直接发白光的有机/无机杂化半导体材料研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
白光LED直接将电转换为光,比传统光源具有更高的转换效率,有助于节约能源,减少CO2的排放,且因具有寿命长、体积小、反应快、耐冲击的优异性能而被看成是继白炽灯、荧光灯和高压气体放电灯之后第四代照明光源。Ⅱ-Ⅵ有机/无机杂化半导体综合了有机物和无机半导体的优点,具有良好的传输特性和高载流子迁移率。本论文采用溶剂热法制备出2D-[Zn_2S_2(ha)],在此基础上通过分别掺杂Cd,Se以及Cd和Se共掺杂,制备出一系列光学和电子性能可调节的Ⅱ-Ⅵ有机/无机杂化半导体,再将此材料应用于紫光LED,制备出直接发白光的LED。旨在利用Ⅱ-Ⅵ有机/无机杂化半导体良好的传输特性和高载流子迁移率克服目前制备白光LED的缺点,同时将Ⅱ-Ⅵ有机/无机杂化半导体的研究上升到应用阶段。
     以ZnCl_2,S等为无机原料,正己胺为溶剂,采用溶剂热法制备出2D-[Zn_2S_2(ha)]及Cd和Se共掺杂的产物。考察制备工艺条件如反应时间、温度、有机物与无机物的配比等对其结构和性能的影响,确定50 ml反应釜中合成的适宜工艺条件为:温度120℃,反应时间2天,正己胺(ha)6 ml。最佳Cd和Se的单独掺杂含量分别为15 mol%和10 mol%;固定Cd含量为20 mol%和25 mol%时的最佳Se的掺杂含量分别为15 mol%和10mol %。
     通过XRD,UV-vis和荧光等手段分别对2D-[Zn_2S_2(ha)]及其掺杂产物进行结构和光学性能的表征。结果表明,各产物属于同种二维结构,通过改变掺杂的组成和含量可系统调节其光学性能。掺杂后band gap最大减小1.3 eV,荧光发光范围增大至380 -700 nm,荧光强度最大增大167.29 %,较2D-[Cd_2S_2(ha)]杂化材料大大增强。在450℃下煅烧30分钟之后产物二维层状结构被破坏,band gap减小,荧光强度急剧下降。
White LED (Light-emitting diodes) convert electricity to light much more effectively than conventional lighting sources. They contribute to energy conservation and reduction of green house gases and offer a cleaner environment. Additionally, with the excellent performance such as long lifetime, small size, fast response and impact resistance, they have been considered to be the fourth illumination source after incandescent lamp, fluorescent lamp and gas discharge lamp.Ⅱ-Ⅵorganic - inorganic hybrid semiconductors combined the advantages of organic compounds and inorganic semiconductors so that they can provide good transmission characteristics and high carrier mobility. With the purpose of overcoming the shortages of current preparation of white LED, simultaneously rising the research ofⅡ-Ⅵorganic - inorganic hybrid semiconductors from foundation to application, 2D-[Zn_2S_2(ha)] has been synthesized through solvothermal reaction in this paper. Through systematically tune its optical properties simply by doping Cd and Se respectively, as well as Cd and Se co-doping, a series ofⅡ-Ⅵorganic - inorganic hybrid semiconductors that can emit direct white light have been used to produce white light LED successfully.
     The influence of preparation conditions such as reaction time, temperature, the ratio of organic and inorganic materials on the structure and properties was investigated. The optimal conditions for synthesis in 50 ml vessel are as follows: temperature 120℃, reaction time 2 days, solvent volume (ha) 6 ml. The best Cd and Se content of individual doping are 15 mol% and 10 mol% respectively, and 10 mol% Se is appropriate in 20 mol% Cd doping materials, while 15 mol% is the best doping content of Se in 25 mol% Cd doping materials.
     Structural and optical properties were characterized by XRD, UV-vis and fluorescence. The results showed that all products belong to the same kind of two-dimensional structure, and by changing the composition and doping level can systematically tune their optical properties. Band gap decreased after doping, and the largest decrease of 1.3 eV with 25 mol% Cd doping. Fluorescence intensity and luminous range increased at first, then decreased when increasing the doping level. The largest fluorescence intensity and luminous range occurred at 15 mol% Cd doping material, which is more larger than 2D-[Cd_2S_2(ha)].
     After annealing at 450℃for 30 minutes, the product structures were destroyed, band gap decreased, and the fluorescence intensity dropped drastically.
引文
[1]Wei Z.G.; Sun L.D.; Liao C.S, et al. Size dependence of luminescent properties for hexagonal YBO3 : Eu nanocrystals in the vacuum ultraviolet region [J]. J. Appl. Phys. 2003, 93(12): 9783 - 9788
    [2]Mueller A.H.; Petruska M.A.; Achermann M, et al. Multicolor light - emitting diodes based on semiconductor nanocrystals encapsulated in GaN charge injection layers [J]. Nanoletters. 2005, 5 (6):1039 - 1044
    [3]Vetrone F.; Boyer J.C.; Capobianco J.A, et al. Significance of Yb3+ concentration on the upconversion mecha-nisms in codoped Y2O3 : Er3+, Yb3+ nanocrystals [J]. J. Appl. Phys. 2004, 96(1): 661 - 667
    [4]Nick H.J.; Bevacqua S.F. Coherent(visible) light emission from Ga(As1?xPx) junctions [J]. Appl. Phys. Lett. 1962, 1(4): 82 - 83
    [5]Zhang L.; Guo X.; Liang T, et al. Color rendering and luminous efficacy of trichromatic and tetrachromatic LED-based white LEDs [J]. Microelectronics Journal. 2007, 38(1): 1 - 6
    [6]崔元日;潘苏予.第四代光源照明-白光LED [J].灯与照明. 2004, 28(2): 31 - 35
    [7]Huang X.Y.; Li J.; Fu H. The first covalent organic-inorganic networks of hybrid chalcogenides: structures that may lead to a new type of quantum wells [J]. J. Am. Chem. Soc. 2000, 122: 8789 - 8790
    [8]Huang X.Y.; Li J. From single to multiple atomic layers: a unique approach to the systematic tuning of structures and properties of inorganic organic hybrid nanostructured semiconductors [J]. J. Am. Chem. Soc. 2007, 129: 3157 - 3162
    [9]Zhang Y.; Islam Z.; Li J. Zero thermal expansion in a nanostructured inorganic-organic hybrid crystal [J]. Phy. Rev. Lett. 2007, 99: 21590- 1 - 4
    [10]Yao W.T.; Yu S.H.; Pan L, et al. Flexible wurtzite-type ZnS nanobelts with quantum-size effects: a diethylenetriamine-assisted solvothermal approach [J]. Small. 2005, 1: 320 - 325
    [11]Heulings H.R.; Huang X.Y.; Li J, et al. Mn-substituted inorganic - organic hybrid materials based on ZnSe: nanostructures that may lead to magnetic semiconductors with a strong quantum confinement effect [J]. Nano. Lett. 2001, 1: 521 - 525
    [12]Huang X.Y.; Heulings H.R.; Li J, et al. Inorganic-organic hybrid composites containing MQ (Ⅱ-Ⅵ) slabs: a new class of nanostructures with strong quantum confinement and periodic arrangement [J]. Chem. Mater. 2001, 13: 3754 - 3759
    [13]Huang X.Y.; Li J. [ZnSe(ba)(1/2)] and [ZnSe(hda)(1/2)]: Two new members of inorganic - organic hybrid semiconductor nanocomposites exhibiting a strong quantum confinementeffect [J]. Mater. Res. Soc. Symp. Proc. 2002, 728: 17 - 22
    [14]Huang X.Y.; Li J.; Zhang, Y, et al. From 1D chain to 3D network: tuning hybrid II-VI nanostructures and their optical properties [J]. J. Am. Chem. Soc. 2003, 125: 7049 - 7055
    [15]Yu S.H.; Yoshimura M. Shape and phase control of ZnS nanocrystals: templat fabrication of wurtzite ZnS single-crystal nanosheets and ZnO flake-like dendrites from a lamellarmolecular precursor ZnS.(NH2CH2CH2NH2)0.5 [J]. Adv. Mater. 2002, 14: 296-300
    [16]Li J.; Bi W.H. Nanostructured crystals: unique hybrid semiconductors exhibiting nearly zero and tunable uniaxial thermal expansion behavior [J]. J. Am. Chem. Soc. 2007, 129: 14140 - 14141
    [17]Wooseok Ki.; Li J. A semiconductor bulk material that emits direct white light [J]. J. Am. Chem. Soc. 2008, 130:8114 - 8115
    [18]乐阳;孙艳;陈鑫,等.基于Ⅱ-Ⅵ族半导体量子点的白光LED的研究进展[J].红外. 2010, 31(2): 8 - 13
    [19]Uchida Y.; Kobashi K.; Taguchi T. Lighting theory and luminous characteristics of white light-emitting diodes [J]. Opt. Energy. 2005, (44): 124003 - 1 - 4
    [20]谢平.功率型白光LED的实现及应用[J].灯与照明. 2008, 32(1): 8 - 10
    [21]Nakamura S; Senoh M; Mukai T, et al. Candela-class high-brightness InGaN/AlGaN double - heterostructure blue - light - emitting diodes [J]. J. Appl. Phys. Lett. 1994, 64(13): 1687 - 1689
    [22]Nakamura S; Fasol G. The blue laser diode, GaN based light emitters and lasers [J]. Springer.1997, 216 - 218
    [23]吴洪鹏;严鲁婷.白光LED用钼酸盐体系红色荧光粉的研究进展[J].稀土金属材料与工程. 2009, 38(11): 2065 - 2068
    [24]谢安;袁曦明;王娟娟,等.白光用红色荧光粉LiEu1-xYx(WO4)0.5(MoO4)1.5的制备及其发光性能研究[J].中国科学E辑:技术科学. 2009, 39(6): 1063 - 1068
    [25]Yang W.J.; Luo L.; Chen T.M, et al. Luminescence and energy transfer of Eu and Mn coactivated CaAl2Si2O8 as a potential phosphor for white-light UVLED [J]. Chem. Mater. 2005, 17: 3883 - 3888
    [26]Liu J.; Lian H.Z.; Shi C.S. Improved optical photoluminescence by charge compensation in the phosphor system CaMoO4: Eu3+ [J]. Opt. Material. 2007, 29(12): 1591 - 1594
    [27]Han Y. The fabrication and properties of red phosphors used for white LED [D]. Tianjin: Hebei University, 2006
    [28]Guo C.F.; Zhang W.; Luan L, et al. A promising red-emitting phosphor for white lightemitting diodes prepared by sol - gel method[J]. Sensors and Actuators B [J]. 2008, 133(1): 33 - 39
    [29]Yang Z.P.; Wang S.L.; Yang G.W, et al. Luminescent properties of Ca2BO3Cl:Eu2+ yellow - emitting phosphor for white light- emitting diodes [J]. Materials Letters. 2007, 61(30): 5258 - 5260.
    [30]Sakuma K.; Omichi K.; Kimura N, et al. Warm-white light-emitting diode with yellowish orange SiAlON ceramic phosphor[J]. Opt. Lett. 2004, 29(17): 2001 - 2003.
    [31]Liu H.L.; He D.W.; Shen F. Luminescence properties of green - emitting phosphor (Ba1- xSrx)2SiO4:Eu2 + for white LEDs [J]. Journal of Rare Earths. 2006, 24: 121 - 124.
    [32]Rogach A.L.; Gaponik N.; Lupton J.M. Light-emitting diodes with semiconductor nanocrystals [J]. Angewandte Chemie International Edition, 2008, 47(35): 6538 - 6549
    [33]Dabbousi B.O.; Mikulec F.V.; Heine J.R; et al. (CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites [J]. J. Phys. Chem. B, 1997, 101(43): 9463 - 9475
    [34]Talapin D.V.; Rogach A.L.; Kornowski A; et al. Highly luminescent monodisperse CdSe and CdSe/ZnS nanocrystals synthesized in a hexadecylamine - trioctylphosphine oxide - trioctylphospine mixture [J]. Nano Lett. 2001, 1(4): 207 - 211
    [35]Colvin V.L.; Schlamp M.C.; Alivisatos A.P. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer [J]. Nature, 1994, 370(6488): 354 - 357
    [36]Bol A.A.; Meijerink A. Luminescence of nanocrystalline ZnS: Pb2+ [J]. Phys. Chem. Chem. Phys. 2001, 3(17): 2105 - 2112
    [37]Li J.J.; Wang Y.A.; Guo W.Z. Large-scale synthesis of nearly monodisperse CdSe/CdS core / shell nanocrystals using air - stable reagents via successive ion layer adsorption and reaction [J]. J. Am. Chem. Soc. 2003, 125(41): 12567 - 12575
    [38]Cheah K.W.; Xu L.; Huang X.F. White light luminescence from nano - ZnS doped porous silicon [J]. Nanotechnology. 2002, 13(2): 238 - 242
    [39]Chen H.S.; Wang S.J. White-light emission from organics-capped ZnSe quantum dots and application in white-light-emitting diodes [J]. Appl. Phys. Lett. 2005, 86(13): 131905-1-3
    [40]Li Y.Q.; Rizzo A.; Cingolani R. bright white - light - emitting device from ternary nanocrystal composites [J]. Adv. Mater. 2006, 18(9): 2545 - 2548
    [41]Anikeeva P.O.; Halpert J.E.; Bawendi M.J. Electroluminescence from a mixed red - green - blue colloidal quantum dot monolayer [J]. Nano Lett. 2007, 7(8): 2196 - 2200
    [42]Niu Y.H.; Munro A.M.; Cheng Y.J, et al. Improved performance from multilayer quantumdot light - emitting diodes via thermal annealing of th equantum dot layer [J]. Adv. Mater. 2007, 19(20): 3371 - 3376
    [43]Bowers M.J.; Bride J.R.; Rosenthal S. White-light emission from magic-sized cadmium selinide nanocrystala [J]. J. Am. Chem. Soc. 2005, 127: 15378 - 15379
    [44]Sapra B.S.; Mayilo S.; Thomas A, et al. Bright white-light emission from semiconductor nanocrystals: by chance and by design [J]. Adv. Mater. 2007, 19(4): 569 - 572
    [45]Fu H.X; Li J. Density-functional study of organic - inorganic hybrid single crystal ZnSe(C2H8N2)0.5 [J]. J. Chem. Phys. 2004, 120(14): 6721 - 6725
    [46]Huang X.Y.; Li J. Electronic properties of hybrid organic - inorganic semiconductors [J]. Phs. Rev. B. 2004, 70: 205308 -1 - 5
    [47]Huang X.Y.; Heulings H.R.; Li J, et al. Towards dilute magnetic semiconductors: Fe and Co substituted inorganic - organic hybrid materials based on ZnSe [J]. Nanosci. Nanotech. 2005, 5: 1487 - 1491
    [48]Moon C.Y.; Dalpian G.M.; Zhang Y, et al. Study of phase selectivity of organic - inorganic hybrid semiconductors [J]. Chem. Mater. 2006, 18: 2805 - 2809
    [49]Yaghi O.M.; Li H.; Davis C, et al. Synthetic strategies, structure ptterns, and emerging properties in the chemistry of modular porous solids [J]. Chem. Res. 1998, 31: 474 - 484
    [50]Batten S.R.; Robson R. Interpenetrating nets: ordered, periodic entanglement [J]. Angew Chem, Int. Ed. 1998, 37(11): 1460 - 1494
    [51]Wise D.L.; Cooper T.M.; Gresser J.D, et al. Photonic polymer systerms: fundamengtals, methods, and applications [M]: New York: Marcel. Dekker. Press, 1998
    [52]O’Keeffe M.; Eddaoudi M.; Li H, et al. Frameworks for extended solids: geometrical design principles [J]. J. Solid. State. Chem. 2000, 152: 3 - 20
    [53]Brown A.R.; Pomp A.; Hart C.M, et al. Logic gates made from polymer transistors and their use in ring oscillators [J]. Science. 1995, 270(5238): 972 - 974
    [54]Alivisatos A. P. Semiconductor clusters, nanocrystals, and quantum dots [J]. Science. 1996, 271(5251): 933 - 937
    [55]Murray C.B.; Kagan C.R.; Bawendi M.G. Self-organization of CdSe nanocrystallites into three-dimensional quantum dot superlattices[J]. Science. 1995, 270: 1335 - 1338
    [56]Murray C.B.; Norris D.J.; Bawendi M.G. Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites [J]. J. Am. Chem. Soc. 1993, 115: 8706 - 8715
    [57]Trindad T.; O’Brien P.; Picket N.L. Nanocrystalline semiconductors: synthesis, properties and perspectives [J]. Chem. Mater. 2001, 13: 3843 - 3858
    [58]Micic O.I.; Cheong, H.M.; Fu H, et al. Size-dependent spectroscopy of InP quantum dots[J]. J. Phys. Chem. B. 1997, 101: 4904 - 4912
    [59]Yang H.; Santra S.; Holloway P. H. J. Syntheses and applications of Mn-doped II-VI semiconductor nanocrystals [J]. Nanosci. & Nanotech. 2005, 5: 1364 - 1375
    [60]Kumar S.; Nann T. Shape control of II-VI semiconductor nanomaterials [J]. Small. 2006, 2: 316 - 329
    [61]Sze S.M. Semiconductor devices: physics and technology [M]. 2nd. New York: Wiley, 2001
    [62]Ng K.K. Complete guide to semiconductor devices [M]. 2nd. New York: Wiley-IEEE, 2002
    [63]Singh J. Semiconductor optoelectronics: physics and technology [M]. New York : McGraw - Hill, 1995
    [64]Neumark G.F.; Park R.M.; Depuydt J.M. Blue - green diode lasers [J]. Phys. Today, 1994, 47(6): 26 - 32
    [65]McClean I.P.; Thomas C.B. Photoluminescence study of MBE - grown films on ZnS [J]. Semicond. Sci.Technol. 1992, 7: 1394 - 1396
    [66]Fiederling R.; Keim M.; Reuscher G, et al. Injection and detection of a spin - polarized current in a light-emitting diode [J]. Nature. 1999, 402: 787 - 789
    [67]Ohno Y.; Young D.K.; Beschoten B, et al. Electrical spin injection in a ferromagnetic semiconductor heterostructure [J]. Nature. 1999, 402: 790 - 792
    [68]Dietl T.; Ohno H.; Matsukura F, et al. Zener model description of ferromagnetism in Zinc - blende magnetic semiconductors [J]. Science. 2000, 287(5455): 1019 - 1022
    [69]Huang X.Y.; Li J. [ZnSe(dbn)1/2] and [ZnSe(hda)1/2]: Two new members of inorganic-organic hybrid semiconductor nanocomposites exhibiting strong quantum confinement effect [J]. Functional Nanostructured Materials through Multiscale Assembly and Novel Patterning Techniques. 2002, 728: 17 - 22.
    [70]Li Y.; Liao H.; Ding Y, et al. Nonaqueous synthesis of CdS banorod semiconductor [J]. Chem. Mater. 1998, 10: 2301-2303
    [71]Li Y.; Liao H.; Ding Y, et al. Solvothermal elemental direct reaction to CdE (E) S, Se, Te) semiconductor nanorod [J]. Inorg. Chem. 1999, 38: 1382 - 1387
    [72]Liu Y.; Xu Y. Selective synthesis of wurtzite CdSe nanorods and zinc blend CdSe nanoparticals through solvothermal [J]. Chem. Lett. 2004, 33: 1162 - 1163
    [73]Li J.; Hong X.; Li D, et al. Mixed ligand system of cysteine and thioglycolic acid assisting in the synthesis of highly luminescent water-soluble CdTe nanorods [J].Chem. Commun. 2004, 1740 - 1741
    [74]Yao W.T.; Yu S.H; Li J, et al. Nanocrystals of an inorganic - organic hybrid semiconductor: formation of uniform nanobelts of [ZnSe] (Diethylenetriamine)0.5 in a ternary solution [J]. Adv. Mater. 2005, 17: 2799 - 2802
    [75]Mueller A.H.; Petruska M.A.; Achermann M, et al. Multicolor light-emitting diodes based on semiconductor nanocrystals encapsulated in GaN charge injection layers [J]. Nano Lett. 2005, 5: 1039 - 1044
    [76]陈国珍;黄贤智;许金钧,等.荧光分析法[M].第二版.北京:科学出版社, 1990
    [77]WOOSEOK KI. Synthesis, characterization and film fabrication of inorganic and hybrid semiconductor materials for optoelectronic applications [D]. New Jersey: New Brunswick Rutgers, The State University, 2008
    [78]陈国珍;黄贤智;刘文远,等.紫外-可见分光光度法[M].上册.北京:原子能出版社, 1987

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700