AM/DAC的反相乳液聚合及絮凝性能评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文采用反相乳液聚合法,以丙烯酰胺(AM)和丙烯酰氧乙基三甲基氯化铵(DAC)作为单体,Span80-Tween80为复合乳化剂,液体石蜡为连续相制备污泥脱水剂阳离子型聚丙烯酰胺(CPAM)。实验考察了油水体积比、乳化剂用量和配比、单体用量和配比、引发剂种类和用量、温度、聚合时间、通氮气时间和搅拌对聚合物特性黏度和稳定性的影响。研究结果表明:在油水体积比为1:1.6、乳化剂用量为30%(占液体石蜡的质量分数)、乳化剂Span80与Tween80质量比为3:5、单体用量为30%(占水相质量分数)、单体AM与DAC摩尔比为2:3、引发剂用量为0.15%(占单体的质量分数)、聚合温度为40℃,通入普通氮气30min,聚合时间为5h的条件下,得到特性黏度为897 mL·g-1,阳离子度为60%的阳离子聚丙烯酰胺。
     对制得的产品进行脱乳和干燥,干燥的优化条件是在真空度为1000Pa,温度为60℃~70℃范围内干燥10h左右,所得产物效果较好。通过红外光谱和差热分析对自制的CPAM进行了结构表征。结果显示:通过红外光谱分析证明自制的CPAM结构与理论产物结构相符,通过差热分析内表明自制CPAM在265.54℃时发生化学分解。
     将自制的阳离子聚丙烯酰胺用于重庆市鸡冠石污水处理厂浓缩池的污泥处理,实验研究表明阳离子聚丙烯酰胺用于污泥脱水,其脱水效果与阳离子聚丙烯酰胺的特性黏度、阳离子度、投加量和搅拌速度等因素有关。在阳离子聚丙烯酰胺特性黏度为897 mL·g-1,质量分数为0.05‰,投加量为25mL的情况下进行絮凝实验研究结果表明:污泥的透光率可达96.9%,滤液浊度可达11.2,滤饼含水率可达62.05%。此外,论文还研究了阳离子聚丙烯酰胺的特性黏度、投加量、阳离子度对污泥脱水效果的影响。研究结果表明:就目前实验室制备的阳离子聚丙烯酰胺的情况下,投加量和阳离子度对污泥脱水效果的影响有一个最佳范围,特性黏度越高絮凝性能越好,但是这仅限于目前实验室合成产物的特性黏度。除此之外,温度,搅拌速度等也对污泥脱水有一定的影响。
The cationic polyacrylamide (CPAM) was synthesized by inverse emulsion polymerization using acrylamide (AM) and acryloyloxyethyltrimethyl ammonium chloride (DAC) as monomers, Span80-Tween80 as compound emulsifier, liquid paraffin as continuous phase. The influences factors to the viscosity of product and the stability of the system were discussed, such as the volume ratio of oil to water, the ratio and concentration of Span80 to Tween80, the ratio and concentration of AM to DAC, the type and concentration of initiator, the initial reaction temperature, reaction time, inlet time of N2, whisk speed, the drying and granulation. The optimum conditions of copolymerization were obtained as follows:the volume ratio of oil to water was 1:1.6, the emulsifier dosage was 30%, the mass ratio of Span80 to Tween80 was 3:5, the concentration of monomer was 30%, the mol distribution ratio of AM to DAC was 2:3, initiating temperature was 40℃, inlet time of N2 was 30min and reaction time was 5 hours. The cationic polyacrylamide with viscosity 897 mL·g-1 and cationic degree being about 60% was obtained.
     Using acetone and the ethanol to demulsify the product, then dry it. The optimum conditions of deemulsification and drying were obtained as follows: then at the Vacuum Degree of 1000MPa, the drying temperature was 70℃, drying time was 10h. Using the differential thermal analysis and infrared spectroscopy characterize the self-made CPAM. The infrared spectroscopy result shows that self-made CPAM was consentaneous with the theory. The differential thermal analysis result shows that the self-made CPAM was decomposed at 265.54℃.
     Use the self-made CPAM to flocculation the sludge in condenses pool of a sewage plant in the city of Chongqing, China. The experiment shows that the performance of self-made CPAM has related with the viscosity of CPAM, the cationic degree, the adding quality of CPAM, the mixing speed, etc. With the viscosity of CPAM was 897 mL·g-1, the dosage was 25mL, cationic degree was 60%, CPAM has the better treatment effects. Under the optimum conditions, the transmittance removal for upper clean liquid was up to 96.9%, filtrate turbidity was decreasing to 11.2, the water content for press cake was decreasing to 62.05%. In addition, the paper also researched the effects of viscosity of CPAM, the dosage and the cationic degree. The result shows that the dosage and the cationic degree have optimum scope. It means sludge dewatering was not better even with excessive cationic degree and dosage. In addition to that, the temperature and mixing speed also have effect to sludge dewatering
引文
[1]方俊华,周健,唐德昕,等.中国小城镇污泥资源化方案决策方法的探讨[J].重庆大学学报(自然科学版), 2007, 30(2):75-80.
    [2]罗固源,韦玮,许晓毅,等.小城镇水厂污泥处置及资源化方向分析[J].重庆大学学报(自然科学版), 2005, 28(9):79-82.
    [3]郑怀礼,李凌春,蔚阳,等.阳离子聚丙烯酰胺污泥脱水絮凝剂的制备[J].化工进展, 2008, 27(4):564-568.
    [4] Shaohui Zhang, Ping Zhang, Yumei Hua. Nitrogen removal from sludge dewatering effluent through anaerobic ammonia oxidation process[J]. Journal of Environmental Sciences, 2005, 17(3):1030-1033.
    [5] Yubin Zeng, Junboum Park. Characterization and coagulation performance of a novel inorganic polymer coagulant -poly-zinc-silicate-sulfate[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 334:147–154.
    [6] Ohm Ti, Chae JS, Kim JE, et al. A study on the dewatering of industrial waste sludge by fry-drying technology[J]. Journal of Hazardous Materials, 2009, 168(1):445-450.
    [7]杭春涛.阳离子高分子絮凝剂的聚合与应用[D].江南大学, 2006:1-4.
    [8] Zouboulis AI,Tzoupanos ND. Polyaluminium silicate chloride-A systematic study for the preparation and application of an efficient coagulant for water or wastewater treatment[J]. Journal of hazardous materials, 2009, 162(23):1379-1389.
    [9]卢红霞.水处理用阳离子聚丙烯酰胺絮凝剂的合成及其絮凝性能研究[D].青岛科技大学, 2007:1-4.
    [10]王一鸣.有机高分子絮凝剂的应用于研究进展[J].四川环境, 2009, 28(3):71-74.
    [11]王爱香.中国高分子絮凝剂的研究现状与展望[J].化工科技, 2009, 17(3):57-61.
    [12]丁伟.新型阳离子聚丙烯酰胺絮凝剂的合成与性能研究[D].大庆石油学院, 2005:2-4.
    [13]司晓慧.二甲基二烯丙基氯化铵—丙烯酰胺的反相乳液和微乳液共聚合研究[D].山东大学, 2009:5-7.
    [14]叶何兰,叶锦韶,钟子嘉.微生物絮凝剂的污泥脱水性能研究[J].环境化学, 2009, 28(3):414-417.
    [15]赵继红,杨劲峰,王清宁,等.微生物絮凝剂改善污泥脱水性能的研究[J],环境科学与技术, 2009, 32(11):88-90.
    [16]唐晓萍.微生物絮凝剂应用于污水处理过程中的优化分析[J].重庆大学学报, 2002, 25 (7):118-121.
    [17] Zheng Huai-li, Yu Yang, Wu You-quan, et al. Effects of compound flocculants on civil sludge dewatering[J]. Journal of Cental South University of Technology, 2007, 14(suppl3):282-286.
    [18]曾玉彬,杨昌柱,濮文虹,等.多元复合高分子净水剂的合成与影响因素分析[J].环境科学与技术, 2006, 29(5):38-40.
    [19]刘雄才,张玉,周集体,等.复合絮凝剂PFMS的制备及其絮凝性能研究[J].工业水处理, 2009, 29(9):41-44.
    [20]毕韶丹,沈春旭.复合絮凝剂对染料废水的脱色作用[J].工业水处理, 2009, 29(7):57-59.
    [21] Chen Dong-nian, Liu Xiao-guang, Yue Yu-mei, et al. Dispersion copolymerization of acrylamide with quaternary ammonium cationic monomer in aqueous salts solution[J]. European Polymer Journal, 2006, 42:1284-1297.
    [22] Martial P, Jean Marc C, Josephs, et al. Synthesis in inverse emulsion and properties of water soluble associating polymers[J]. Applied Polymer Science, 2002, 84:1418-1430.
    [23]李小兰,王久芬,陈孝飞.反相乳液聚合法合成超高相对分子质量聚丙烯酰胺的研究[J].应用化工, 2005, 34(7):412-414.
    [24]赵娜娜,佟瑞利,邹立壮,等.疏水改性高分子絮凝剂的合成及其对含油污水的净化[J].环境化学, 2008, 27(4):454-457.
    [25]魏鑫,钟宏.反相乳液聚合的研究进展[J].化学与生物工程, 2007, 24(12):12-14.
    [26]罗跃,王志龙,郑立军,等.反相乳液聚合制备阳离子聚丙烯酰胺及其絮凝性能评价[J].油气田环境保护, 2009, 19(2):35-37.
    [27]张跃军,顾学芳.二甲基二烯丙基氯化铵和丙烯酰胺共聚物的研究进展[J].精细化工, 2002, 19(9):521-525.
    [28]闫丽娟,赵达文,毕成良,等.反相乳液聚合法制备聚丙烯酰胺及其应用[J].天津化工, 2007, 21(2):32-34.
    [29]靳晓霞,孙继,王会.低相对分子质量阳离子聚丙烯酰胺的合成研究[J].工业水处理, 2009, 29(5):30-33.
    [30]李朝艳.阳离子丙烯酰胺共聚物反相乳液的合成研究[D].青岛科技大学, 2005:50-54.
    [31] Lei Guo-yuan, Ma Jun, Guan Xiao-hong, et al. Effect of basicity on coagulation performance of polyferric chloride applied in eutrophicated raw water[J]. Desalination, 2009, 247:518-529.
    [32] Gao Bao-yu, Yue Qin-yan, Wang Yan. Coagulation performance of polyaluminum silicate chloride(PASiC) or water and wastewater treatment[J]. Separation and Purification Technology, 2007, 56:225-230.
    [33] Jose Hembndez-barajas, Danid J.Hunkeker. Inverse-emulsion polymerization of acrylamide using block copolymeric surfactants: mechanism, kinetics and modeling[J]. Polymer, 1997, 38 (2):437-447.
    [34]尚宏周.阳离子型聚丙烯酰胺的疏水改性及其应用研究[D].大连理工大学, 2008:2-14.
    [35]郭艳丽.共聚合阳离子聚丙烯酰胺的合成及性能测试[D].北京化工大学, 2003:3-5.
    [36]卢红霞.水处理用阳离子聚丙烯酰胺絮凝剂的合成及其絮凝性能研究[D].青岛科技化工, 2007:5-8.
    [37] Vanderhoff J W. Inverse emulsion polymerization[J]. Advances in Chemistry Sciences, 1962, 34:32-51.
    [38] Leong Y S, Canfau F. Inverse microemulsion polymerization[J]. J. Phys Chem, 1982, 86:2691.
    [39] Canfau F, Leong Y S, Pouyet G, et al. Inverse microemulsionpolymerization of acaylamide: characterization of the water-in-oil microemulsions and the final micro-latexes[J]. Colloid Interface Sci., 1984, 101(1):167.
    [40]刘祥,晃芬,范晓东.高固含量聚丙烯酰胺反相微乳胶的制备[J].精细化工, 2005, 22(8): 631-633.
    [41] Hoar J P , Schulman J H. Transparent water-in-oil dispersions: the oleopathic hydro-micelle[J] Nature, 1943, 152:102.
    [42]徐生,郭玲香.丙烯酰胺/二甲基二烯丙基氯化铵共聚物的反相微乳液聚合研究[J].精细石油化工, 2006, 23(1):22-25.
    [43]姚杰.反相微乳液聚合苯乙烯磺酸钠—丙烯酸—丙烯酰胺钻井液降滤失剂的研究[D].成都理工大学, 2006:10-12.
    [44] J. R. Ochoa, F. J. Escudero Sanz, P. M. Sasia, et al. Synthesis of cationic flocculants by the inverse microemulsion copolymerization of acrylamide with 60% 2-acryloxyethyltrimethyl ammonium chloride in the monomer feed. II. influence of the formulation composition, hydrophilic-lipophilic balance, starting polymerization temperature, and reaction time[J]. Journal of Applied Polymer Science, 2007, 103:186–197.
    [45]汪艳.分散法制备阳离子聚丙烯酰胺(CPF)及应用[D].江南大学, 2008:5-7.
    [46]杨雷,罗英武,李伯耿.苯乙烯的间隙-半连续RAFT细乳液聚合[J].化工学报, 2008, 59:2149-2155.
    [47]詹晓力,石莹,张庆华,等.水性聚氨酯的原位细乳液聚合规律(I)加聚/水解反应的竞争[J].化工学报, 2009, 60(2):490-495.
    [48]魏鑫,钟宏.反相乳液聚合的研究进展[J].化学与生物工程, 2007, 24(12):12-14.
    [49]张洪涛,黄锦霞.乳液聚合新技术及应用[M].北京:化学工业出版社, 2007:102-110.
    [50] GB12005.2-89.
    [51] GB/T 12500.2-1989.
    [52]刘勇. AM/NVP/DMDAAC反相乳液聚合及性能评价[D].西南石油学院, 2005:13-14.
    [53] Martial Pabon, Joseph Selb, Francoise Candau, Robert G Gilbert. Polymerization of acrylamidein solution and inverse emulsion: number molecular weight distribution with chain transfer agent[J]. Elsevier Science, 1999, 40:3101-3106.
    [54]保海防,王宏力. AM-DMC反相乳液合成[J].河南化工, 2009, 26:28-30.
    [55] Irune Inchausti, Pedro M Sasia, Issa Katime. Copolymerization of dimethy laminoethylacrylate-methyl chloride and acrylamide in inverse emulsion[J]. Journal of Materials Science, 2005, 40:4833 -4838.
    [56]周诗彪,何明,郑清云,等.丙烯酰胺/α-甲基丙烯酸反相乳液共聚工艺条件探讨[J].湖南文理学院学报(自然科学版), 2009, 21(1):39-41.
    [57]车现红,徐妙侠,廖玖明,等.阳离子絮凝剂的反相乳液聚合研究[J].油气田地面工程, 2008, 27(6):24-25.
    [58]卢红霞,刘福胜,于世涛,等.阳离子聚丙烯酰胺制备条件研究[J].化学工程, 2008, 36(3): 72-75.
    [59]顾学芳,田澍,王南平,等.丙烯酰胺和阳离子型单体反相乳液共聚合及其絮凝性能[J].材料科学与工程学报, 2008, 26(6):887-890.
    [60] Zhu Jian-hang, Shao Feng, Zhan Yu-hang, et al. Acrylamide as cosurfactant and hydrotrope in the pseudoternary Span80-Tween 85/isopar M/water emulsion/microemulsion forming system[J]. Colloids and Surfaces A: Physicochem Eng.Aspects, 2006, 290:19-24.
    [61] Luc Armanet, David Hunkeler. Phase inversion of polyacrylamide-base inverse-emulsions: influence of inverting-surfactant type and concentration[J]. Journal of Applied Polymer Science, 2007, 103:3567-3584.
    [62]张克华,杨红丽,吴丽蓉,等.反相乳液法制备阳离子共聚物絮凝剂PDA[J].长江大学学报(自然科学版), 2009, 5(2):20-22.
    [63]李琪,蒋平平,卢云,等.反相乳液聚合法制备阳离子型高分子絮凝剂Poly(DAC-AM)[J].江南大学学报(自然科学版), 2006, 5(5):581-584.
    [64]沈一丁,张宇. P(DMC-AM)高分子絮凝剂的制备及絮凝性能[J].精细化工, 2005, 22(8):607-610.
    [65]高庆,张国杰,周庆涛,等. AM-DMC反相乳液共聚合研究[J].化学与生物工程, 2005, 2:40-42.
    [66] Martial Pabon, Joseph Selb, Francoise Candau, et al. Polymerization of acrylamide in solution and inverse emulsion: number molecular weight distribution with chain transfer agent[J]. Elsevier Science, 1999, 40:3101-3106.
    [67]惠泉,刘福胜,于世涛.阳离子聚丙烯酰胺反相胶乳的制备及其絮凝性能[J].化工进展, 2008, 27(6):887-889.
    [68]庄玉伟,王颖,赵根锁,等.反相乳液聚合法合成聚丙烯酰胺的研究[J].河南科学, 2007,25(1):33-36.
    [69]吴建军,马喜平,郑锟,等.反相乳液聚合合成AM/DMDAAC阳离子共聚物[J].石油化工, 2005, 34(2):140-143.
    [70]尚宏周.阳离子型聚丙烯酰胺的疏水改性及其应用研究[D].大连理工大学, 2008:27-30.
    [71]杨周州,潘敏. AM/DMC阳离子共聚物的反相乳液聚合研究[J].精细石油化工进展, 2007, 89(11):10-15.
    [72]陈洁,陈平,王宏力,等.反相乳液聚合法合成阳离子聚丙烯酰胺的研究[J].河南化工, 2008, 20:18-19.
    [73]高健磊,闫怡新,吴建平,等.城市污水处理厂污泥脱水性能研究[J].环境科学与技术, 2008, 31(2):108-111.
    [74] Smidt, Parravicini. Effect of sewage sludge treatment and additional aerobic poststabilization revealed by infrared spectroscopy and multivariate data analysis[J]. Bioresource technology, 2009, 100(5):1775-1780.
    [75] Witold Brostow, Sagar Pal, Ram P. Singh. A model of flocculation[J]. Materials Letters, 2007, 61:4381-4384.
    [76] Hui-Wen A. Cheng, Frances E. Lucy, Thaddeus K. Graczyk, et al. Fate of Cryptosporidium parvum and Cryptosporidium hominis oocysts and Giardia duodenalis cysts during secondary wastewater treatments[J]. Parasitol Res, 2009, 105:689-696.
    [77] J. Vaxelaire, P. Cezac. Moisture distribution in activated sludge: a review[J]. Water Research, 2004, 38(9):2215-230.
    [78] G. R.Chang, J. C. Liu. Co-condition and dewatering of chemical sludge and waste activated sludge, Wat Res, 2001, 35(3):786-794.
    [79]张幸涛.城市污泥的减量化和资源化研究[D].重庆大学, 2005:1-6.
    [80]万耀强.城市污水处理厂污泥过滤脱水性能的试验研究[D].郑州大学, 2007:11-12.
    [81] Y. Chen H, Yang G, Gu. Effect of acid and surfactant treatment on activates sludge dewatering and settling[J]. Water Res, 2001, 35(11):2615-2620.
    [82] Li X Y, Yang S F. Influence of loosely bound extracellular polymeric substances (EPS) on the flocculation, sedimentation and dewaterability of activated sludge[J]. Water Res, 2007, 41(5):1022-1030.
    [83] Park C, Muller C D, Abu-Orf M M, etal. The effect of wastewater cations on activated sludge characteristics:effects of aluminum and iron in floc[J]. Water Environ. Res, 2006, 78(1):31-40.
    [84] E. Neyens, J. Baeyens. A review of therml sludge pre-treatment processes to improve dewaterbility[J]. Journal of Hazardous Materials, 2003, 98:51-67.
    [85]鹿雯.阳离子表面活性剂对污泥脱水性能的改善和作用机理研究[D].昆明理工大学,2007:2-3.
    [86]吴敏,崔秀云,苗茂栋. zeta电位与菌悬液絮凝活性[J].化工学报, 2008, 59(9):2263-2269.
    [87] Werthera J, Ogada T. Sewage sludge combustion[J]. Progress in Energy and Combustion Science, 1999, 25:55-11.
    [88]蒋波.阳离子型表面活性剂对活性污泥脱水性能的影响及作用机理研究[D].上海交通大学, 2007:7-10.
    [89] Stasta P, Boran J, bar L, etc. Thermal processing of sewage sludge[J]. Applied Thermal Engineering, 2006, 26:1420-1426.
    [90] Cheng H F, Xu W P, Liu J L, etc. Application of composted sewage sludge (CSS) as a soil amendment for turfgrass growth[J]. Ecological Engineering, 2007, 29:96-104.
    [91]李海英,张学军,张书廷,等.利用污水厂污泥生产复混肥及对冬小麦增产效果研究[J].华南农业大学学报(自然科学版), 2006, 27(1):21-24.
    [92] Chan G Y S,Chu L M,Wong M H. Effects of leachaterecirculation on biogas production from landfill co-disposal of municipal solid waste, sewage sludge and marine sediment[J]. Environmental Pollution, 2002, 118:393-399.
    [93]张勤,张幸涛,陈滨,等.城市污水处理厂污泥调质用絮凝剂的选择[J].重庆建筑大学学报, 2006, 28(1):80-83.
    [94]杨风霞,齐新华,王建新,等. CPAM在污泥脱水工艺中的絮凝效果研究及应用[J].应用化工, 2007, 36(9):930-932.
    [95]吴敦虎,熊琼,林辉,等.有机高分子絮凝剂在污泥脱水中的应用研究[J].水处理技术, 2004, 30(4):116-118.
    [96] Hongzhou Shang, Jianping Liu, Yubin Zheng, et al. Synthesis, characterization, and flocculation properties of poly(acrylamide-methacryloxyethyltrimethyl ammonium Chloride-methacryloxypropyltrimethoxy silane)[J]. Journal of Applied Polymer Science, 2009, 111:1594–1599.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700