CdSe的水溶液法合成研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属硫族化合物是一类重要的半导体材料,由于其独特的物理和化学性能,在许多领域都具有广泛的应用前景。特别是近十几年对其结构、维度和形貌的调控,已进一步开拓了其光、电和磁等性能的新应用。本文以硝酸镉和亚硒酸钠作为镉源和硒源,氨水、EDTA为络合剂,水合肼为还原剂,在水溶液中通过低温回流反应研究了CdSe晶体的合成,采用XRD、EDS、XPS、TEM、SEM、HRTEM和UV-vis等手段对所得样品进行了测试表征。
     论文考察了不同络合剂、回流反应时间、Cd2+离子浓度、Cd/Se离子配比以及PEG4000、柠檬酸钠和巯基乙酸等辅助添加剂对产物晶型和形貌的影响,从化学反应原理及动力学角度探讨了过程机理。结果表明,选用EDTA和氨水作络合剂分别得到了较为纯净的闪锌矿相和纤锌矿相CdSe,体系回流2小时已基本反应完全,Cd和Se化学计量比分别约为1:1和3:2。Cd2+离子浓度过高或过低都会发生副反应而引入CdSeO3、Se等杂质。Cd/Se的比值会影响产物粒径和形貌,产物的粒径在一定范围内随Cd/Se比值的增加而增大,Cd/Se比过高会形成一种分枝结构。XPS测试分析表明在没有添加剂的情况下,水溶液法制备的CdSe表面被Cd(OH)2等杂质包覆。通过样品的UV-vis漫反射光谱,估算出EDTA和氨水体系所得样品的禁带宽度Eg分别为1.63eV和1.70eV。由于产物粒径大于玻尔半径,闪锌矿和纤锌矿相的CdSe都没有表现出明显的量子限域效应。
Metal chalcogenide as an important kind of semiconductor materials have a wide application prospect in many fields due to their unique physical, chemical properties. In particular, the optical, electrical and magnetic properties have been developed by altering their structure, dimension or morphology in recent ten years. In this paper, CdSe crystals were prepared through aqueous solutions using cadmium nitrate and sodium selenite as precursors, ammonia and EDTA as complexing agents, N2H4?H2O as a reducing agent. XRD, EDS, XPS, TEM, SEM, HRTEM and UV-vis were utilized to characterize chemical composition, crystal structures, morphology and optical properties of the CdSe crystals.
     Effects of processing parameters including complexing agents, refluxing time, concentration of Cd2+, the Cd/Se ratios and the stabilizers such as PEG4000, sodium citrate and thioglycolic acid were mainly investigated. The chalating action of EDTA and ammonia in dynamics of synthetical reaction was also discussed. Experimental results showed that the zinc blende and wurtzite CdSe crystals were obtained in the solution systems respectively containing EDTA and ammonia as complexing agents. When Cd2+ concentration of the solution with ammonia chalating was higher than 0.15mol/L and lower than 0.05mol/L, less CdSeO3 and Se beside CdSe main phase were found respectively. The ratio of Cd/Se played an important role in controlling the size and morphology of CdSe. The crystal sizes increased with the Cd/Se ratio in the range from 1 to 3. A branch crystal was formed as the Cd/Se ratio was more than 4. The stoichiometrical ratio of cadmium and selenium for the zinc blende and wurtzite CdSe crystals were 1:1 and 3:2 respectively according to EDS analysis. XPS spectra showed that Cd(OH)2 and SeOx(x≤1) compounds were easy to be formed on the surface of CdSe crystals from solution without stabilizers. Calculated from the UV-vis reflection spectra, the optical band gap of the zinc blende and wurtzite CdSe crystal was 1.63eV and 1.70eV respectively, no indicating the quantum confinement effect due to larger sizes of CdSe than the diameter of Bohr exciton in CdSe.
引文
[1] Wendy U. Huynh, Janke J. Dittmer, A. Paul Alivisatos. Hybrid nanorod-polymer solar cells. Science 2000, 295:2425-2427
    [2] Ilan Gur, Neil A. Fromer, Michael L. Geier, et al. Air-stable all-inorganic nanocrystal solar cells processed from solution. Science 2005, 310: 462-465
    [3] Istvan Robel, Vaidyanathan Subramanian, Masaru Kuno, et al. Quantum dot solar cells. Harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films. J. Am. Chem. Soc. 2006, 128: 2385-2393
    [4] Claude Lévy-Clément, Ramon Tena-Zaera, Margaret A. Ryan, et al. CdSe-sensitized p-CuSCN nanowire n-znO heterojunctions. Adv. Mater. 2005, 17: 1512-1515
    [5] R Tena-Zaera, A Katty, S Bastide, et al. Annealing effects on the physical properties of electrodeposited ZnO/CdSe core-shell nanowire. Chem. Mater. 2007, 19: 1626-1632
    [6]梁彤祥.清洁能源材料导论.哈尔滨:哈尔滨工业大学出版社, 120-128
    [7]刘恩科,朱秉升,罗晋生.半导体物理学.北京:电子工业出版社, 341-343
    [8] Adolf Goetzberger, Joachim Luther, Gerhard Willeke. Solar cells: past, present, future. Solar Energy Materials and Solar Cells. 2002, 74: 1-11
    [9] K L Chopra, P D Paulson, V Dutta. Thin-Film Solar Cells: An Overview. Prog. Photovolt. Res. Appl. 2004, 12: 69-92
    [10] Hans-Werner Schock, Rommel Noufi. CIGS-based Solar Cells for the Next Millennium. Prog. Photovolt. Res. Appl. 2000, 8: 151-160
    [11] T Dullweber, G Hanna, U Rau, et al. A new approach to high-efficiency solar cells by band gap grading in Cu(In,Ga)Se-2 chalcopyrite semiconductors. Solar Energy Materials and Solar Cells. 2001, 67: 145-150
    [12] Takurou N Murakami, Seigo Ito, Qing Wang, et al. Highly Efficient Dye-Sensitized Solar Cells Based on Carbon Black Counter Electrodes. Journal of The Electrochemical Society. 2006, 153: A2255-A2261
    [13] Sangwook Lee, Jin Young Kim, Kug Sun Hong, et al. Enhancement of the photoelectric performance of dye-sensitized solar cells by using a CaCO3-coated TiO2 nanoparticle film as an electrode. Solar Energy Materials and Solar Cells. 2006, 90: 2405-2412
    [14] Alexander G Agrios, Ilkay Cesar, Pascal Comte, et al. Nanostructured composite films for dye-sensitized solar cells by electrostatic layer-by-layer deposition. Chem. Mater. 2006, 18: 5395-5397
    [15] Jason B Baxter, Eray S Aydil. Nanowire-based dye-sensitized solar cells. Appled Physics Letters. 2005, 86: 053114.1-053114.3
    [16] Qiaohong Yao, Junfeng Liu, Qing Peng, et al. Nd-doped TiO2 nanorods: Preparation and application in dye-sensitized solar cells. Chem. Asian. J. 2006, 1: 737-741
    [17] G Yu, J Gao, J C Hummelen. et al. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science. 1995, 270: 1789–1792
    [18] Wendy U Huynh, Janke J Dittmer, A Paul Alivisatos. Hybrid nanorod-polymer solar cells. Science. 2000, 295:2425-2427
    [19] Baoquan Sun, Henry J Snaith, Anoop S Dhoot, et al. Vertically segregated hybrid blends for photovoltaic devices with improved efficiency. Journal of Applied Physics. 2005, 97: 014914.1-014914.6
    [20] Ilan Gur, Neil A. Fromer, Michael L. Geier, et al. Air-stable all-inorganic nanocrystal solar cells processed from solution. Science 2005, 310: 462-465
    [21]董红星,杨振,杨文玉,等. CdSe纳米结构单元的制备与自组装.化学进展, 2006, 12: 1608-1614
    [22] Margaret A. Hines, Philippe Guyot-Sionnest. Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals. J.Phys. Chem. 1993, 100: 468-471
    [23] Sungjee Kim, Brent Fisher, Hans-Jürgen Eisler, et al. Type-ⅡQuantum Dots: CdTe/CdSe(Core/Shell) and CdSe/ZnTe(Core/Shell) Heterostructures. J. Am. Chem. Soc. 2003, 125: 11466-11467
    [24]姚凤仪,郭德威,桂明德.无机化学丛书,第五卷:氧硫硒分族.北京:科学出版社, 1990, 333
    [25] Peng Q, Dong Y J, Li Y D, et al. Low-temperature elemental-direct-reactin route to II-VI semiconductor nanocrystalline ZnSe and CdSe. Inorg. Chem. 2001, 40: 3840-3841
    [26] Roof L C, Kolis J W. New developments in the coordination chemistry of inorganic selenide and telluride ligands. Chem. Rev. 1993, 93: 1037-1080
    [27] Chuprakov I S, Dahmen K H, CVD of metal chalcogenide films. J. Phys. IV 1999, 9: 313-319
    [28] Bayaz A A, Giani A, Foucaran A, et al. Elaboration and characterization of Bi2Se3 thin films using ditertiarybutylselenide as a precursor by MOCVD system. J. Cryst. Growth. 2002, 243: 444-449
    [29] Malik M A, Revaprasadu N, O’Brien P. Air-stable single-source precursors for the synthesis of chalcogenide semiconductor nanoparticles. Chem. Mater. 2001, 13: 913-920
    [30] Cheng Y, Emge T J, Brennan J G. Pyridineselenolate complexes of copper and indium : Precursors to CuSex and In2Se3. Inorg. Chem. 1996, 35: 7339-7344
    [31] Afzaal M, Aucott S M, Crouch D, et al. Deposition of MSe(M=Cd, Zn) films by LP-MOCVD from novel single-source precursors M[(SePPh2)2N]2. Adv. Mater. 2002, 14: A187
    [32] Murray C B, Norris D J, Bawendi M G. Synthesis and characterization of nearly monodisperse CdE(E=S, Se, Te) semiconductor nanocrystallites. J. Am. Chem. Soc. 1993, 115: 8706-8715
    [33] Peng X G, Manna L, Yang W D, et al. Shape control of CdSe nanocrystals. Nature 2000, 404: 59-61
    [34] Manna L, Scher E C, Alivisatos A P. Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals. J. Am. Chem. Soc. 2000, 122: 12700-12706
    [35] Ohtani T, Nonaka T, Araki M. Sonochemical synthesis of copper and silver chalcogenides. J. Solid State Chem. 1998, 138: 131-134
    [36] Dhas N A, Zaban A, Gedanken A. Surface synthesis of zinc sulfide nanoparticles on silica microspheres: Sonochemical preparation, characterization, and optical properties. Chem. Mater. 1999, 11: 806-813
    [37] Ramesh S, Koltypin Y, Gedanken A. Sonochemical deposition and characterization of nanophasic amorphous nickel on silica microspheres. Chem. Mater. 1997, 9: 546-551
    [38] Chia-Chun Chen, Chi-Yau Chao, Zon-Huan Lang. Simple Solution-Phase Synthesis of Soluble CdS and CdSe Nanorods. Chem. Mater. 2000, 12: 1516-1518
    [39] Shu Xu, Hui Wang, Jun-Jie Zhu, et al. An in situ Template Route for Fabricating Metal Chalcogenide Hollow Spherical Assemblies Sonochemically. Eur. J. Inorg. Chem. 2004, 23: 4653-4659
    [40] Grisaru H, Palchik O, Gedanken A, et al. Preparation of Cd1-xZnxSe using microwave-assisted polyol synthesis. Inorg. Chem. 2001, 40: 4814-4815
    [41] Zhu J J, Palchik O, Gedanken A, et al. Microwave assisted preparation of CdSe, PbSe, and Cu2-xSe nanoparticles. J. Phys. Chem. B 2000, 104: 7344-7347
    [42] Ge X W, Ni Y H, Liu H R, et al.γ-Irradiation preparation of cadmium selenide nano-particles in ethylenediamine system. Mater. Res. Bull. 2001, 36: 1609-1613
    [43] Li Y D, Liao H W, Li D, et al. Solvothermal elemental direct reaction to CdE (E= S, Se, Te) semiconductor nanorod. Inorg. Chem. 1999, 38: 1382-1387
    [44] Peng Q, Dong Y J, Deng Z X, et al. Selective synthesis and characterization of CdSe nanorods and fractal nanocrystals. Inorg. Chem. 2002, 41: 5249-5254
    [45] Hai Fan, Yuanguan Zhang, Jianbo Liang, et al. Formation of CdSe nanorod-assembled microtubes in an ethanolamine-PEG solution. Chemistry Letters. 2006, 35: 1212-1213
    [46] Qing Yang, Kaibin Tang, Chunrui Wang, et al. PVA-assisted synthesis, and characterization of CdSe and CdTe nanowires. J. Phys. Chem. B. 2002, 106: 9227-9230
    [47] Hongni Wang, Zhiyan Guo, Fanglin Du. Solvothermal synthesis of CdSe nanorods via DEA solution. Materials Chmistry and Physics. 2006, 98: 422-424
    [48] Yong Liu, Yao Xu, Jun-Ping Li. et al. Selective Synthesis of Wurtzite CdSe Nanorods and Zinc Blend CdSe Nanocrystals through a Convenient Solvothermal Route. Chemistry Letters. 2004, 33: 1162-1163
    [49] Y.J.Chang, C.L.Munsee, G.S.Herman, et al. Growth, characterization and application of US thin films deposited by chemical bath deposition. Surface and Interface Analysis 2005, 37: 398-405
    [50] Thomas P.Niesen, Mark R.De Guire. Review: Deposition of Ceramic Thin Films at Low Temperatures from Aqueous Solutions. Journal of Electroceramics 2001, 6: 169-207
    [51] Mane, C.D.Lokhande. Chemical deposition method for metal chalcogenide thin films. Materials Chemistry and Physics 2000, 65: 1-31
    [52] R K Pandey, A J N Rooz. Efficient electrochemical photovoltaic cells using n-CdSe films electrodeposited from low-purity materials. J. Phys. D: Appl. Phys. 1986, 19: 917-923
    [53] Claude Lévy-Clément, Ramon Tena-Zaera, Margaret A. Ryan, et al. CdSe-sensitized p-CuSCN nanowire n-ZnO heterojunctions. Adv. Mater. 2005, 17: 1512-1515
    [54] C N R Rao, A Govindaraj, F Leonard Deepak, et al. Surfactant-assisted synthesis of semiconductor nanotubes and nanowires. Applied Physics Letters. 2001, 78: 1853-1855
    [55] Zhang H, Cui Z C, Wang Y, et al. From water-soluble CdTe nanocrystals to fluorescent nanocrystal-polymer transparent composites using polymerizable surfactants. Adv. Mater. 2003, 15: 777-780
    [56] Bao H F, Wang E K, Dong S J. One-Pot Synthesis of CdTe Nanocrystals and Shape Control of Luminescent CdTe-Cystine Nanocomposites. Small 2006, 4: 476-480
    [57] Badrinarayan Krishnamachari, James McLean, Barbara Cooper, et al. Gibbs-Thomson formula for small island sizes: Corrections for high vapor densities. Physical Review B. 1996, 54: 8899-8907
    [58] Marcel B J Meinders, William Kloek, Ton van Vliet. Effect of surface elasticity on Ostwald Ripening in emulsions. Langmuir. 2001, 17: 3923-3929
    [59] Alivisatos A P. Perspectives on the physical chemistry of semiconductor nanocrystals. J. Phys. Chem. 1996, 100: 13226-13239
    [60] Alivisatos A P. Semiconductor clusters, nanocrystals, and quantum dots. Science. 1996, 271: 933-937
    [61] Huang Y, Duan X F, Lieber C M, et al. Directed assembly of one-dimensional nanostructures into functional networks. Science. 2001, 291: 630-633
    [62]彭卿.硒碲化合物半导体纳米材料的调控合成结构与性能研究: [博士学位论文],北京,清华大学, 2003
    [63] Peng X G, Manna L, Yang W D, et al. Shape control of CdSe nanocrystals. Nature 2000, 404: 59-61
    [64] Xu D S, Shi X S, Guo G L, et al. Eletrochemical preparation of CdSe nanowire arrays. J. Phy. Chem. B. 2000, 104: 5061-5063
    [65] Moran K L, Harrison W T A, Kamber T, et al. Synthesis, characterization and tunable electronic/optical properties ofⅡ-Ⅵsemiconductor species included in the sodalite structure. Chem. Mater. 1996, 8: 1930-1943
    [66] Cheetham A K, Ferey G, Loiseau T. Open-framework inorganic materials. Angew. Chem. Int. Edit. 1999, 38: 3269-3292
    [67] Dai H J, Wong E W, Lieber C M, et al. Synthesis and characterization of carbide nanorods. Nature. 1995, 375: 769-772
    [68] Peng X G, Manna L, Yang W D, et al. Shape control of CdSe nanocrystals. Nature 2000, 404: 59-61
    [69] Manna L, Scher E C, Alivisatos A P. Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals. J. Am. Chem. Soc. 2000, 122: 12700-12706
    [70] Peng Z. A, Peng X G. Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: Nucleation and growth. J. Am. Chem. Soc. 2002, 124: 3343-3353
    [71] Nikolai Gaponik, Dmitri V Talapin, Andrey L Rogach, et al. Thiol-Capping of CdTe Nanocrystals: An Alternative to Organometallic Synthetic Routes. J. Phys. Chem. B. 2002, 106: 7177-7185

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700