1985 RCA Appraisal[J].Soil Water Cons,1988,43(4):321~326
    J.Zhao,L.A.Kurkalova and C.L.Kling.Alternative Green Payment Policies when Multiple Benefits Matter[J].Agric Resour Econ Rev,2004,33(1):148~158
    K.Potter and J.Williams.Predicting Daily Mean Temperatures in the EPIC Simulation Model[J].Agron, 1994,86(6):1 006~1 011
    K.Potter,J.Williams,F. larney and M.Bullock. Evaluation of EPIC’s Wind Erosion Submodel using Data from Southern Alberta[J]. Soil Sci,1998,78: 485~492
    K.Renard.Predicting Soil Erosion by Water:A Guide to Conservation Planning with the Revised Universal Loss Soil Equation(RUSLE).Washington,DC:U.S.Department of Agriculture,Agricultural Research Service.1997
    M.Cabelguenne,C.A.Jones,J.R.Marty,et a1.Calibration and validation of EPIC for crop rotations in southernFrance[J].Agricultural Systems,1990,33:153
    M.Cabelguenne,P.Debaeke and A.Bouniols.EPICphase,a version of the EPIC model simulating the effects of water and nitrogen stress on biomass and yield,taking account of developmental stages [J].Agricultural Systems,1999,60:175
    R.C.Dalai.Soil Organic Phosphorus.Advances in Agronomy,1977,29:83~117
    R.C.Zaurralde,J.R.Williams,W.B.McGill,et a1.Simulatin g soil C dynamics with EPIC model description and testing against long term data [J].Ecological Modelling,2006,192(3~4):362
    R.Izaurralde,N.Rosenberg,R.Brown and A.Thomson.Integrated Assessment of Hadley Center (HaDCM2)Climate-Change Impacts on Agricultural Productivity and Irrigation Water Supply in the Conterminous United States[J].Agric.Forest Meteorol,2003,117(1~2): 97~122
    R.Izaurralde,J.R.Williams,W.B.McGill and N.J.Rosenberg. Simulating Soil Carbon Dynamics,Erosion,and Tillage with EPIC[J].Presented at the First National Conference on Carbon Sequestration sponsored by the U.S.Department of Energy, National Energy Technology Laboratory, 2001,(5):14~17
    R.Izaurralde,J.Williams,W.McGill and N.Rosenberg.Modeling Soil Organic Carbon Changes in Crop Land and a Long Term Crop Rotation Trial with EPIC[R].Joint Global Change Research Institute, University of Maryland.2004,Submitted for publication
    R.Tumas.Evaluation and prediction of nonpoint pollution in Lithuania[J].Ecological Engineering, 2000,14:443

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700