超声波—微波联合调控作用对大豆分离蛋白基膜性能影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文是国家高技术研究发展计划(863计划)(编号:2008AA10Z308)、吉林省科技发展计划项目“蛋白质基可食性生物聚合膜智能结构的研究”(编号:20060717)和吉林大学工程仿生教育部重点试验室开放课题“新型包装材料的仿生结构及设计”(编号:K201104)的部分内容。凭借产量丰富、处理简单、廉价易得及其良好的阻气性、优越的成膜性和生物相容性,大豆分离蛋白在可食性包装和保鲜方面有着极大的发展前景。本研究以大豆分离蛋白为主要成膜基材,选用麦麸微晶纤维素、油酸、硬脂酸及纳米二氧化钛等添加物,复合制备了大豆分离蛋白/麦麸纤维膜、大豆分离蛋白/麦麸微晶纤维素膜、大豆分离蛋白/改性麦麸纤维素膜、大豆分离蛋白/油酸/硬脂酸膜、大豆分离蛋白/纳米二氧化钛膜,并分别研究了膜性能。利用超声波-微波联合调控分别对所制备出膜进行改性;采用热分析仪、扫描电镜及傅立叶红外光谱等现代分析手段,系统研究了大豆分离蛋白基膜材料的结构,讨论了共混材料中各组分相互作用的机理。主要内容如下:
     (1)制备大豆分离蛋白膜,以热改性温度和膜液pH为影响因素,对大豆分离蛋白成膜性能,及成膜之后的机械性能、阻水性能和阻气性能为指标,探讨大豆分离蛋白膜制备工艺。利用超声波-微波联合调控作用对其膜液进行改性,以超声波-微波联合调控温度、时间和功率为影响因素,研究其对大豆分离蛋白膜选择透气性能、阻水性能、机械性能、等温吸湿曲线及微观结构的影响。
     (2)采用盐酸水解法制备麦麸微晶纤维素,利用超声波-微波联合调控作用对其进行改性。以超声波-微波联合调控温度、时间和功率为影响因素,以麦麸微晶纤维素的数量平均长度、得率、聚合度、膨胀力和持水力为指标,探究制备改性麦麸微晶纤维素的工艺条件。
     (3)制备大豆分离蛋白/麦麸纤维素膜、大豆分离蛋白/麦麸微晶纤维素膜和大豆分离蛋白/改性麦麸纤维素膜,分别探讨大豆分离蛋白与填充物的比例及填充物的种类对共混膜机械性能、阻水性能、阻气性能和热力学性能影响,并通过扫描电镜及傅立叶红外光谱对其微观结构进行研究,探讨其微观结构与宏观性能关系。
     (4)制备大豆分离蛋白/油酸/硬脂酸膜,分别探讨油酸与硬脂酸的不同比例对共混膜透明度、阻水性能和接触角的影响。运用超声波-微波联合调控作用对具有最优阻水性能的共混膜改性,并探讨调控时间和功率对其阻水性能、接触角和热力学性能的影响,并通过扫描电镜及傅立叶红外光谱对其微观结构进行研究,探讨其微观结构与宏观性能关系。
     (5)制备大豆分离蛋白/纳米二氧化钛膜,分别探讨纳米二氧化钛的含量对复合膜机械性能、阻水性能和阻气性能影响。运用超声波-微波联合调控作用分别对具有最优机械性能、阻水性能和阻气性能的复合膜进行改性,探讨调控时间对其性能的影响,并通过扫描电镜及傅立叶红外光谱对其微观结构进行研究,探讨其微观结构与宏观性能关系。
     本文的研究为大豆分离蛋白的研究和应用提供了一个新的参考。
There is increasing interest in the potential application of edible polymers as foodpacking films due to both environmental concerns and consumer demand for high-qualityfood products. Edible films cover the exterior of the food and make the final productsuitable for consumption. These films also offer great potential to extend the shelf lifeand improve the quality of many food systems such as fruits and vegetables through theirability to control moisture, oxygen, carbon dioxide, flavor, and aroma transfer betweenfood components and the surrounding atmosphere. Finally, edible films could be analternative to bio-plastics in packaging applications due to their abundant, renewable,environmentally friendly and biodegradable properties. Soy protein isolate (SPI) is awidely available biopolymer, that is often used to develop edible materials for diverseapplications. Water vapor permeability (WVP) and oxygen permeability (OP) are thebarrier properties that frequently determine the ability of an edible film to protect thefood product from decay due to exposure to environment. Mechanical properties are alsouseful in assessing the ability of the film and coating to protect and maintain the food’smechanical integrity. Although SPI films are a good gas barrier, their application hasbeen limited by poor mechanical properties and the water sensitivity of soy protein-basedmaterials.
     The objective and results of this work were separated in five parts as follows:
     (1) To evaluate the effect of temperature (20,60and80°C) and pH (2,7and12) onthe film forming properties, mechanical properties, barrier properties of SPI fims. Themodification treatments (ultrasonic, microwave and ultrasonic/microwave assistedtreatment) was carried out to regulate oxygen and carbon dioxide barrier properties ofSPI films, further control gas-selective permeability of SPI films in this work. In addition,all films obtained were flexible and transparent. Gas-selective permeability coefficientsof SPI film was from0.39to1.25, as indicated that gas-selective permeability of SPIfilm could be regulated according to the actual needs of food systems.
     (2) Wheat-bran cellulose (WC) and microcrystalline wheat-bran cellulose (MWC)were prepared, and ultrasonic/microwave assisted treatment (UMAT) was used to modifyMWC. The effects of UMAT time, power and temperature on yield rate, length,polymerization degree, swelling water capacity and water holding capacity of MWCwere decided. Response surface analysis was used to optimize UMAT condition. It wasfounded that with UMAT time, power and temperture increased, length, polymerizationdegree, yield rate of MWC decreasd, but swelling water capacity and water holding capacity of MWC increased. According to response surface analysis, when UMAT timewas15min, UMAT power was300W and UMAT temperature was30°C, yield rate ofMMWC was obtained, as87.8%.
     (3) WC and MWC were successfully prepared, and the WC, MWC, and MMWCcontent in SPI films improved the properties of the films, particularly their mechanicalproperties. Furthermore, the intra-molecular hydrogen bonds between SPI and the fillersare formed, and these interactions led to improved integration of the fillers into theprotein matrix. Ultrasonic/microwave assisted treatment has been used to modify MWCto MMWC that contained smaller particle size, larger surface area, and more freehydroxyls on the surface, all of which improved the film’s abilities as a water vapor andoxygen barrier. In addition, the different thermal properties of each film provide furthersupport for their properties, and were in agreement with the changes in molecularinteractions detected by FTIR analysis, and SEM analysis of film surface morphology.
     However, it was also found that an excess of fillers can degrade the properties of afilm because this can lead to agglomeration and heterogeneous dispersion in the matrixof the films. Above all, WC and MWC are found to satisfy the food industry’s demandfor a candidate edible film, and ultrasonic/microwave assisted treatment can furtherimprove the properties of these films.
     (4) Edible films were prepared using soy protein isolate (4g/100g), oleic acid(0-2g/100g) and stearic acid (0-2g/100g). Effects of the ratio of oleic acid to stearic acidand ultrasonic/microwave assisted treatment on the water vapor permeability (WVP) andcontact angle of the prepared films were evaluated. Changes in the ratios of oleic acid tostearic acid had significant effects on WVP and contact angle (p <0.05). It was foundthat the prepared films (oleic acid: stearic acid=2:3) had the lowest WVP value(0.1×10-12g·cm-1·s-1·Pa-1) and highest contact angle value (135°), when the treatmenttemperature, time and power were20°C,15min, and500W respectively. Additionally,when OA and SAwere added, the peak at2920cm-1appeared, indicating a certain degreeof interaction between the lipid and SPI. Additionally, differences in the surfacecharacteristics of the films suggest that the surface microstructure may be partiallyresponsible for differences in the WVP of the films.
     (5) Soy protein isolate (SPI,5.0g/100mL) films embedded with nano-TiO2(0,0.5,1.0,1.5and2.0g/100mL) were prepared by solution casting and modified byultrasonic/microwave assisted treatment (UMAT). The effects of nano-TiO2content andUMAT time on the films' physical properties and structure were investigated. Incorporationof nano-TiO2significantly enhanced films’ mechanical properties and barrier properties,because of the intermolecular force between nano-TiO2and SPI. UMAT time≤20minobviously improved films’ tensile strength values (15.77MPa,245%higher than the control), and reduced water vapor permeability (1.8457×10-11g cm-1s-1Pa-1,72.11%lowerthan the control) and oxygen permeability values (0.8897×10-5cm3·m-2·d-1·Pa-1,57.66%lower than the control). SEM images also revealed a more compact and dense structure offilms when UMAT time≤20min. Films’ water adsorption properties were evaluated.GAB and Henderson models exhibited the best to fit experimental data, thus it waspredicted that films (1.5g nano-TiO2/100ml) could be stable at low moisture content (0.27kg of water/kg dry mass).
引文
[1] FISZMAN S M, SALVADOR A. Recent developments in coating batters[J].Trends in FoodScience&Technology,2003,14(10):399-407.
    [2] THARANATHAN R N. Biodegradable films and composite coatings: past, present andfuture[J].Trends in Food Science&Technology,2003,14(3):71-78.
    [3] WU R L, WANG X L, WANG Y Z, et al. Cellulose/soy protein isolate blend films prepared viaroom-temperature ionic liquid[J].Industrial&Engineering ChemistryResearch,2009,48(15):7132-7136.
    [4] ATARES L, DE JESUS C, TALENS P, et al. Characterization of SPI-based edible filmsincorporated with cinnamon or ginger essential oils[J].Journal of Food Engineering,2010,99(3):384-391.
    [5] BISEN A, PANDEY S K, NEHA PATEL. Effect of skin coatings on prolonging shelf life of kagzilime fruits (citrus aurantifolia swingle)[J].Journal of Food science and Technology,2011,49(6):753-759.
    [6] SU J F, HUANG Z, YUAN X Y, et al. Structure and properties of carboxymethyl cellulose/soyprotein isolate blend edible films crosslinked by maillard reactions[J].Carbohydrate Polymers,2010,79(1):145-153.
    [7] BILBAO-SAINZ C, BRAS J, WILLIAMS T, et al. HPMC reinforced with different cellulosenano-particles[J].Carbohydrate Polymers,2011,86(4):1549-1557.
    [8] SANDHYA. Modified atmosphere packaging of fresh produce: current status and futureneeds[J].LWT-Food Science and Technology,2010,43(3):381-392.
    [9] TANG R, DU Y, ZHENG H, et al. Preparation and characterization of soy proteinisolate-carboxymethylated konjac glucomannan blend films[J].Journal of Applied PolymerScience,2003,88(5):1095-1099.
    [10] CERTEL M, USLU M K, OZDEMIR F. Effects of sodium caseinate-and milk proteinconcentrate-based edible coatings on the postharvest quality of Bing cherries[J].Journal of the Scienceof Food and Agriculture,2004,84(10):1229-1234.
    [11] XU Y X, KIM K M, HANNA M A, et al. Chitosan–starch composite film: preparation andcharacterization[J].Industrial Crops and Products,2005,21(2):185-192.
    [12] GABRIEL A, PEREZ-MATEOS D M, ANON M C, et al. Structural and functional properties ofsoy protein isolate and cod gelatin blend films[J].Food Hydrocolloids,2009,23(8):2094-2101.
    [13] JIA D Y, FANG Y, YAO K. Water vapor barrier and mechanical properties of konjacglucomannan–chitosan–soy protein isolate edible films[J].Food and Bioproducts Processing,2009,87(1):7-10.
    [14] GHOSH A. AZAM ALE M. George J. Dias. Effect of cross-linking on microstructure andphysical performance of casein protein[J].Biomacromolecules,2009,10(7):1681-1688.
    [15] Li M, LIU P, ZOU W, et al. Extrusion processing and characterization of edible starch films withdifferent amylose contents[J].Journal of Food Engineering,2011,106(1):95-101.
    [16] LOPEZ O, LECOT C J, ZARITZKY N E, et al. Biodegradable packages development fromstarch based heat sealable films[J].Journal of Food Engineering,2011,105(2):254-263.
    [17] LIANG J, LUDESCHER R D. Antioxidants modulate molecular mobility, oxygen permeability,and microstructure in zein films[J]. Journal of Agricultural and Food Chemistry,2011,59(24):13173-13180.
    [18] NAVARRO-TARAZAGA M L, ALBERTO M, PERZE-GAGO M B. Effect of beeswax contenton hydroxypropyl methylcellulose-based edible film properties and postharvest quality of coatedplums (Cv.Angeleno)[J].LWT-Food Science and Technology,2011,44(10):2328-2334.
    [19] PIRES C, RAMOS C, TEIXEIRA G, et al. Characterization of biodegradable films prepared withhake proteins and thyme oil[J].Journal of Food Engineering,2011,105(3):422-428.
    [20] WANG X W, SUN X X, LIU H, et al. Barrier and mechanical properties of carrot pureefilms[J].Food and Bioproducts Processing,2011,89(2):149-156.
    [21] BONILLA J, ATARES L, VARGAS M, et al. Edible films and coatings to prevent the detrimentaleffect of oxygen on food quality: Possibilities and limitations[J].Journal of Food Engineering,2012,110(2):208-213.
    [22] SHI K, HUANG Y P, YU H L, et al. Reducing the brittleness of zein films through chemicalmodification[J].Journal of Agricultural and Food Chemistry,2011,59(1):56-61.
    [23] AL-HASSAN A A, Norziah M H. Starch–gelatin edible films: water vapor permeability andmechanical properties as affected by plasticizers[J].Food Hydrocolloids,2012,26(1):108-117.
    [24] BYUM Y, AMANDA W, WHITESIDE S. Formation and characterization ofshellac-hydroxypropyl methylcellulose composite films[J].Food Hydrocolloids,2012,27(2):364-370.
    [25] CHO S Y, RHEE C. Sorption characteristics of soy protein films and their relation to mechanicalproperties[J].LWT-Food Science and Technology,2002,35(2):151-157.
    [26] MAURI A N, ANON M C. Effect of solution pH on solubility and some structural properties ofsoybean protein isolate films[J].Journal of the Science of Food and Agriculture,2006,86(7):1064-1072.
    [27] CHINMAC E,ARIAHU C C, ABU J O. Development and characterization of cassava starch andsoy protein concentrate based edible films[J].International Journal of Food Science&Technology,2012,47(2):383-389.
    [28] ZHANG M, SONG F, WANG X L, et al. Development of soy protein isolate/waterbornepolyurethane blend films with improved properties[J].Colloids and Surfaces B-Biointerfaces,2012,100:16-21.
    [29] SCHMIDT V, GIACOMELLI C, SODLI M S, et al. Soy protein isolate based Films: influence ofsodium dodecyl sulfate and polycaprolactone-triol on their properties[J]. MacromolecularSymposia,2005,229(1):127-137.
    [30] TANG C H, JIANG Y, WEN Q B, et al. Effect of transglutaminase treatment on the properties ofcast films of soy protein isolates[J].Journal of Biotechnology,2005,120(3):296-307.
    [31] ARFA A B, CHRAKABANDHU Y, PREZIOSI-BELLOY L, et al. Coating papers with soyprotein isolates as inclusion matrix of carvacrol[J].Food Research International,2007,40(1):22-32.
    [32] CHO S Y, PARK J W, BATT H P, et al. Edible films made from membrane processed soy proteinconcentrates[J].LWT-Food Science and Technology,2007,40(3):418-423.
    [33] NAYAK P, SASMAL A, NANDA P K, et al. Preparation and characterization of edible filmsbased on soy protein isolate-fatty acid blends[J].Polymer-Plastics Technology and Engineering,2008,47(5):466-472.
    [34] MONEDERO F M, FABRA M J, TALENS P, et al. Effect of calcium and sodium caseinates onphysical characteristics of soy protein isolate-lipid films[J].Journal of Food Engineering,2010,97(2):228-234.
    [35] DELACABA K, PENA C, CIANNAMEA E M, et al. Characterization of soybean proteinconcentrate-stearic acid/palmitic acid blend edible films[J].Journal of Applied Polymer Science,2012,124(3):1796-1807.
    [36] ZHANG C, MA Y, GUO K, et al. High-pressure homogenization lowers water vaporpermeability of soybean protein isolate–beeswax films[J].Journal of Agricultural and Food Chemistry,2012,60(9):2219-2223.
    [37] PEROVAL C, DEHEAUFORT F, SEUVRE A M, et al. Modified arabinoxylan-basedfilms[J].Journal of Membrane Science,2004,233(1-2):129-139.
    [38] HAN J, BOURGEOIS S, LACROIX M. Protein-based coatings on peanut to minimise oilmigration[J].Food Chemistry,2009,115(2):462-468.
    [39] ARORA A, PADUA G W. Review: nano-composites in food packaging[J]. Journal of FoodScience,2010,75(1):R43-R49.
    [40] DIAS A B, MULLER C M O, LAROTONDA F D S, et al. Mechanical and barrier properties ofcomposite films based on rice flour and cellulose fibers[J].LWT-Food Science and Technology,2011,44(2):535-542.
    [41] GUERRERO P, STEFANI P M, RUSEECKAITE R A, et al. Functional properties of films basedon soy protein isolate and gelatin processed by compression molding[J].Journal of Food Engineering,2011,105(1):65-72.
    [42] AKHTAR M J, JACQUOT M, JASNIEWSKI J, et al. Antioxidant capacity and light-aging studyof HPMC films functionalized with natural plant extract[J]. Carbohydrate Polymers,2012,89(4):1150-1158.
    [43] GOMEZ-MARTINEZ D, PARTAL P, MARTINEZ I, et al. Gluten-based bioplastics withmodified controlled-release and hydrophilic properties[J].Industrial Crops and Products,2013,43:704-710.
    [44] MOTEDAYEN A A, KHODAIYAN F, SALEHI E A. Development and characterisation ofcomposite films made of kefiran and starch[J].Food Chemistry,2013,136(3-4):1231-1238.
    [45] MARAN J P, SIVAKUMAR V, SRIDHAR R, et al. Development of model for mechanicalproperties of tapioca starch based edible films[J].Industrial Crops and Products,2013,42:159-168.
    [46] SAROSSY Z, TENKANEN M, PITKANEN L, et al. Extraction and chemical characterization ofrye arabinoxylan and the effect of β-glucan on the mechanical and barrier properties of castarabinoxylan films[J].Food Hydrocolloids,2013,30(1):206-216.
    [47] VALENZUELA C, ABUGOCH L, TAPIA C. Quinoa protein–chitosan–sunflower oil edible film:mechanical, barrier and structural properties[J].LWT-Food Science and Technology,2013,50(2):531-537.
    [48] WU J, ZHONG F, LI Y, et al. Preparation and characterization of pullulan–chitosan andpullulan–carboxymethyl chitosan blended films[J].Food Hydrocolloids,2013,30(1):82-91.
    [49] AUDIC J L, CHAUFER B. Influence of plasticizers and crosslinking on the properties ofbiodegradable films made from sodium caseinate[J].European Polymer Journal,2005,41(8):1934-1942.
    [50] LEE M, LEE S, SONG K B. Effect of γ-irradiation on the physicochemical properties of soyprotein isolate films[J].Radiation Physics and Chemistry,2005,72(1):35-40.
    [51] SEYDIM A C, SARIKUS G. Antimicrobial activity of whey protein based edible filmsincorporated with oregano, rosemary and garlic essential oils[J].Food Research International,2006,39(5):639-644.
    [52] CAO N, FU Y H, HE J H. Preparation and physical properties of soy protein isolate and gelatincomposite films[J].Food Hydrocolloids,2007,21(7):1153-1162.
    [53] PANCHAPAKESAN C, SOZER N, DOGAN H, et al. Effect of different fractions of zein on themechanical and phase properties of zein films at nano-scale[J].Journal of Cereal Science,2012,55(2):174-182.
    [54] KURT S, KILINCCEKER O. Performance optimization of soy and whey protein isolates ascoating materials on chicken meat[J].Poultry Science,2010,90(1):195-200.
    [55] COUPLAND J N, SHAW N B, MONAHAN F J, et al. Modeling the effect of glycerol on themoisture sorption behavior of whey protein edible films[J].Journal of Food Engineering,2000,43(1):25-30.
    [56] RAMOS ó L, REINAS I, SILVA S I, et al. Effect of whey protein purity and glycerol contentupon physical properties of edible films manufactured therefrom[J].Food Hydrocolloids,2013,30(1):110-122.
    [57] Monedero F M, Fabra M J, TALENS P, et al. Effect of oleic acid-beeswax mixtures onmechanical, optical and water barrier properties of soy protein isolate based films[J].Journal of FoodEngineering,2009,91(4):509-515.
    [58] PEREZ-GALLARDO A, MATTINSON S D, ALMA L P, et al. Effect of native andacetylated-crosslinked waxy corn starch-beeswax coatings on quality attributes of raspberries duringstorage[J].Starch-St rke,2012:112-120.
    [59] VELICKOVA E, WINKELHAUSEN M, KUZMANOVA S, et al. Impact of chitosan-beeswaxedible coatings on the quality of fresh strawberries (fragaria ananassa cv camarosa) under commercialstorage conditions[J].Lwt-Food Science and Technology,2013,52(2):80-92.
    [60] REZVANI E, SCHLEINING G, SUMEN G, et al. Assessment of physical and mechanicalproperties of sodium caseinate and stearic acid based film-forming emulsions and ediblefilms[J].Journal of Food Engineering,2013,116(2):598-605.
    [61] SCHMIDT V C R, PORTO L M, LAURINDO J B, et al. Water vapor barrier and mechanicalproperties of starch films containing stearic acid[J].Industrial Crops and Products,2013,41:227-234.
    [62] MARTINEZ-ROMERO D, ALBURQUERQUE N, VALVERDE J M, et al. Postharvest sweetcherry quality and safety maintenance by Aloe vera treatment: a new edible coating[J].PostharvestBiology and Technology,2006,39(1):93-100.
    [63] DE MOURA M R, AVENA-BUSTILLOS R J, MCHUGH T H, et al. Properties of novelhydroxypropyl methylcellulose films containing chitosan nanoparticles[J].Journal of Fodd Science,2008,73(7):N31-N37.
    [64] SANCHEZ G, PASTOR C, VARGAS M, et al. Effect of hydroxypropyl methylcellulose andchitosan coatings with and without bergamot essential oil on quality and safety of cold-storedgrapes[J].Postharvest Biology and Technology,2011,60(1):57-63.
    [65] LI B, KENNEDY J F, PENG J L, et al. Preparation and performance evaluation ofglucomannan-chitosan-nisin ternary antimicrobial blend film[J].Carbohydrate Polymers,2006,65(4):488-494.
    [66] SU J F, HUANG Z, YANG C M, et al. Properties of soy protein isolate/poly(vinyl alcohol) blend“green” films: compatibility, mechanical properties, and thermal stability[J].Journal of AppliedPolymer Science,2008,110(6):3706-3716.
    [67] SU J F, HUANG Z, ZHAO Y H, et al. Moisture sorption and water vapor permeability of soyprotein isolate/poly(vinyl alcohol)/glycerol blend films[J].Industrial Crops and Products,2010,31(2):266-276.
    [68] NAIR S B, JYOTHI A N, SAJEEV M S, et al. Rheological, mechanical and moisture sorptioncharacteristics of cassava starch-konjac glucomannan blend films[J].Starch-Starke,2011,63(11):728-739.
    [69] WU C H, PENG S H, WEN C R, et al. Structural characterization and properties of konjacglucomannan/curdlan blend films[J].Carbohydrate Polymers,2012,89(2):497-503.
    [70] BAI H Y, KUMAR R, YANG C, et al. Effect of salicylic acid on the mechanical properties andwater resistance of soy protein isolate films[J].Polymers&Polymer Composites,2010,18(4):197-203.
    [71] KOKOSZKA S, DEBEAUFORT F, HAMBLETON A, et al. Protein and glycerol contents affectphysico-chemical properties of soy protein isolate-based edible films[J].Innovative Food Science&Emerging Technologies,2010,11(3):503-510.
    [72] SONG F, TANG D L, WANG X L, et al. Biodegradable soy protein isolate-based materials: areview[J].Biomacromolecules,2011,12(10):3369-3380.
    [73] CHO S Y, LEE S Y, RHEE C. Edible oxygen barrier bilayer film pouches from corn zein and soyprotein isolate for olive oil packaging[J].Lwt-Food Science and Technology,2010,43(8):1234-1239.
    [74] LI H P, MA B G, ZHOU S M, et al. Thermally responsive graft copolymer of soy protein isolateand N-isopropylacrylamide: synthesis and self-assembly behavior in aqueous solution[J].Colloid andPolymer Science,2010,288(14-15):1419-1426.
    [75] SU J F, HUANG Z, YANG C M, et al. Properties of soy protein isolate/poly(vinyl alcohol) blend"Green" films: compatibility, mechanical properties, and thermal stability[J].Journal of AppliedPolymer Science,2008,110(6):3706-3716.
    [76] YIN S W, TANG C H, WEN Q B, et al. Properties of cast films from hemp (cannabis sativa L.)and soy protein isolates. a comparative study[J]. Journal of Agricultural and Food Chemistry,2007,55(18):7399-7404.
    [77] MONEDERO F M, HAMBLETON A, TALENS P, et al. Study of the retention and release ofn-hexanal incorporated into soy protein isolate-lipid composite films[J].Journal of Food Engineering,2010,100(1):133-138.
    [78] CHO S Y, LEE S Y, RHEE C. Edible oxygen barrier bilayer film pouches from corn zein and soyprotein isolate for olive oil packaging[J].LWT-Food Science and Technology,2010,43(8):1234-1239.
    [79] SU J F, HUANG Z, YUAN X Y, et al. Structure and properties of carboxymethyl cellulose/soyprotein isolate blend edible films crosslinked by maillard reactions[J].Carbohydrate Polymers,2010,79(1):145-153.
    [80] JIANG Y F, LI Y X, CHAI Z, et al. Study of the physical properties of whey protein isolate andgelatin composite films[J].Journal ofAgricultural and Food Chemistry,2010,58(8):5100-5108.
    [81] WANG J, SHANG J J, REN F Z, et al. Study of the physical properties of whey protein: sericinprotein-blended edible films[J].European Food Research and Technology,2010,231(1):109-116.
    [82] KAYA S, KAYA A. Microwave drying effects on properties of whey protein isolate ediblefilms[J].Journal of Food Engineering,2000,43:91-96.
    [83] GENNADIOS A, BRANDENBURG A H, WELLER C L, et al. Effect of pH on properties ofwheat gluten and soy protein isolate films[J].Journal of Agricultural and Food Chemistry,1993,41:1835-1839.
    [84] RHIM J W, MOHANTY K A, SINGH S P, et al. Preparation and properties of biodegradablemultilayer films based on soy protein isolate and poly(lactide)[J].Industrial&Engineering ChemistryResearch,2006,45(9):3059-3066.
    [85] RHIM J W, GENNADIOS A, HANDA A, et al. Solubility, tensile, and color properties ofmodified soy protein isolate films[J].Journal of Agricultural and Food Chemistry,2000,48:4937-4941.
    [86] KIMA K M, WELLERA C L, HANNAA M A, et al. Heat curing of soy protein films at selectedtemperatures and pressures[J].LWT-Food Science and Technology,2002,35:140-145.
    [87] OU S Y, WANG Y, TANG S Z, et al. Role of ferulic acid in preparing edible films from soyprotein isolate[J].Journal of Food Engineering,2005,70(2):205-210.
    [88] RHIM J W, WU Y, WELLER C L, et al. Physical characteristics of emulsified soy protein-fattyacid composite films[J].Sciences des Aliments,1999,19:57-71.
    [89] PARK S K, BAE D H, RHEE K C. Soy protein biopolymers cross-linked withglutaraldehyde[J].Journal of theAmerican Oil Chemists' Society,2000,77:879-884.
    [90] STUCHELL Y M, KROCHTA J M. Enzymatic treatments and thermal effects on edible soyprotein films[J].Journal of Food Science,1994,59:1332-1337.
    [91] GOMEZ M, JIMENEZ S, RUIZ E, et al. Effect of extruded wheat bran on dough rheology andbread quality[J].LWT-Food Science and Technology,2011,44(10):2231-2237.
    [92] KRAWCZYK H, ARKELL A, JONSSON A S. Membrane performance during ultrafiltration of ahigh-viscosity solution containing hemicelluloses from wheat bran[J].Separation and PurificationTechnology,2011,83:144-150.
    [93] WANG J, SUN B G, LIU Y L, et al. Optimisation of ultrasound-assisted enzymatic extraction ofarabinoxylan from wheat bran[J].Food Chemistry,2014,150:482-488.
    [94] CODA R, KARKI I, NORDLUND E, et al. Influence of particle size on bioprocess inducedchanges on technological functionality of wheat bran[J].Food Microbiology,2014,37:69-77.
    [95] AILA-SUAREZ S, HEIDI M P, ADRIANA I. Rodríguez-Hernándeza, et al. Characterization offilms made with chayote tuber and potato starches blending with cellulosenanoparticles[J].Carbohydrate Polymers,2013,98:102-107.
    [96] PARK H J, CHINNAN M S. Gas and water vapor barrier properties of edible films from proteinand cellulosic materials[J].Journal of Food Engineering,1995,25:497-507.
    [97] ZHOU J J, WANG S Y, GUNASEKARAN. Preparation and characterization of whey proteinfilm incorporated with TiO2nanoparticles[J].Journal of Food Science,2009,74(7):50-56.
    [98] PARK S H, LEE H S, CHOI J H, et al. Improvements in barrier properties of poly(lactic acid)films coated with chitosan or chitosan/clay nanocomposite[J].Journal of Applied Polymer Science,2012,125(S1):E675-E680.
    [99] GUO J M, LI X Y, MU C D, et al. Freezingethawing effects on the properties of dialdehydecarboxymethyl cellulose crosslinked gelatin-MMT composite films[J].Food Hydrocolloids,2013,33:273-279.
    [100] MEDEIROS B G S, PINHEIRO A C, CAMEIRO M G., et al. Development andcharacterization of a nanomultilayer coating of pectin and chitosan–evaluation of its gas barrierproperties and application on ‘Tommy Atkins’ mangoes[J].Journal of Food Engineering,2012,110(3):457-464.
    [101] HORST M F, TUCKART W, BLANCO L D, et al. Effect of clay concentration on the wearbehavior and permeability of polypropylene/clay nanocomposites[J].Journal of Applied PolymerScience,2012,125(S1):E495-E502.
    [102] VARGAS M, ALBORS A, CHIRALT A, et al. Characterization of chitosan–oleic acidcomposite films[J].Food Hydrocolloids,2009,23:536-547.
    [103] VARGAS M, ALBORS A, CHIRALTA, et al. Quality of cold-stored strawberries as affected bychitosan–oleic acid edible coatings[J].Postharvest Biology and Technology,2005,41:164-171.
    [104] MARIA M F, JOSE F M, TALENS P, et al. Effect of oleic acid–beeswax mixtures onmechanical, optical and water barrier properties of soy protein isolate based films[J].Journal of FoodEngineering,2009,91:509-515.
    [105] JOSE F M, TALENS P, CHIRALTA. Microstructure and optical properties of sodium caseinatefilms containing oleic acid–beeswax mixtures[J].Food Hydrocolloids,2009,23:676-683.
    [106] FABRA M J, TALENS P, CHIRALT A. Tensile properties and water vapor permeability ofsodium caseinate films containing oleic acid–beeswax mixtures[J].Journal of Food Engineering,2008,85:393–400.
    [107] JIMENEZ A, FABRA M J, TALENS P, et al. Effect of re-crystallization on tensile, optical andwater vapour barrier properties of corn starch films containing fatty acids[J].Food Hydrocolloids,2012,26(1):302-310.
    [108] HE M, XU M, ZHANG L. Controllable stearic acid crystal induced high hydrophobicity oncellulose film surface[J].Applied Materials and Interfaces,2013,5:585-591.
    [109] FENG X X, ZHANG L L, CHEN J Y, et al. Preparation and characterization of novelnanocomposite films formed from silk fibroin and nano-TiO2[J].International Journal of BiologicalMacromolecules,2007,40(2):105-111.
    [110] LAUFER G, KIRKLAND C, CAIN A A, et al. Oxygen barrier of multilayer thin filmscomprised of polysaccharides and clay[J].Carbohydrate Polymers,2013,95:299-302.
    [111] STEENC V L, JACXSENS F, DEVLIEGHERE F, et al. Combining high oxygen atmosphereswith low oxygen modified atmosphere packaging to improve the keeping quality of strawberries andraspberries[J].Postharvest Biology and Technology,2002,26:49-58.
    [112] JIA D Y, FANG Y, YAO K. Water vapor barrier and mechanical properties of konjacglucomannan-chitosan-soy protein isolate edible films[J].Food and Bioproducts Processing,2009,87(C1):7-10.
    [113] TAPIA M S, ROJAS G M A, CAMONAA, et al. Use of alginate-and gellan-based coatings forimproving barrier, texture and nutritional properties of fresh-cut papaya[J].Food Hydrocolloids,2008,22(8):1493-1503.
    [114] YIN Y G, HAN Y Z, HAN Y. Pulsed electric field extraction of polysaccharide from ranatemporaria chensinensis david[J].International Journal of Pharmaceutics,2006,312(1-2):33-36.
    [115] KHAN R A, SALMIERI S, DUSSAULT D, et al. Production and properties of nanocellulosereinforced methylcellulose based biodegradable films[J].Journal of Agricultural and Food Chemistry,2010,58(13):7878-7885.
    [116] BROUMAND A, EMAN-DJOMEH Z, Manouchehr H, et al. Antimicrobial, water vapourpermeability, mechanical and thermal properties of casein based zataraia multiflora boiss. Extractcontaining film[J].LWT-Food Science and Technology,2011,44(10):2316-2323.
    [117] RHIM J W, LEE J H, PERRY K W. Mechanical and barrier properties of biodegradable soyprotein isolate-based films coated with polylactic acid[J].LWT-Food Science and Technology,2007,40(2):232-238.
    [118] RHIM J W, LEE J H, PERRY K W. Mechanical and barrier properties of biodegradable soyprotein isolate-based films coated with polylactic acid[J].Lwt-Food Science and Technology,2007,40(2):232-238.
    [119] CHENG L H, KARIM A A, SEOW C C. Characterisation of composite films made of konjacglucomannan (KGM), carboxymethyl cellulose (CMC) and lipid[J].Food Chemistry,2008,107(1):411-418.
    [120] LI B, KENNEDY J F, JIANG Q G, et al. Quick dissolvable, edible and heatsealable blend filmsbased on konjac glucomannan-Gelatin[J].Food Research International,2006,39(5):544-549.
    [121] HEMANDEZ-IZQUIERDO V M, KROCHTA J M. Thermoplastic processing of proteins forfilm formation-a review[J].Journal of Food Science,2008,73(2):R30-R39.
    [122] KUREK M, CETAR M, VOILLEY A, et al. Barrier properties of chitosan coatedpolyethylene[J].Journal of Membrane Science,2012,403-404:162-168.
    [123] CHEN C L, BROMLEY K M, MORADIAN-OLDAK J, et al. In situ AFM study of amelogeninAssembly and disassembly dynamics on charged surfaces provides insights on matrix proteinself-assembly[J].Journal of the American Chemical Society,2011,133(43):17406-17413.
    [124] SAGA L C, RUKKE E O, LILAND K H, et al. Oxidative stability of polyunsaturated edible oilsmixed with microcrystalline cellulose[J].Journal of the American Oil Chemists' Society,2011,88(12):1883-1895.
    [125] LIN S Y, GUO Y, YOU Q, et al. Preparation of antioxidant peptide from egg white protein andimprovement of its activities assisted by high-intensity pulsed electric field[J].Journal of the Scienceof Food and Agriculture,2012,92(7):1554-1561.
    [126] COELHO E, ROCHA A M, SARAIVA J A, et al. Microwave superheated water and dilutealkali extraction of brewers' spent grain arabinoxylans andarabinoxylo-oligosaccharides[J].Carbohydrate Polymers,2014,99:415-422.
    [127] CHENG X L, WAN J Y, LI P, et al. Ultrasonic/microwave assisted extraction and diagnostic ionfiltering strategy by liquid chromatography quadrupole time of flight mass spectrometry for rapidcharacterization of flavonoids in Spatholobus suberectus[J].Journal of Chromatography,2011,1218(34):5774-5786.
    [128] AGUIRRE A, BOMEO R, LEON A E. Properties of triticale flour protein based films[J].LWT-Food Science and Technology,2011,44(9):1853-1858.
    [129] LODHA P, NETRAVALI A N. Characterization of phytagel modified soy protein isolate resinand unidirectional flax yarn reinforced “green” composites[J].Polymer Composites,2005,26(5):647-659.
    [130] GUILLARD V, GUILLAUME C, DESTERCKE S. Parameter uncertainties and errorpropagation in modified atmosphere packaging modelling[J].Postharvest Biology and Technology,2012,67:154-166.
    [131] LIAN Z X, MA Z S, WEI J, et al. Preparation and characterization of immobilized lysozymeand evaluation of its application in edible coatings[J].Process Biochemistry,2012,47(2):201-208.
    [132] SIRACUSA V, ROCCULI P, ROMANI S, et al. Biodegradable polymers for food packaging: areview[J].Trends in Food Science&Technology,2008,19(12):634-643.
    [133] SORRENTINO A, GORRASI G, VITTORIA V. Potential perspectives of bio-nanocompositesfor food packaging applications[J].Trends in Food Science&Technology,2007,18(2):84-95.
    [134] VU K D, HOLLINGSWORTH R G, SALMIERI S, et al. Development of bioactive coatingsbased on γ-irradiated proteins to preserve strawberries[J].Radiation Physics and Chemistry,2012,81(8):1211-1214.
    [135] YANG H, TEJADO A, ALAM N, et al. Films prepared from electrosterically stabilizednanocrystalline cellulose[J].Langmuir,2012,28:7834-7842.
    [136] PEREZ C D, DENOBILI M D, RIZZO S A, et al. High methoxyl pectin-methyl cellulose filmswith antioxidant activity at a functional food interface[J].Journal of Food Engineering,2013,116(1):162-169.
    [137] QUIROZ M J T, LECOT J, BERTOLA N, et al. Stability of methylcellulose-based films afterbeing subjected to different conservation and processing temperatures[J].Materials Science&Engineering C-Materials for Biological Applications,2013,33(5):2918-2925.
    [138] RAGAB S, ABDElKADER M F H. Optical and thermal studies of starch/methylcelluloseblends[J].Physica Scripta,2013,87(2):115-121.
    [139] SAHA M, ESKICIOGLU C, MARIN J. Microwave, ultrasonic and chemo-mechanicalpretreatments for enhancing methane potential of pulp mill wastewater treatmentsludge[J].Bioresource Technology,2011,102(17):7815-7826.
    [140] AZEREDO H M C, MATTOSOS L H C, WOOD D, et al. Nanocomposite edible films frommango puree reinforced with cellulose nanofibers[J].Journal of Food Science,2009,74(5):31-35.
    [141] MU C D, GUO J M, LI X Y, et al. Preparation and properties of dialdehyde carboxymethylcellulose crosslinked gelatin edible films[J].Food Hydrocolloids,2012,27(1):22-29.
    [142] XIA Y C, WANG Y X, CHEN L Y. Molecular structure, physicochemical characterization, andin vitro degradation of barley protein films[J].Journal of Agricultural and Food Chemistry,2011,59(24):13221-13229.
    [143] GARCIA L C, PEREIRA L M, DELUCA C I G, et al. Effect of antimicrobial starch ediblecoating on shelf-life of fresh strawberries[J].Packaging Technology and Science,2012,25(7):413-425.
    [144] TRINETTA V, CUTTER C N, FLOROS J D. Effects of ingredient composition on optical andmechanical properties of pullulan film for food-packaging applications[J].LWT-Food Science andTechnology,2011,44(10):2296-2301.
    [145] GALUS S, MATHIEU H, LENART A, et al. Effect of modified starch or maltodextrinincorporation on the barrier and mechanical properties, moisture sensitivity and appearance of soyprotein isolate-based edible films[J].Innovative Food Science&Emerging Technologies,2012,16:148-154.
    [146] YANG L, PAULSON A T. Effects of lipids on mechanical and moisture barrier properties ofedible gellan film[J].Food Research International,33(7):571-578.
    [147] BAI H Y, XU J, LIAO P, et al. Mechanical and water barrier properties of soy protein isolatefilm incorporated with gelatin[J].Journal of Plastic Film&Sheeting,2013,29(2):174-188.
    [148] NGCOBO M E K, DELELE M A, OPARA U L, et al. Performance of multi-packaging for tablegrapes based on airflow, cooling rates and fruit quality[J].Journal of Food Engineering,2013,116(2):613-621.
    [149] BYUN Y, BAE H J, WHITESIDE S. Active warm-water fish gelatin film containing oxygenscavenging system[J].Food Hydrocolloids,2012,27(1):250-255.
    [150] HAMILTON P, LITTLEJOHN D, NORDON A, et al. Validity of particle size analysistechniques for measurement of the attrition that occurs during vacuum agitated powder drying ofneedle-shaped particles[J].The Analyst,2012,137(1):118.
    [151] BICO S L S, RAPOSO M F J, MORAIS R M S C, et al. Combined effects of chemical dipand/or carrageenan coating and/or controlled atmosphere on quality of fresh-cut banana[J].FoodControl,2009,20(5):508-514.
    [152] ALBERTA, SALVADOR A, FISZMAN S M. A film of alginate plus salt as an edible susceptorin microwaveable food[J].Food Hydrocolloids,2012,27(2):421-426.
    [153] KANATT S R, RAO M S, CHAWLA S P, et al. Active chitosan–polyvinyl alcohol films withnatural extracts[J].Food Hydrocolloids,2012,29(2):290-297.
    [154] KAWAI K, TAKATO S, SASAKI T, et al. Complex formation, thermal properties, and in-vitrodigestibility of gelatinized potato starch–fatty acid mixtures[J].Food Hydrocolloids,2012,27(1):228-234.
    [155] FAMA L, ROJO P G, BEMAL C, et al. Biodegradable starch based nanocomposites with lowwater vapor permeability and high storage modulus[J].Carbohydrate Polymers,2012,87(3):1989-1993.
    [156] MU C, GUO J, LI X, et al. Preparation and properties of dialdehyde carboxymethyl cellulosecrosslinked gelatin edible films[J].Food Hydrocolloids,2012,27(1):22-29.
    [157] YANG H, IRUDAYARAJ J, SAKHAMURI S. Characterization of edible coatings andmicroorganisms on food surfaces using fourier transform infrared photoacousticspectroscopy[J].Applied Spectroscopy,2001,55(5):571-583.
    [158] VACHON C, DAPRANO G, LACROIX M, et al. Effect of edible coating process andirradiation treatment of strawberry fragaria spp. on storage-keeping quality[J].Journal of Food Science,2003,68(2):608-612.
    [159] MOHAMED C, CLEMENTINE K A, DIDIER M, et al. Antimicrobial and physical propertiesof edible chitosan films enhanced by lactoperoxidase system[J].Food Hydrocolloids,2013,30(2):576-580.
    [160] COATA C, CONTEO A, BUONOCORE G G, et al. Calcium-alginate coating loaded withsilver-montmorillonite nanoparticles to prolong the shelf-life of fresh-cut carrots[J].Food ResearchInternational,2012,48(1):164-169.
    [161] WANG S Y, ZHU B B, LI D Z, et al. Preparation and characterization of TIO2/SPI compositefilm[J].Materials Letters,2012,83:42-45.
    [162] GUERRERO P, NURHANANI A, KERRY J P, et al. Characterization of soy protein-basedfilms prepared with acids and oils by compression[J].Journal of Food Engineering,2011,107(1):41-49.
    [163] MUHAMMAD K I K, MAARTEN A I S, KARIN S, et al. The potential of electrospraying forhydrophobic film coating on foods[J].Journal of Food Engineering,2012,108(3):410-416.
    [164] WANG Z, SUN X X, LIAN Z X, et al. The effects of ultrasonic/microwave assisted treatmenton the properties of soy protein isolate/microcrystalline wheat-bran cellulose film[J].Journal of FoodEngineering,2013,114(2):183-191.
    [165] OU S Y, KWOK K C. Ferulic acid: pharmaceutical functions, preparation and applications infoods[J].Journal of the Science of Food and Agriculture,2004,84(11):1261-1269.
    [166] IRINA N, JORG A, ALEXANDER M K, et al. Self-stratification during film formation fromlatex blends driven by differences in collective diffusivity[J].Langmuir,2010,26(16):13162-13167.
    [167] ANDRES-BELLO A, IBORRA-BEMAD C, GARCIA-SEGOVIA P, et al. Effect of konjacglucomannan (KGM) and carboxymethylcellulose (CMC) on some physico-chemical and mechanicalproperties of restructured gilthead sea bream (sparus aurata) products[J].Food and BioprocessTechnology,2013,6(1):133-145.
    [168] CHEN L Y, REMONDETTO G, ROUABHIA M, et al. Kinetics of the breakdown ofcross-linked soy protein films for drug delivery[J].Biomaterials,2008,29(27):3750-3756.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700