非晶铟锌氧化物薄膜晶体管的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文重点对以铟锌氧化物作为沟道层的氧化物薄膜晶体管进行研究,首先进行了沟道层、绝缘层材料的制备和性能分析,然后再结合掩模制备了薄膜晶体管器件,从沟道层制备条件、器件结构方面对薄膜晶体管性能进行了优化。
     首先,在室温下于玻璃基板上采用直流反应磁控溅射In/Zn合金靶材制备了IZO薄膜。测试表明所制备的IZO薄膜均为非晶结构,且表面平整。通过在沉积过程中适当调节氧气压强,a-IZO薄膜电阻率可以在10-3~106Ω·cm范围变化;α-IZO薄膜具有良好的光学透明性,在可见光范围内平均透射率可达87%;通过拟合外推计算得到α-IZO薄膜的光学禁带宽度大致为3.34~3.62 eV,介于In2O3和ZnO之间。直流反应磁控溅射制备的α-IZO薄膜在光学性能和电学性能方面均能满足薄膜晶体管的要求。
     其次,在室温下于玻璃基板上采用脉冲等离子体沉积法制备了Si02薄膜。通过电容-电压测试计算得到在氧气压强为2.4×10-2Pa,2.6×10-2Pa,2.8×10-2Pa三种条件下制备的SiO2薄膜的相对介电常数分别为3.82、3.88、3.92;SiO2薄膜具有良好的光学透明性,在可见光范围内平均透射率可达87%。脉冲等离子体沉积法制备的SiO2薄膜具有较好的光学性能和介电性能,有希望作为绝缘层应用于薄膜晶体管。
     最后,基于沟道层和绝缘层研究之上结合掩模制备了薄膜晶体管,研究了沟道层制备条件以及器件结构对薄膜晶体管性能的影响,得到以下结论:
     1)以5.0×10-2Pa氧气压强制备的α-IZO作为沟道层的薄膜晶体管的输出特性最佳,具有明显的饱和现象,并且在相同的偏压下具有较大的输出电流;所以认为5.0×10-2Pa的氧气压强是制备α-IZO沟道层的最佳条件。
     2)由于具有较为平整的沟道层-绝缘层界面,顶栅结构薄膜晶体管各项性能全面优于底栅结构薄膜晶体管。该薄膜晶体管工作在n型沟道增强模式,电流开关比约为103,阈值电压Vth,为0.57 V,场效应迁移率为4.08cm2v-1s-1。
Thin film transistors (TFTs) based on indium zinc oxide as channel layer were studied in this thesis.The channel layer and dielectric layer were fabricated and characterized, respectively. Thin film transistors were fabricated with shadow mask. The performance of device was improved by optimizing the deposition parameter of channel layer and configuration of TFTs.
     Firstly, indium zinc oxide (IZO) thin films were deposited on glass substrates by DC reactive magnetron sputtering at room temperature. The structure of IZO films is amorphous, and the surface of IZO films is smooth. The resistivity of the thin films can be adjusted from 10-3 to 106 Q-cm through the proper control of the oxygen pressure during the deposition process.As-deposited amorphous IZO (a-IZO) films show high optical transmission, the average transmittance in the visible region is about 87%,and the optical band gap exhibits from 3.34 eV to 3.62 eV, which is between zinc oxide and indium oxide. a-IZO films deposited by DC reactive magnetron sputtering show good semi-conductive and optical properties which can satisfy the requirements of TFTs.
     Secondly, SiO2 films were deposited on glass substrates by pulsed plasma deposition (PPD) at room temperature. For the SiO2 films deposited at oxygen pressure of 2.4×10-2 Pa,2.6×10-2 Pa and 2.8×10-2 Pa, the relative dielectric constant was 3.82,3.88 and 3.92,respectively. SiO2 films also show high optical transmission, the average transmittance in the visible region is about 87%.SiO2 films deposited by PPD show good dielectric and optical properties, which have potential application in TFT as insulator layer.
     Finally, TFTs were fabricated using shadow mask based on the studies of channel layer and dielectric layer. The dependence of performance on the deposition parameter of channel layer and configuration of TFTs were investigated in detail. The main results show that:
     1) TFTs with a-IZO channel layer which were deposited at oxygen pressure of 5.0×10-2 Pa show the best output characteristics with distinct saturation and the largest output current at the same bias voltage. Oxygen pressure of 5.0×10-2 Pa was considered as the optimal parameter to depositα-IZO channel layer.
     2) With smoother interface between channel layer and dielectric layer, the performance of top-gated TFT was better than bottom-gated TFT. The top-gated TFT operated in n-type enhancement mode with a field-effect mobility of 4.08 cm2V-1s-1, an on-off current ratio of 103 and a threshold voltage of 0.57.
引文
1 Lilienfeld J E.USP:1745175,1930.
    2 http://www.fujitsu.com/global/about/rd/200509epaper.html.
    3 Donald A. Neamen, "semiconductor Physics and Device 3rd",McGraw Hill, p.486-495.
    4 M.Kitamura, T. Imada, and Y. Arakawa. Organic light-emitting diodes driven by pentacene-based thin-film transistors. Appl.Phys. Lett.,2003,83:3410.
    5 D.Gosain, T.Noguchi, and S.Usui.High mobility thin film transistors fabricated on a plastic substrate at a processing temperature of 110 degrees C. Jpn. J. Appl. Phys.2000,39:L179.
    6 T. Serikawa and F. Omata. High-mobility poly-Si thin film transistors fabricated on stainless-steel foils by low-temperature processes using sputter-depositions. Jpn. J.Appl.Phys., 2000,39:L393.
    7 H.Lee, J.Kyung, S.Kang, D.Kim, et al. Current status of, challenges to, and perspective view of AM-OLED.Proc. IDW 06, p.663.
    8 H.Lee, J.Kyung, S.Kang, D. Kim, et al.3.5 inch QCIF+ AM-OLED panel based on oxide TFT backplane. SID 07 Digest, p.1826.
    9 H.Sato, H.Fujikake, Y. lino, et al. Flexible grayscale ferroelectric liquid crystal device containing polymer walls and networks.Jpn. J. Appl. Phys.,2002,41:5302.
    10 G.Gelinck, H.Huitema, E. van Veenendaal, et al. Flexible active-matrix displays and shift registers based on solution-processed organic transistors.Nature Mater.,2004,3:106.
    11 R. L. Hoffman, B.J.Norris and J.F. Wager. ZnO-based transparent thin film transistors. Appl. Phys. Lett.,2003,82(5):733.
    12 P.Barquinha, E. Fortunato, A. Goncalves, et al. Influence of time, light and temperature on the electrical properties of zinc oxide TFTs.Superlattices and Microstructures,2006,39:319.
    13 R. Navamathavan, Chi Kyu Choi,Eun-Jeong Yang, et al. Fabrication and characterizations of ZnO thin film transistors prepared by using radio frequency magnetron sputtering. Solid-State Electronics,2008,52:813.
    14 David C.Paine, Burag Yaglioglu, Zach Beiley, et al. Amorphous IZO-based transparent thin film transistors.Thin Solid Films,2008,516:5894.
    15 Yu-Lin Wang, F. Ren,Wantae Lim, et al. Room temperature deposited indium zinc oxide thin film transistors.Appl.Phys.Lett.,2007,90:232103.
    16 Chaun Gi Choi, Seok-Jun Seo, and Byeong-Soo Bae. Solution-processed indium-zinc oxide transparent thin-film transistors. Electrochemical and Solid-State Letters,2008,11:H7-H9.
    17 M.W.J.Prins, K.-O.Grosse-Holz, G.Muller, et al. A ferroelectric transparent thin-film transistor. Appl.Phys. Lett.,2006,68:3650.
    18 H.Q.Chiang, J.F. Wager, R. L. Hoffman, et al. High mobility transparent thin-film transistors with amorphous zinc tin oxide channel layer. Appl. Phys.Lett.,2005:013503.
    19 Y. Kwon, Y. Li, Y.W. Heo, et al. Enhancement-mode thin-film field-effect transistor using phosphorus-doped (Zn,Mg)O channel.Appl.Phys. Lett.,2004,84:2685.
    20 K. Matsuzaki, H.Yanagi,T. Kamiya, et al. Field-induced current modulation in epitaxial film of deep-ultraviolet transparent oxide semiconductor Ga2O3.Appl. Phys.Lett.,2006,88:92106.
    21 H.Kumomi,K. Nomura, T. Kamiya, et al. Amorphous oxide channel TFTs. Thin Solid Films, 2008,516:1516.
    22 K. Nomura, H.Ohta, K. Ueda, et al. Electron transport in InGaO3 (ZnO)m(m=integer) studied using single-crystalline thin films and transparent MISFETs.Thin Solid Films,2003, 445:322.
    24 T.Moriga, D.Edwards, T. O.Mason, et al. Phase relationships and physical properties of homologous compounds in the zinc oxide-indium oxide system. J.Am. Ceram. Soc.,1998, 81:1310.
    25 N. Naghavi, C.Marcel, L. Dupont, et al. Structural and physical characterisation of transparent conducting pulsed laser deposited In2O3-ZnO thin films.J.Mater. Chem.,2000,10:2315.
    26 T. Minami, T. Kakumu, and S.Takata. Preparation of transparent and conductive In2O3-ZnO films by radiofrequency magnetron sputtering. J. Vac. Sci. Technol.,1996,14:1704.
    27 J. Park, S.Kim, C.Kim, et al. High-performance amorphous gallium indium zinc oxide thin-filmtransistors through N2O plasma passivation. Appl.Phys.Lett.,2008,93:053505.
    28 S. OsonoY. Uchiyama, M. Kitazoe, et al. Coverage properties of silicon nitride film prepared by the Cat-CVD method Thin Solid Films,2003,430:165.
    29 M. Voigt, M. Sokolowski. Electrical properties of thin rf sputtered aluminum oxide films. Materials Science and Engineering B,2004,109:99.
    30 M.D.Groner, J.W. Elam, F.H. Fabreguette, et al. Electrical characterization of thin Al2O3 films grown by atomic layer deposition on silicon and various metal substrates.Thin Solid Films, 2002,413:186.
    31 Young-Je Cho, Ji-Hoon Shin, S.M. Bobade, et al. Evaluation of Y2O3 gate insulators for a-IGZO thin film transistors.Thin Solid Films,2009,517:4115.
    32 Jong Hoon Kim, Byung Du Ahn, Choong Hee Lee, et al. Characteristics of transparent ZnO based thin film transistors with amorphous HfO2 gate insulators and Ga doped ZnO electrodes. Thin Solid Films,2008,516:1529.
    33 Marius D.Stamate. Dielectric properties of TiO2 thin films deposited by a DC magnetron sputtering system.Thin Solid Films,2000,372:246.
    34 D.N.Sandzhiev, K.G. Abdulvakhidov, V. Yu. Shonov, et al. Dielectric properties of thin ferroelectric Sn2P2S6 films deposited by thermal evaporation. Technical Physics,2009,54:1622.
    35 R.B.Wu,G.Y. Yang, Y Pan, et al. Thermal evaporation and solution strategies to novel nanoarchitectures of silicon carbide. Appl. Phys. A.2007,88:679.
    36 T. Sameshima, A. Kohno, M.Sekiya, et al. SiO2 formation by thermal evaporation of SiO in oxygen atmosphere used to fabrication of high performance polycrystalline silicon thin film transistors.Appl.Phys.Lett.,2008,1994,64:1018.
    37 Xifeng Li,Weina Miao, Qun Zhang, et al. Preparation of molybdenum-doped indium oxide thin films using reactive direct-current magnetron sputtering. J.Mater. Res.,2005,20(6):1404.
    38 Mwabora JM,Lindgren T, Avendano E, et al. Structure, composition, and morphology of photoelectrochemically active TiO2-xNx thin films deposited by reactive DC magnetron sputtering. J.Phys. Chem. B,2004,108:20193.
    39 Kazuo Ikuta, Yasushi Inoue and Osamu Takai. Optical and electrical properties of InN thin films grown on ZnO/alpha-Al2O3 by RF reactive magnetron sputtering. Thin Solid Films,1998, 334:49.
    40 A.I.Nikiforov, V.V. Ulyanov, S.A. Teys, et al. MBE growth of vertically ordered Ge quantum dots on Si.Physica Status Solidi (c).2007,4:262.
    41 S.M. Kim, Y.Furukawa, H.Yonezu, et al. MBE growth of highly strained InGaPN/GaPN quantum well with high indium content. J.Crys.Grow.,2006,293:359.
    42 A.Strass, P. Bieringer, W. Hansch, et al. Fabrication and characterisation of thin low-temperature MBE-compatible silicon oxides of different stoichiometry. Thin Solid Films, 1999,349:135.
    43 Reisse G, Weissmantel S,Keiper B,et al. Properties of pulsed laser deposited boron nitride films.Appl. Surf. Sci.,1997,108:9.
    44 S.B.Desu, H.S.Cho, M.Nagata.Ferroelectric SrBi2Ta209 thin films deposited on Si(100) by pulsed laser deposition. Physica Status Solidi (a),1998,165:213.
    45 C.K. Wang, J.H.Chern Lin, C.P. Ju, et al. Structural characterization of pulsed laser-deposited hydroxyapatite film on titanium substrate. Biomaterials,1997,18:1331.
    46 Huang L, Li X-f, Zhang Q, Miao W-n, et al. Properties of transparent conductive In2O3:Mo thin films deposited by Channel Spark Ablation, Journal of Vacuum Science & Technology A. 2005,23(5):1350.
    47 G. Binning, C.F. Quate, C.Gerber. Atmic force microscope. Phys.Rev. Lett.,1986,56:930.
    49 R. Martins, P. Barquinha, A. Pimentel, et al. Transport in high mobility amorphous wide band gap indium zinc oxide films.phys. stat. sol.(a),2005,222:R95.
    50 N.L. Dehuff, E.S.Kettenring, D.Hong, et al. Transparent thin-film transistors with zinc indium oxide channel layer. J. Appl. Phys.,2005,97:064505.
    51 Ju-II Song, Jae-Soung Park, Howoon Kim, et al. Transparent amorphous indium zinc oxide thin-film transistors fabricated at room temperature. Appl. Phys.Lett.,2007,90:022106.
    52 P. Barquinha, A. Pimentel, A. Marques, et al. Influence of the semiconductor thickness on the electrical properties of transparent TFTs based on indium zinc oxide. J. Non-Cryst. Solids.,2006, 352:1749.
    53 Wantae Lim, Yu-Lin Wang,F.Ren, et al. Indium zinc oxide thin films deposited by sputtering at room temperature. Appl. Surf. Sci.,2008,254:2878.
    54 R. Martins,P. Barquinha, I. Ferreira, et al. Role of order and disorder on the electronic performances of oxide semiconductor thin film transistors.J.Appl.Phys.,2007,101:44505.
    55 B.Yaglioglu, H.Y.Yeom, R. Beresford, et al. High-mobility amorphous In2O3-10 wt%ZnO thin film transistors. Appl. Phys.Lett.,2006,89:062103.
    56 H.Hosono. Recent progress in transparent oxide semiconductors:Materials and device application. Thin Solid Films,2007,515:6000.
    57 Hamberg I, Granqvist C G. Evaporated Sn-doped In2O3 films:basic optical properties and applications to energy-efficient windows. J.Appl.Phys.,1986,60:R123.
    58 Sivaramasubramaniam R, Muhamad MR, Radhakrishna S.Optical-properties of annealed tin(Ⅱ) oxide in different ambients.Physica status solidi A.1993,136:215.
    59 Natsume Y, Sakata H.Zinc oxide films prepared by sol-gel spin-coating. Thin Solid Films. 2000,372:30.
    60 Hamberg I, Granqvist C G. Evaporated Sn-doped In2O3 films:basic optical properties and applications to energy-efficient windows. J.Appl.Phys.,1986,60:R123.
    61 H.Takahashi, H.Nagata, H. Kataoka, et al. Formation of stress reduced silicon oxide films by Ar/H2 sputtering method. J.Appl. Phys.,1994,75:2667.
    62 E. Welsch, H.G.Walther, D.Schafer, et al. Correlation between morphology, optical losses and laser damage of MgF2-Si02 multilayers.Thin Solid Films,1988,156:1.
    63 J.Stone and L.W. Stulz. Reflectance, transmittance, and loss spectra of multilayer Si/SiO2 thin film mirrors and antireflection coatings for 1.5μm.Appl.Opt.,1990,29:583.
    64 S.Robles. E. Yieh and B.C.Nguyen.Moisture resistance of plasma-enhanced chemical-vapor-deposited oxides used for ultralarge scale integrated device applications. J. Electrochem. Sot.,1995,142:580.
    65 R.K. Chanana, R. Dwivedi and S.K. Srivastava. Effect of annealing and plasma precleaning on the electrical properties of N2O/SiH4 PECVD oxide as gate material in MOSFETs and CCDs. Solid-State Electron.,1993,36:1021.
    66 Mehrdad M.Moslehi, Steven C. Shatas, and Krishna C. Saraswat. Thin SiO2 insulators grown by rapid thermal oxidation of silicon. Appl. Phys.Lett.,1985,47:1353.
    67 Y.L. Chiou, C.H.Sow, G. Li, et al. Growth characteristics of silicon dioxide produced by rapid thermal oxidation processes.Appl.Phys.Lett.,1990,57:881.
    68 Wen-Fa Wu, Bi-Shiou Chiou. Properties of radio frequency magnetron sputtered silicon dioxide films. Appl.Sunf.Sci.,1996,99:237.
    69 Serikawa T, Shirai S.Ultra-thin silicon-oxide films by sputter-deposition and their application to high-quality poly-Si TFTS.Vaccum,1998,51:781.
    70 Takaomi M, Tatsuya A, Liu C,et al. Deposition of SiO2 films by low-energy ion-beam induced chemical vapor deposition using hexamethyldisiloxane. Surface and Coatings Technology,2004,(177-178):365.
    71 M. I. Alayo,I.Pereyra, M.N.P.Carreno:Thick SiOxNy and SiO2 films obtained by PECVD technique at low temperatures.Thin Solid Films,2003,435:161.
    72白钰,刘向,陈玲,et al.二氧化硅栅绝缘层的制备与表面修饰.无机化学学报,2007,23:2028.
    73 Ralland A, Richard J, Kleider J P, et al. Electrical Properties of amorphous silicon transistors and misdevices:comparative study of top nitride and bottom nitride configurations. Journal of the Electrochemical Society,1993,140:3679.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700