德阳市水污染物及其总量控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会经济的持续发展,环境问题不断突出,水环境作为其重要组成部分,污染最为严重。水污染物及其总量控制已成为维持社会发展、生态平衡的重要研究课题。本文在国内外研究现状的基础上,结合德阳市水环境的特点及污染物现状,制定出适合德阳市水环境系统的水质评价、污染源分析、水环境容量核算、水污染物总量控制与分配的方法,形成了注重理论性和实践性的方法体系。
     首先,在对德阳市水环境特征分析的基础上,应用模糊综合评价法进行了水质现状评价,结果显示:全市5条河流共20个监测断面中满足Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ、劣Ⅴ类水质标准的断面比例分别为10%、5%、50%、5%、20%、10%;采用等标污染负荷法对主要污染源进行了评价,明确了水环境的主要污染物为BOD5和COD,其等标污染负荷比分别为40.65%和29.33%。
     其次,进行了水环境容量的分析。其测算结果表明:德阳市主要河流COD环境容量为11781吨/年,氨氮水环境容量为791.1吨/年;旌阳区、什邡市、中江县的水环境容量较小,绵竹市和罗江县的水环境容量较大。
     第三,结合公平性和效益型原则,在水污染物总量控制和分配中引入了环境基尼系数的概念。针对近、长期总量控制分别确定了区域和行业总量分配评价指标。
     在区域总量分配中,当COD作为水污染物时,公平性大小依次为:GDP-COD环境基尼系数(0.1509)>人口-COD环境基尼系数(0.2070)>环境容量-COD环境基尼系数(0.2886);当氨氮作为水污染物时,GDP-氨氮环境基尼系数(0.2293)>环境容量-氨氮环境基尼系数(0.2689)>人口-氨氮环境基尼系数(0.3188)。
     在行业总量分配中,当COD作为水污染物时,公平性大小依次为:新鲜用水量-COD环境基尼系数(0.1759)>工业总产值-COD环境基尼系数(0.4149);当氨氮作为水污染物时,新鲜用水量-氨氮环境基尼系数(0.3856)>工业总产值-氨氮环境基尼系数(0.4018)。
     文中对总量控制初始分配方案进行了优化,结果表明:在区域总量优化分配中,优化后各指标的基尼系数更为合理和公平;在行业总量分配,建立了水污染物总量行业优化分配模型,并用MATLAB进行模型优化求解,COD排放总量削减了82.65%,新鲜用水量削减了29.15%,同时各行业的工业总产值之和增加了112.63%,使水资源量、污染物水环境容量重新得到优化分配,社会布局和行业结构更加合理协调。
With the sustainable development of society and economy, environmental problem had been prominent continuously, and water environment was an important component of which, the pollution problem was the most serious. The water pollutants and its total amount control had become an important research field in keeping the balance of environment and sustainable development of the society. Aiming at the limitation of the existed researches,both at home and abroad, this paper,combining with the characteristics of the water environment and pollution status in Deyang city, a new method was proposed for water quality evaluation,pollution source analysis,water environment capacity calculation,total amount control and distribution of the water pollution. As a result,a theoretical ,practicable method system for water pollutants and its total amount control was established.
     Firstly, based on the characteristics of water environment,the fuzzy mathematical evaluation method was introduced to the water quality evaluation ,and the results showed: 5 rivers, with a total of 20 monitoring sections to meet theⅠ,Ⅱ,Ⅲ,Ⅳ,Ⅴ, inferiorⅤwater quality standard , the section rate was 10%, 5%, 50%, 5%, 20%, 10% separately;The equal-standard waste load method was used to evaluate the main sources of pollution,also the major pollutants BOD5 and COD were made clear,with the equal-standard waste load ratio was 40.65% and 29.33% respectively.
     Secondly, the water environmental capacity was analysed. The measurement results showed that: COD water environmental capacity of the main rivers was 11,781 tons / year in Deyang city ,and NH3-N water environmental capacity was 791.1 tons / year; In Jingyang area, Shifang city and Zhongjiang county ,the water environmental capacity was relativelty small, however,in Mianzhu city and Luojiang county,the water environmental capacity was relatively large.
     Thirdly,combined with the equity and efficiency principle, a new conception of environmental Gini coefficient was introduced to total amount control and allocation for the water pollutants. Aiming at the near and long-term total amount control, the total evaluation index of regional and industry allocation were determined respectively.
     In the regional total amount allocation, when the COD was the water pollution, the size of fairness was in sequence of: GDP-COD environmental Gini coefficient (0.1509)> Population-COD environmental Gini coefficient (0.2070)> environmental capacity-COD environmental Gini coefficient (0.2886); when the NH3-N was the water pollution, the size of fairness was in sequence of: GDP- NH3-N environment Gini coefficient (0.2293)> Environmental Capacity - NH3-N environmental Gini coefficient (0.2689)> Population - NH3-N environment Gini coefficient (0.3188).
     In the industry total amount allocation, when the COD was the water pollution, the size of fairness was in sequence of: Fresh water-COD environmental Gini coefficient (0.1759)> Gross industrial output value -COD environmental Gini coefficient (0.4149); when the NH3-N was the water pollution, the size of fairness was in sequence of: Fresh water - NH3-N environment Gini coefficient (0.3856)> Gross industrial output value - NH3-N environment Gini coefficient (0.4018).
     In this paper, the initial total amount allocation program had been optimized,and the results showed that:in the optimization of regional total amount allocation, the Gini coefficient of the indexes optimized were more reasonable and fair; In the optimization of industry total amount allocation, the optimizing allocation model of the industry total amount was built. COD and fresh water emissions had reduced 82.65% and 29.15% respectively, while the gross industrial output value of the industry had increased 112.63%. Water resources and pollutant environmental capacities allocation were re-optimized , with more reasonable and coordinated between the social distribution and industry structure.
引文
[1]国家环境保护局.中国环境保护21世纪议程[M].中国环境科学出版社,2003.
    [2]吴凤鸣.水资源现状及其战略意义[J].科学新闻,2001,12(47):22-24.
    [3]国家环境保护总局.2007年全国环境质量状况公告[R].2007.
    [4]德阳市环保局.德阳市创建四川省环保模范城市规划[R].2006.
    [5]杨文龙,杨常亮.滇池水环境容量模型研究及容量计算结果[J].云南环境科学,2002,11(3):5-8.
    [6]田卫,俞穆清,朱显梅,王宏.浑江吉林省段水环境容量及其在总量控制中的利用研究[J]东北师大学报(自然科学版), 2003,12(4):43-44.
    [7]中国环境规划院.全国水环境容量核定技术指南[M].中国环境科学出版社,2003.
    [8]方子云,邹家祥,昊贻名.环境水利学导论[M].中国环境科学出版社,1994.
    [9]关卉.湛江市水环境容量分析与应用[M].北京:中国环境科学出版社,2005.
    [10]中国环境规划院.全国水环境容量核定技术指南[D].中国环境科学出版社, 2008, 12 (4):45-50.
    [11]刘红玲.胶东半岛主要河流水环境容量及其应用研究[D].山东师范大学,2008.
    [12]曹刚.河流水环境容量价值研究[D].西安理工大学,2004.
    [13]王素娜.曹娥江支流水质评价与河流水系环境容量分析[D].浙江大学2005.
    [14]中国水利水电科学研究院.面向生态经济建设的西北水资源合理配置模式[J].中国水利, 2004, 1(4):17-18.
    [15]安彪.汾河太原城区段水环境容量的研究[D].太原理工大学硕士研究生学位论文2006.
    [16]唐献力.富阳市水环境容量价值研究[D].浙江大学硕士学位论文,2005.
    [17]汤一凡.乐山市水环境容量研究[D].西南交通大学硕士学位论文,2007.
    [18]徐进.大沽河干流青岛段水污染物总量控制研究[D].中国海洋大学硕士学位论文,2004.
    [19] Revelle C.S.,Loucks D.P.,Lynn W.R..Linear Programming Applied to Water Quality Management[J].Water Resource Research,2007,4(1):l-9.
    [20] Thomann R.V.,and Sobel M.S..Estuarine Water Quality Management and Forecasting[J]. Sanitary Engineering Division,ASCE,2002,89(SA5):9-36.
    [21] Lohani B.N.,Thanh N.C..Probabilistic water quality control polices[J].Environmental Eneineering Division,2001,105(EE4):713-725.
    [22] Ecker J.G..A Geometric Programming Model for Optimal Allocation of Stream Dissolved Oxygen[J].Management Science,2004,21(6):658-668.
    [23] Scherer,Charles R..On the Efficient Allocation of Environmental Assimilative Capacity:The Case of Thermal Emissions to A Large Body of Water[J].Water Resource Research,2005,11(1):180-181.
    [24] Cairns,John Jr..Matching Heated Waste Water Discharges to Environmental Assimilative Capacity[J].Symp on Energy Prod and Therm Eff,Proc,Oak Brook, IL,USA, 2003, 10 (2):10-11.
    [25] Loucks D.P.,Revelle C.S.,Lynn W.R..Management Models for Water Quality Contral[J]. Management Science,2001,14(4):166-181.
    [26] Liebman J.C.,Lynn W.R..The Optimal Allocation of Stream Dissolved Oxygen[J].Water Resource Research,2003,2(3):581-591.
    [27] Ecker J.G..A Geometric Programming Model for Optimal Allocation of Stream Dissolved Oxygen[J].Management Science,2005,21(6):658-668.
    [28] Lohani B.N.,Thanh N.C..Probabilistic water quality control polices[J].Environmental Eneineering Division,1999,105(EE4):713-725.
    [29] Fujiwara O.,Gnanendran S.K.,Ohgaki S..River quality management under stochastic streamflow[J].Journal of Environmental Engineering,2006,112(2):185-198.
    [30]张永良,洪继华,夏青等.我国水环境容量研究与展望[J].环境科学研究,2004, 1 (1):73-81.
    [31]雷丹妮.小流域地表水环境容量计算方法与利用研究[D].四川大学,2006.
    [32]金相灿,张玉清等.湘江重金属迁移转化模型研究[J].中国环境科学,2001,6:10-15.
    [33]赵淑梅,郑西来,李玲玲等.青岛小珠山水库水环境容量研究[J].中国海洋大学报,2006, 36(6):93-97.
    [34]徐贵泉,褚君达,吴祖扬等.感潮河网水环境容量影响因素研究[J].水科学进展,2000, 11 (4):375-380.
    [35]周孝德,郭瑾珑,程文等.水环境容量计算方法研究[J],西安理工大学学报,2003,15 (3):1-6.
    [36]刘兰芬,张祥伟,夏军.河流水环境容量预测方法研究[J].水利学报,2000,7(4):16-20.
    [37]孙卫红,姚国金,逢勇.基于不均匀系数的水环境容量计算方法探讨[J].水资源保护,2001, 2:25-26.
    [38]慕金波,酒济明.广利河感潮段水环境容量研究[J].山东科学,2007,10(3):53-58.
    [39]李适宇,李耀初,陈炳禄等.分区达标控制法求解海域环境容量[J].环境科学,2001,20(4):96-99.
    [40]傅国伟.水污染物总量的分配原则与方法[M].北京:科学出版社,2005.
    [41]郭希利,李文岐.总量控制方法类型及分配原则[J].中国环境管理,2003(5):47-48.
    [42]曹燕.实施污染物排放总量控制探讨[J].云南环境科学,2001,20(2):34-35.
    [43]郭志慧.河网面源污染计算方法及太湖湖西入湖河道污染物总量控制研究[D].河海大学硕士学位论文,2004.
    [44]赵显波,雷晓云,沈志伟,刘振平.蘑菇湖水库水环境容量总量控制研究[J].灌溉排水学报, 2007,2(2):41-43.
    [45]徐树媛.晋城市水资源保护规划与污染物总量控制研究[D].中国优秀博硕士学位论文全文数据库(硕士),2006.
    [46]黄虹,张世喜,陈新庚.污染物总量控制研究动态与趋势分析[J].中山大学研究生学刊(自然科学与医学版),2004,25(1):23-30.
    [47]李开明,陈铣成.东莞运河水环境容量优化研究[J].环境科学研究,2001,4(5):13-15.
    [48]胡康萍,许振成.水体污染物允许排放总量分配方法研究[J].中国环境科学,2003,11(6):447-451.
    [49]刘文祥,李喜俊,郭海燕,新疆博斯滕湖水环境容量研究,环境科学研究,2000,12(1):35-38.
    [50]林巍,傅国伟,刘春华.基于公理体系的排污总量公平分配模型[J].环境科学,2000,17(3):35-37.
    [51]吴伟,陈功玉,王烷尘等.环境污染问题的博弈分析[J].系统工程理论与实践,2001,12 (10):115-119.
    [52]毛战坡,李怀恩,总量控制中消减污染物合理分摊问题的求解方法,西北水资源与水工程,1999,10(1):25-30.
    [53]冯金鹏,吴洪寿,赵帆.水环境污染总量控制回顾、现状及发展探讨[J].南水北调与水利科技,2004,2(1):45-47.
    [54]傅国伟,冲突分析理论方法及其在环境管理中的实例研究,中国环境科学,2003,16(2):143-147.
    [55]包存宽,李彬,尚金城.水污染控制模式选择的研究[J].东北师大学报(自然科学版),1997, 1(2):110-115.
    [56]德阳市环保局.德阳市城市规划区水文地质、环境地质综合勘测报告[R].2007.
    [57]德阳市人民政府.德阳市城市规划说明书2001-2020年[R].2007.
    [58]水环境保护与管理文集[C].郑州:黄河水利出版社,2002.
    [59]曾永,樊引琴,王丽伟,等.水质模糊综合评价法与单因子指数评价法比较[J].人民黄河, 2007,29(2):45-65.
    [60]仲少云,王庆,金乘福.模糊综合评判法在芝罘湾水质评价中的应用[J].海洋湖沼通报, 2007,15(2):57-61.
    [61]张颖,王志宏.水环境质量评价的模糊识别方法[J].四川环境.2005,24(5):52-53.
    [62]王杰.污染源的调查分析评价[J].内蒙古科技与经济,2009,3(1):47-49.
    [63]孙亚梅,钟定胜,张宏伟,刘树庆,马骅.用单位产值等标污染负荷法评价区域工业污染源[J].天津大学学报(社会科学版),2007,13(2):11-13.
    [64]钟定胜,张宏伟.等标污染负荷法评价污染源对水环境的影响[J].中国给水排水,2005, 23 (5):12-13.
    [65]骆兰,黄法苏.贵州省水功能区划及其特点[J].贵州科学,2007,(1):24-27.
    [66]郭劲松,李胜海,龙腾锐.水质模型及其应用研究进展[J].重庆建筑大学学报,2002,24(2):109-115.
    [67] Seok Soon Park, Yong Seok Lee. A water quality modeling study of the Nakdong River, Korea[J].Ecological Modelling.2002,152:65-75.
    [68]姜云超,南忠仁.水质数学模型的研究进展及存在的问题[J].兰州大学学报(自然科学版), 2008,(5):34-36.
    [69]杨丽芳.淮南市地表水环境容量研究[D].安徽理工大学,2007.
    [70]韩龙喜,朱党生,蒋莉华.中小型河道纳污能力计算方法研究[J].河海大学学报(自然科学版), 2002,30(1):40-43.
    [71]刘英男,沈晶,周瑞岩.本溪市太子河水环境容量计算研究[J].辽宁城乡环境科技,2005,10(5):6-8.
    [72]国家环境保护总局.地表水环境容量核定技术报告编制大纲[R].2007.
    [73]德阳市环保局.德阳市河流水质评价及污染防治对策研究报告[R].2008.
    [74] Allen V Kneese, Blair T Bower. Environmental Quality and Residuals Management[D]. Resources for the Future,2003.
    [75]李静怡.引滦入津工程黎河段水质模拟预测研究[D].中国优秀硕士学位论文全文数据库,2007.
    [76]龚若愚,周源岗.柳江柳州段水环境容量研究[J].水资源保护,2001,21(1):56-58.
    [77]郭宏飞等.基于宏观经济优化模型的区域污染负荷分配[J].应用基本与工程科学学报,2003, 11(2):133-142.
    [78]王勤耕,李宗恺,陈志鹏等.总量控制区域排污权的初始分配方法[J].中国环境科学,2000,20 (1):68-72.
    [79]李云生,基于公平性的水污染物总量分配评估方法研究[J],环境科学研究,2006,20(2):66-70.
    [80] CHEN Qizhi, CHEN Jiading.A Note to the Lorenz Curve and Gini Coefficient[J].Acta Scientiarum Naturalium Universitatis Pekinensis,2006,42(5):613-618.
    [81]吴悦颖,李云生,刘伟江.基于公平性的水污染物总量分配评估方法研究[J].环境科学研究, 2006,19(2):66-70.
    [82]徐华君,徐百福.污染物允许排放总量分配的公平协调思路与方法[J].新疆大学学报:自然科学版,1996,13(3):86—89.
    [83] YANG Yufeng,FU Guowei. Total pollution load distribution at national level and the regional diversity[J]. Acta Scientiae Circumstantiae,2001,21(2):129-133.
    [84] Samanta B.Gear fault detection using artificial neural networks andsupport vector machines with genetic algorithms[J].Mechanical Systems andSignal Processing, 2004, 18(3):625-644.
    [85] LI Ru-zhong,QIAN Jia-zhong, WANG Jia-quan..Study on distribution of total amount of drainage water pollutant in a region[J].Journal of Hydraulic Engineering, 2003(5): 112-115,121.
    [86]张立建.基尼系数的快速算法[J].中国统计,2007(12):39-40.
    [87]张玉清.河流功能区水污染容量总量控制的原理和方法[M].中国环境科学出版社.2007.
    [88]谢刚.小流域污染治理综合规划方法与模式研究[D].山东大学硕士学位论文,2006.
    [89]张相如,朱坦.天津市大港石化工业发展规划区区域废水CODcr总量控制实例研究[J].中国环境科学,2005,17(2):123-126.
    [90]德阳市环保局.德阳市主要污染物总量减排技术方案[R].2007.
    [91]周歆昕,程新华,完善水污染物排放标准服务环境管理[J].环境科学与技术,2006, 3 (1):64-66.
    [92]张天柱.水污染排放总量控制管理的经济原则[J].环境科学,1991,3(11):2-6.
    [93]四川省环保局.四川省十一五减排统计体系[R].2007.
    [94]包存宽,尚金城.城市开发区区域污染物总量控制研究[A].见:中国环境科学学会.实施主要污染物总量控制的理论与实践[C].北京:中国环境科学出版社,1996.2(18)314-319.
    [96]祝兴祥,夏青,等.中国的排污许可证制度[M].中国环境科学出版社,1991.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700