线性混合盲信源分离的算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在源信号和传输信道均未知的情况下,仅利用接收天线的观测信号提取或者恢复相互统计独立/不相关的源信号的过程,称为盲信源分离。盲信源分离的信号模型具有一般性,因此它在生物医学信号处理、音频和语音信号处理、多用户通信以及数据分析等领域,具有非常广阔的应用前景,引起了信号处理和神经网络等领域的专家和学者的广泛关注。本文围绕解决线性混合盲信源分离问题的代数方法和对比函数优化方法,着重研究了联合(块)对角化算法、张量分解算法以及自然梯度算法,并对相关信源盲分离问题进行了初步探索。
     论文的主要创新性成果总结如下:
     1.非正交联合对角化避免了预白化所导致的性能下降,但其解不一定唯一存在,论文提出并证明了非正交联合对角化盲分离算法的可辨识性条件。论文给出了非正交联合对角化解唯一存在的定义,并给出了解唯一存在的条件;从该条件出发分别推导得到了基于观测信号的二阶时延相关函数和高阶累积量函数的非正交联合对角化算法实现盲分离时对源信号统计特性的要求。论文的结论明确了非正交联合对角化盲分离算法的适用范围,从而进一步完善了该算法。
     2.通过对联合对角化的雅克比方法加以改造,论文提出了一种基于GIVENS旋转的正交联合块对角化算法。将GIVENS矩阵中参数的选择转化为一元四次三角函数多项式的优化问题,并调整旋转的循环顺序,即可实现正交联合块对角化。将提出的正交联合块对角化算法和预白化结合起来可以有效解决多维盲信源分离和线性卷积混合的盲信源分离问题。
     3.通过引入张量的塔克分解,提出了一种张量标准分解的快速算法,并将其应用于盲源分离欠定混合矩阵的估计问题中。张量标准分解的因子矩阵和欠定混合矩阵的估计一样,也存在幅值和排列顺序的不确定性,从而可以把欠定混合矩阵的估计转换为张量的标准分解问题。为了克服原有的标准分解算法运算复杂度高、所需时间长的缺点,论文引入张量的塔克分解将待分解张量压缩为维数更低的核张量,塔克分解因子可通过原张量mode-3矩阵的左奇异向量求得,然后运用交替最小二乘对该核张量进行标准分解,即可得到混合矩阵的估计。论文算法有效地降低了估计欠定混合矩阵的张量分解算法的运算量。
     4.激励函数估计的准确性是影响自然梯度算法收敛速度和稳态性能的一个重要因素,论文提出了一种采用函数逼近直接估计激励函数的方法。该方法用一组正交多项式的线性组合来逼近激励函数,逼近的程度用均方误差来衡量。线性组合的系数向量可运用分值函数的性质,通过最小化均方误差自适应学习得到。采用论文方法估计激励函数可使自然梯度算法获得更快的收敛速度。
     5.相关信源混合的盲分离问题是当前研究的难点,针对具备时域稀疏性的相关信源线性混合问题,论文提出了一种稀疏相关信源盲分离算法。对于在某些时刻只有一个源信号处于活跃状态的相关信源盲分离问题,一个源信号单独存在时刻的观测信号向量正是对混合矩阵某一列的估计,可以利用这一性质实现对混合矩阵的估计;一个源信号单独存在的时刻可以通过对两传感器观测信号比值的方差进行比较而确定。该算法为解决源信号具备稀疏性的相关信源盲分离问题提供了一个很好的思路。
Blind source separation(BSS) consists of recovering mutually independent/ uncorrelated but otherwise unobserved source signals from their mixtures without any prior knowledge of the channel. BSS has attracted growing attention in statistical signal processing and unsupervised neural learning society, since it is a fundamental problem encountered in various fields, such as biomedical signal processing, audio and acoustics, multi-user communications, data analysis, and so on. In this dissertation, we focus on the method of algebra and optimizing contrast function to linear mixture BSS, and we investigate the BSS algorithms of joint diagonalization(JD), joint block diagonalization(JBD), tensor decomposition and natural gradient. In addition, some preliminary exploration on BSS of correlated sources are carried out.
     The primary contributions included in this dissertation are summarized blow:
     1. Non-orthogonal joint diagonalization could avoid the performance degradation caused by pre-whitening, but the solution is not necessarily only. We analyzed the identifiability for nonorthogonal joint diagonalization(NJD). We proposed the uniqueness condition of the solution to NJD, and pointed out that uniqueness condition for NJD is that the vectors consisting of diagonal elements in the same position of diagonal matrix are pairwise linearly independent. From this proposition,the necessary and sufficient condition for BSS is deduced. For second-order statistics based BSS, the condition is that the source signals have not the identical autocorrelation shape. For higher-order cumulant, there is not Gaussian signal in sources. The above conclusion provides a mathematical foundation for the BSS methods based on the NJD.
     2. We proposed an algorithm of orthogonal joint block diagonalization based on GIVENS rotation. In this method, we improved Jacobi algorithm which perfect solve the problem of orthogonal joint diagonalization. We transformed the selection of GIVENS matrix’s parameter into the optimization of univariate quadruplicate trigonometric function and adjusted the cycle of rotation. So the new algorithm could solve the problem of orthogonal JBD. The new algorithm combination with pre-whitening procedure can solve Multidimensional blind source separation(MBSS) and convolutive BSS.
     3. In this paper, a fast algorithm of tensor canonical decomposition is proposed through tucker decomposition.Same as the estimation of underdetermined mixture matrix, there are permutation and scaling indeterminacies in factor matrix of canonical decomposition. So the estimation of underdetermined mixture matrix can be performed through tensor canonical decomposition. In order to overcome the flaw of high computational complexity and long running time of existing canconical decomposition algorithm,compress the tensor into lower order core one using tucker decomposition.The factor of tucker decomposition can be obtained by left singular value of the original tensor’s mode-3 matrix. The mixture matrix can be estimated by the alternating least squares based canonical decomposition of the core tensor. The proposed algorithm has much lower computational complexity with no performance loss than existing algorithm.
     4. The accuracy of activation function is an important factor that influences the convergent speed and stability of the natural gradient algorithm. A new estimating activation function approach based on the method of function approximation is proposed. In this approach, activation function was approximated by the linear combination of a set of orthogonal polynomials. The accuracy of approximating is measured by mean square error(MSE). Using the property of score function ,coefficients of the linear combination can be obtained by adaptive minimizing MSE. The new BSS algorithm is developed by substituting the estimated activation function into natural gradient iterative formula. Compared with the traditional one, convergent speed of the new algorithm is highly improved.
     5. Dependent sources BSS is a difficult problem in this research field. We proposed an algorithm which could resolve the problem of dependent sources BSS of time domain sparseness. For BSS of sparse souces, there are some instants at which only one source existing.The vectors of observation at these instants are the estimation of the corresponding columns at mixing matrix. Using this property, mixing matrix can be estimated correctly. These instants can be obtained by comparing variances of the ratio between two sensors. By this special way, the sparse dependent BSS problem can be resolved.
引文
[1] Jutten C, Herault J. Blind separation of sources, Part I: an adaptive algorithm based on neuromimetic architecture. Signal Process., 1991, 24(1): 1–20.
    [2] Comon P. Independent component analysis: a new concept? Signal Process., 1994,36(3): 287–314.
    [3] Baker S N, Kilner J M, Ahmed A. Use of a blind separation algorithm to remove electrical cross-talk from multiple EMG recordings. In Proc. J. of Physiology, 1998, 509-P: 168–172.
    [4] Zarzoso V, Nandi A K. Noninvasive fetal electrocardiogram extraction: Blind source separation versus adaptive noise cancellation. IEEE Trans. Biomed. Eng.,2001, 48(1): 12–17.
    [5] Joyce C A, Gorodnitsky I F, Kutas M. Automatic removal of eye movement and blink artifacts from EEG using blind component separation.Psychophysiology, 2004, 41(2): 313–325.
    [6] Mohamed A L, Saeid S, Jonathon C, et al. Localization of abnormal EEG sources using blind source separation partially constrained by the locations of known sources. IEEE Signal Process. Lett., 2006, 13(3):117–120.
    [7] Christian W H, Christopher J J. On semi-blind source separation using spatialconstraints with applications in EEG analysis. IEEE Trans. Biomed. Eng., 2006,53(12): 2525–2534.
    [8] De Lathauwer L, De Moor B, Vandewalle J. Fetal electrocardiogram extraction byblind source subspace separation. IEEE Trans. Biomed. Eng., 2000, 47(5): 567–572.
    [9] Vigario R, Sarela J, Jousmaki V, et al. Independent component approach to the analysis of EEG and MEG recordings. IEEE Trans. Biomed. Eng., 2000, 47(5): 589–593.
    [10] Tong Lang, Xu Guanghan, Kailath T.Blind identification and equalization based on second-order statistics: a time domain approach. IEEE Trans. Information Theory, 1994,40(2):340-349.
    [11] Xu, Guanghan , Tong Lang, Liu Hui. New algorithm for fast blind equalization of wireless communication channels. International Conference on Communications. New Orleans: 1994, pp.544-548.
    [12] Joutsensalo J,Ristaniemi T. Learning algorithms for blind multiuser detection inCDMA downlink. In Proc. IEEE 9th International Symposium on Personal,Indoor and Mobile Radio Communications. Boston:1998,pp.267-270.
    [13] Cristescu R, Ristaniemi T, Joutsensalo J, et al. Delay estimation in CDMA communications using a Fast ICA algorithm.In Proc. Int. Workshop on independent Component Analysis and Blind Signal Separation. Helsinki: 2000, pp.105-110.
    [14] Feng M,Kammayer K. Application of source separation algorithms for mobile communications environment. In Proc. Int. Workshop on independent Component Analysis and Blind Signal Separation.Aussois:1999,pp.431-436.
    [15] Deville, Y,Damour J,Charkani N. Improved multi-tag radio-frequency identification systems based on new source separation neural networks. In Proc. Int. Workshop on independent Component Analysis and Blind Signal Separation. Aussois: 1999, pp. 449-454.
    [16] Rahbar K, Reilly J P. A frequency domain method for blind source separation ofconvolutive audio mixtures. IEEE Trans. Speech Audio Process., 2005, 13(5): 832–844.
    [17] Parra L, Spence C. Convolutive blind separation for non-stationary sources. IEEE Trans. Speech Audio Process. 2000, 6(3): 320–327.
    [18] Torkkola K. Blind separation for audio signals-are we there yet? In Proc. Int. Workshop on independent Component Analysis and Blind Signal Separation. Aussois: 1999, pp.239-244.
    [19] He Z Y, Liu J, Yang L X.Blind separation of images using edgeworth expansion based on ICA algorithm. Chinese Journal of Electronics, 1999,8(3) :278-282.
    [20] Kolenda T, Hansen L, Sigurdsson S. Independent Components in text. German:Springer–verlag.2000, pp.235-256.
    [21] Ham Fredric M, Park, Sungjin; Wheeler, Joseph C. Separation of infrasound signals using Independent Component Analysis. Proceedings of SPIE - The International Society for Optical Engineering. Orlando: 2000,pp.418-429.
    [22] Parra L, Spence C. Convolutive blind separation for non-stationary sources. IEEE Trans. Speech Audio Process. 2000, 6(3): 320–327.
    [23] Rahbar K, Reilly J P. A frequency domain method for blind source separation of convolutive audio mixtures. IEEE Trans. Speech Audio Process., 2005, 13(5): 832–844.
    [24] Vigario R, Sarela J, Jousmaki M, et al. Independent component approach to theanalysis of EEG and MEG recordings. IEEE Trans.Bionmedical Engineering,2000,47(5):589-593.
    [25] Christian W H, Christopher J J. On semi-blind source separation using spatial constraints with applications in EEG analysis. IEEE Trans. Biomed. Eng., 2006, 53(12): 2525–2534.
    [26] Zarzoso V, Nandi A K. Noninvasive fetal electrocardiogram extraction: Blind source separation versus adaptive noise cancellation. IEEE Trans. Biomed. Eng., 2001, 48(1): 12–17.
    [27] De Lathauwer L, De Moor B, Vandewalle J. Fetal electrocardiogram extraction by blind source subspace separation. IEEE Trans. Biomed. Eng., 2000, 47(5): 567–572.
    [28] Sato A. A method of self-recovering equalization for multilevel amplitude modulation systems. IEEE Trans. Commun., 1975, 23(6): 679–682.
    [29] Godard D N. Self-recovering equalization carrier tracking in two-dimensional data communications systems. IEEE Trans. Commun., 1980, 28: 1867–1875.
    [30] Van Der Veen A J, Paulraj A. An analycal constant modulus algorithm. IEEE Trans. Signal Process., 1996, 44(5): 1136–1156.
    [31] Yang J, Werner J J, Dumont G A. The multimodulus blind equalization and its generalized algorithms. IEEE J. Select Areas Commun., 2002, 20(5): 997–1015.
    [32] Johnson C R, Schniter J P, Endres T J, et al. Blind equalization using the constant modulus criterian: A review. Proceedings of the IEEE, 1998, 86(10): 1927–1950.
    [33] Bartlett M S, Movellan J R, Sejnowski T J. Face recognition by independent component analysis. IEEE Trans. Neural Networks, 2002, 13(6): 1450–1464.
    [34] Back A D, Weigend A S. A first application of independent component analysis to extracting structure from stock returns. Int. J. Neural Syst., 1997, 8(4): 473–484.
    [35] Sorouchyari E. Blind separation of sources ,part III:Stability analysis. Signal Processing,1991,24(1):21–29.
    [36] Comon P, Jutten C,Herault J. Blind separation of sources,part II:problems statement. Signal Processing,1991,24(1):11–20.
    [37] Deville Y. A unified stability analysis of the Herault-Jutten source separation neural network. Signal Processing,1996,51(3):229–233.
    [38] Tong L, Liu R W, Soon V C, et al. Indeterminacy and identifiability of blind identification. IEEE Trans. Circuits and Systems, 1991,38(5): 499–509.
    [39] Tong L,Inouye Y, Liu R W.Waveform preserving blind separation of multipleindependent sources. IEEE Trans. Signal Process., 1993, 41(7): 2461–2467.
    [40] Cao X R, Liu R W. General approach to blind source separation. IEEE Trans. Signal Process., 1996, 44(3): 562–571.
    [41] Bell A J, Sejnowski T J. An information-maximization approach to blind separation and blind deconvolution. Neural Computation, 1995, 7(6):1129–1159.
    [42] Cichocki A, Unbehauen R, Robust neural networks with on-line learning for blind identification and blind separation of sources. IEEE Trans. Circuits and Syst.-I: Fundamental Theory and Applications, 1996, 43(21): 894–906.
    [43] Amari S. Nature gradient works effciently in learning. Neural Computation, 1998, 10(2): 251–276.
    [44] Pham D T, Garrat P. Blind separation of mixture of independent sources through a quasi-maximum likelihood approach. IEEE Trans. Signal Processing, 1997,45(7): 1712–1725.
    [45] Yang H, Amari S. Adaptive on-line learning algorithms for blind separation-maximum entropy and minimum mutual information, Neural Computation, 1997, 9(1): 1457–1482.
    [46] Cardoso J F. Infomax and maximum likelihood for blind source separation. IEEE Signal Process. Lett., 1997, 4(4):112–114.
    [47] Cardoso J F, Laheld H. Equivariant adaptive source separation. IEEE Trans. Signal Process. 1996 44(2): 3017–3029.
    [48] Oja E. The nonlinear PCA learning rule and signal separation: mathematical analysis Neurocomputing, 1997, 17(1): 25–46.
    [49] Karhunen J, Pajunen P, Oja E. The nonlinear PCA criterion in blind source separation: Relations with other approaches. Neurocomputing, 1998, 22: 5–20.
    [50] Pajunen P, Karhunen J. Least-squares methods for blind source separation based on nonlinear PCA, Int. J. Neural Syst., 1998, 8: 601–612.
    [51] Hyvarinen A, Oja E. A Fast fixed-point algorithm for independent component analysis Neural Computation, 1997, 9(7): 1483–1492.
    [52] Hyvarinen A. Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans. Neural Networks, 1999, 10(3): 626–634.
    [53] Cardoso J F. Blind beamforming for non Gaussian signals. IEE Proceedings F, 1993, 140(6): 362–370.
    [54] Belouchrani A, Abed-Meraim K, Cardoso J F, et al. A blind source separation technique using second order statistics. IEEE Trans. Signal Process., 1997, 45(2):434–444.
    [55] Belouchrani A, Cichocki A, A robust whitening procedure in blind source separation context Electronics Letters, 2000,36: 2050-2051.
    [56] Feng D Z, Zheng W X, Cichocki A. Matrix-Group algorithm via improved whitening process for extracting statistically independent sources from array signals, IEEE Trans. Signal Process., 2007, 55(3): 962–977.
    [57] Li X L, Zhang X D. Non-orthogonal approximate joint diagonalization free of degenerate solution. IEEE Trans. Signal Process., 2007, 55(51): 1803–1814.
    [58] Vollgraf R, Obermayer K. Quadratic optimization for simultaneous matrix diagonalization. IEEE Trans. Signal Process., 2006, 54(9): 3270–3278.
    [59] Souloumiac A. Nonorthogonal joint diagonalization by combining Givens and Hyperbolic rotations. IEEE Trans. Signal Process., 2009, 57(6): 2222–2231.
    [60] Afsari B. Simple LU and QR based non-orthogonal matrix joint diagonalization.Proc. 6th Int Conf ICA&BSS, Berlin Germany,2006,pp:1–7.
    [61] Wang Fuxiang, Liu Zhongkan, Zhang Jun. Nonorthogonal Joint Diagonalization Algorithm Based on Trigonometric Parameterization. IEEE Trans. Signal Process. 2007 ,55(11):5299–5308.
    [62] Sidiropoulos N D,Bro R, Giannakis G B. Parallel factor analysis in sensorarray processing. IEEE Trans. on Signal Processing,2000,48(8): 2377-2388.
    [63] Van Der Veen A J, Joint diagonalization via subspace fitting techniques. in Proc. IEEE Int. Conf. Acoustics Speech and Signal Process., Salt Lake City, UT, 2001, pp. 2773-2776.
    [64] Yeredor A. Non-orthogonal joint diagonalization in the least-squares sense with application in blind source separation. IEEE Trans. Signal Process., 2002, 50(7): 1545–1553.
    [65] Yellin D.Weinstein E.Multichannel signal separation: methods and analysis. IEEE Trans on Signal Processing, 1996, 44 (1): 106-118.
    [66] Sun X, Douglas S C. Multichannel blind deconvolution of arbitrary signals: adaptive algorithms and stabiltiy analyisis.Proceedings of 34th Asilomar Conference on Signals System Computer,2000,(2),pp:1412-1416.
    [67] Choi S, Hong H, Glotin H, Berthommier F.Multichannel signal separation for cocktail party speech recognition: a dynamic recurrent network. Neurocomputing, 2002,49: 299-314.
    [68] Amari S, Douglas S C, Cichocki A, et al. Multi-channel blind deconvolution andequalization using the natural gradient. IEEE Workshop on Signal Process. Advances in Wireless Commun., 1997, pp. 101–104.
    [69] Weinstein E, Feder M,Oppenheim A V.Multi-channel signal separation by decorrelation. IEEE Trans on Speech and Audio Processing, 1993, 1 (4): 405–413.
    [70] Gerven V S, Compernolle V D.Signal separation by symmetric adaptive decorrelation stability, convergence and uniqueness.IEEE Trans on Signal Processing. 1995,43(7): 1602–1612.
    [71] Kawamoto M, Matsuoka K,Ohnishi N.A method of blind separation for convolved non-stationary signals. Neurocomputing, 1998, 22: 157–171.
    [72] Bousbia-Saleh H, Belouchrani A, Abed-Meraim K. Jacobi-like algorithm for blind signal separation of convolutive mixtures. IEE Electronic Lett., 2001, 37(16): 1049–1050.
    [73] Ghennioui H, Fadaili E M, Thirion-Moreau N, et al, A nonunitary joint block diagonalization algorithm for blind separation of convolutive mixtures of sources, IEEE Signal Process. Lett., 2007, 14(11): 860–863.
    [74] Smaragdis,P.Blind separation of convolved mixtures in the frequency domain. Neurocomputing, 1998, 22: 21-34.
    [75] Araki S,Makino S, Nishikawa T, et al.Fundamental limitation of frequency domain blind source separation for convolutive mixture of speech. IEEE Trans on Speech and Audio Processing, 2003, 11 (2): 109-116.
    [76] Parra L, Spence C.Convolutive blind separation of nonstationary sources. IEEE Trans. on Speech Audio Processing 2000, 8 (3): 320-327.
    [77] Kurita S, Saruwatari H. Evaluation of blind signal separation method using directivity pattern under reverberant conditions. Proc. IEEE Acoustics, Speech, Signal Processing, 2000, pp: 3140-3143.
    [78] Ikram M Z, Morgan D R. A beamforming approach to permutation alignment for multichannel frequency-domain blind speech separation. Proc.IEEE International Conference on Acoustics, Speech and Signal Processing.2002,pp:881-884.
    [79] Saruwatari H, Kawamura T, Nishikawa T, et al.Blind source separation based on a fast-convergence algorithm combining ICA and beamforming. IEEE Trans on Speech and Audio Processing, 2006, 14 (2): 666-678.
    [80] Zhou Y , Xu B.Blind source separation in frequency domain. Signal processing, 2000, 83: 2037-2046.
    [81] Asano F, Ikeda S,Ogawa M, et al.Combined approach of array processing and independent component analysis for blind separation of acoustic signals.IEEE Trans on Audio, Speech and Language Processing, 2003, 11 (3): 204-215.
    [82] Murata N, Ikeda S, Ziehe A.An approach to blind source separation based on temporal structure of speech signals. Neurocomputing, 2001, 41: 1-24.
    [83] Anemuller J, Kollmeier B.Amplitude modulation decorrelation for convolutive blind source separation. Proceedings of the International Workshop on Independent Component Analysis and Blind Signal Separation, 2000, pp: 215-220.
    [84] Sawada H, Mukai R, Araki S, et al.A robust approach to the permutation problem of frequency-domain blind source separation. IEEE Proceedings of International Conference on Acoustics, Speech and Signal Processing(ICASSP'03), 2003, V, pp: 381-384.
    [85] Sawada H, Mukai R, Araki S.A robust and precise method for solving the permutation problem of frequency-domain blind source separation.IEEE Trans on Speech and Audio Processing, 2004, 12 (5): 530-538.
    [86] Hyvarinen A, Pajunen P. Nonlinear independent component analysis: Existence and uniqueness results. Neural Networks, 1999, 12: 429-439.
    [87] Ristaniemi T. Synchronization and Blind Signal Processing in CDMA Systems. PhD thesis, Univ. of Jyvaskyla, Jyvaskyla, Finland, 2000.
    [88] Smaragdis P. Blind separation of convolved mixtures in the frequency domain.Neurocomputing, 1998, 22:21-34.
    [89] Yang H H, Amari S, Cichocki A.Information back-propagation for blind separation of sources from nonlinear mixture. in Proc. Int. Conf. on Neural Networks, 1997,pp. 2141-2146.
    [90] Pajunen P, Hyvarinen A, Karhunen J K.Nonlinear blind source separation by self-organizing maps.in Proc. Int. Conf. on Neural Information Processing, Hong Kong, 1996,pp.1207-1210.
    [91] Jutten C, Karhunen J. Advances in nonlinear blind source separation.Proceedings of ICA-2003, April 2003, Nara Japan.
    [92]凌燮亭.近场宽带信号源的盲分离.电子学报. 1996, 24(7):87-92.
    [93]何振亚,刘琚,杨绿溪.盲均衡和信道参数估计的一种ICA和进化计算方法.中国科学E辑.2000, 30(1):1-7.
    [94] He Z Y, Liu J, Yang L X.Blind separation of images using edgeworth expansionbased on ICA algorithm. Chinese Journal of Electronics, 1999,8(3):278-282.
    [95] He Z Y, Yang L, Liu J, Lu Z, He C, Shi Y.Blind source separation using clustering-based multivariate density estimation algorithm. IEEE Trans. Signal Processing,,2000,48(2): 575-579.
    [96] Zhou G, Xie S, Yang Z. Nonorthogonal approximate joint diagonalization with well conditioned diagonalizers. IEEE Trans. Neural Networks., 2009, 20(11): 1810–1819.
    [97] He Z, Xie S, Ding S X, et al. Convolutive blind source separation in the frequency domain based on sparse representation. IEEE Trans. Audio Speech Langua. Process., 2007, 15(5): 1551–1563.
    [98]何昭水,谢胜利,傅予力.稀疏表示与病态混叠盲分离.中国科学E辑信息科学.2006,36(8):864-879.
    [99] Zhu X L, Zhang X D, Ding Z Z, Jia Y. Adaptive nonlinear PCA algorithms for blind source separation without prewhitening. IEEE Trans. Circuits Syst. I: Regular Papers, 2006, 53(3): 745–753.
    [100] Li X L, Zhang X D. Sequential blind extraction adopting second-order statistics. IEEE Signal Process. Lett., 2007, 14(1): 58–61.
    [101] Zhu X L, Zhang X D, Ye J M. Natural gradient-based recursive least-squares algorithm for adaptive blind source separation. Science in China, Ser-F, 2004, 47(1): 55–65.
    [102] Zhu X L, Zhang X D. Adaptive RLS algorithm for blind source separation using a natural gradient, IEEE Signal Process. Lett., 2002, 9(12): 432–435.
    [103] Ye J M, Zhu X L, Zhang X D.Adaptive blind source separation with an unknown number of sources. Neural Computation, 2004,16(8):1641-1660.
    [104] Ye J M, Zhang X D, Zhu X L.Blind source separation with unknown and dynamically changing number of source signals. Science in China, Ser. F, 2006, 49(5): 627–638.
    [105] Zhu X L, Ye J M , Zhang X D.A fixed-point nonlinear PCA algorithm for blind source separatiom. neurocomputing, 2005, 1-3: 264–272.
    [106] Zhu X L, Zhang X D, Ye J M.A generalized contrast function and stability analysis for overdetermined blind separation of instantaneous mixtures.Neural Computation, 2006, 18(3): 709–728.
    [107]冶继民,张贤达,朱孝龙.信源数目未知和动态变化时的盲信号分离.中国科学(E辑), 2005, 35(12): 1277–1287.
    [108]冶继民,张贤达,金海红.超定盲信号分离的半参数统计方法.电波科学学报.2006, 21(3): 331–336.
    [109]冶继民,金海红,楼顺天,张贤达.未知源信号数目投影自然梯度盲信号分离算法.西安电子科技大学学报.2006, 33(2): 190–194.
    [110] Xu X, Feng D Z, Zheng W, et al. Convolutive blind source separation based on joint block Toeplitzation and block-inner diagonalization. Signal Process., 2010, 90(1): 119–133.
    [111]张贤达.矩阵分析与应用.北京:清华大学出版社,2004.
    [112]刘踞,聂开宝,何振亚.非线性混叠信号的可分离性及分离方法研究.电子与信息学报.2003,25(1):54-61.
    [113] Taleb A, Jutten C. Source separation in post-nonlinear mixtures. IEEE Trans. Signal Processing, 1999,47(10),: 2807-2820.
    [114] Woo W L,Khor L C.Blind restoration of nonlinearly mixed signals using multilayer polynomial neural networks. Proc.IEE on Vison,Image and Signal Processing.2004, 151(1), pp.51-61.
    [115] Tan Y, Wang J,Zurada M. Nonlinear blind source separation using a radial basis function network. IEEE Trans. Neural Network. 2001,12(1): 124-134.
    [116] Hyvarinen A, Karhunen J,Oja E.Independent Component Analysis. Helsinki: JohnWiley&Son Press,2001.
    [117]杨福生,洪波.独立分量分析的原理与应用.北京:清华大学出版社,2006.
    [118]张贤达.现代信号处理.第二版.北京:清华大学出版社,2002.
    [119] Kolda T G, Bader B W. Tensor Decompositions and Applications. SIAM Review, 2009,51(3): 455–500.
    [120] Jutten C, Herault J.Blind separation of sources, Part I: an adaptive algorithm based on neuromimetic architecture. Signal Processing.1991, 24:1-20.
    [121] Amari S, Cichocki A, Yang H H. A new learning algorithm for blind signal separation. in Advances in Neural Information Process. Systems, Cambridge, MA: MIT press, 1996, 8: 757–763.
    [122] Pham D, Garrat P, Jutten C. Separation of a mixture of independent sources through a maximum likelihood approach. In Proc. ERSIPCO, 1992: 771–774.
    [123] Cardoso J F.Blind signal separation: Statistical principles.Proc. IEEE, 1998, 86(10): 2009-2025.
    [124] Cardoso J F.Estimating function for source separation. ICASSP'97, 1997,5,pp. 3449-3452,.
    [125] Amari S, Cardoso J F.Blind source separation: semiparametric statistical approach.IEEE Trans. Signal Processing. 1997, 45(11):2692-2697.
    [126] Hoff T P, Lindgren A G, Kaelin A N.Transpose properties in the stability and performance of the classic adaptive algorithms for blind source separation and deconvolution. Signal Processing. 2000,80(9):1807-1822.
    [127] Cichocki A, Sabala I, Choi S, Orsier B., and Szupiluk R. Self-adaptive independent component analysis for sub-Gaussian and super-Gaussian mixtures with unknown number of source signals and additive noise. Int. Symp. on Nonlinear Theory and applications (NOLTOA’97). Honolulu, HI, 1997,pp. 731-734.
    [128] Amari S, Chen T P, Cichocki A. Stability analysis of learning algorithms for blind source separation. Neural Networks.1997, 10(8): 1345–1351.
    [129] Amari S, Cichocki A. Adaptive blind signal processing–neural network approaches. Proceedings of the IEEE. 1998, 86(10): 2026–2048.
    [130] Cardoso J F. On the stability of source separation algorithms. J. of VLSI Signal Processing. 2000, 26(1): 7-14.
    [131] Belouchrani A, Amin M G. Blind source separation based on time-frequency signal representations. IEEE Trans. Signal Process.1998, 46(11): 2888–2897.
    [132] Giulieri L, Ghennioui H, Thirion-Moreau N. Nonorthogonal joint diagonalization of spatial quadratic time-frequency matrices for source separation. IEEE Signal Process. Lett. 2005, 12(5): 415–418.
    [133] Fevotte C, Doncarli C. Two contributions to blind source separation using time-frequency distributions. IEEE Signal Process. Lett. 2004, 11(3): 386–389.
    [134] Belouchrani A, Abed-Meraim K, Amin M G. Blind separation of nonstationary sources IEEE Signal Process. Lett .2004, 11(7): 605–608.
    [135] Belouchrani A, Abed Meraim K, Amin M, et al. Joint anti-diagonalization for blind source separation. IEEE Int. Conf. Acoustics, Speech Signal Process (ICASSP). Utah, Salt Lake City. 2001, pp. 2789–2792.
    [136]张华.基于联合(块)对角化的盲分离算法研究.博士学位论文,西安电子科技大学,2010.
    [137] Zhang Hua, Feng Da-zheng , Zheng Wei-xing. A study of identifiability for blind source separation via nonorthogonal joint diagonalization. IEEE International Symposium on Circuits and Systems, Seattle, Washington, USA ,2008, pp. 3230-3233.
    [138] Ziehe A, Laskov P, Nolte G, et al. A fast algorithm for joint diagonalization with non-orthogonal transformations and its application to blind source separation, J. Mach. Learn. Res. 2004, 5: 777–800.
    [139] Pham D T. Joint approximate diagonalization of positive definite Hermitian matrices. SIAM J. Matrix Anal. Appl., 2001, 22(4): 1136–1152.
    [140]张华,冯大政,聂卫科,徐先峰.非正交联合对角化盲源分离算法.西安电子科技大学学报,2008,35(1):27-31.
    [141]张伟涛,楼顺天,张延良,非对称非正交快速联合对角化算法.自动化学报, 2010, 36(6): 829–836.
    [142] Stoica P and Selen Y. Cyclic minimizers, majorization techniques, and the expectation-maximization algorithm: a refresher. IEEE Signal Processing Magazine, 2004, 21(1): 112-114.
    [143] Joho M and Mathis H. Joint diagonalization of correlation matrices by using gradient methods with application to blind signal separation. In: Proceedings of IEEE Sensor Array and Multichannel Signal Processing Workshop, 2002, 273-277.
    [144] Joho M, Rahbar K. Joint diagonalization of correlation matrices by using Newton methods with application to blind signal separation. In Proc. Sensor Array and Multichannel Signal Process. Workshop, 2002, pp. 403–407.
    [145] Yeredor A, Ziehe A, Muller K-R, Approximate joint diagonalization using a natural Gradient approach. In Proc. ICA, Lecture Notes in Computer Science: Independent Component Analysis and Blind Source Separation, Granada, Spain, Sep. 2004, pp. 89–96.
    [146] Li X L, Zhang X D. Non-orthogonal approximate joint diagonalization free of degenerate solution. IEEE Trans. Signal Process., 2007, 55(51): 1803–1814.
    [147] Zhou G, Xie S, Yang Z. Nonorthogonal approximate joint diagonalization with well conditioned diagonalizers. IEEE Trans. Neural Networks., 2009, 20(11): 1810–1819.
    [148] Souloumiac A. Nonorthogonal joint diagonalization by combining Givens and Hyperbolic rotations. IEEE Trans. Signal Process., 2009, 57(6): 2222–2231.
    [149] Giorgio T, Rasmus B. A comparison of algorithms for fitting the PARAFAC model. Computational Statistics and Data Analysis, 2006, 50(7):1700–1734.
    [150] De Lathauwer L. A link between the canonical decomposition in multilinear algebra and simultaneous matrix diagonalization. SIAM Journal on MatrixAnalysis and Applications, 2006 (28):642–666.
    [151]李细林.盲信号分离中的联合对角化和相位恢复问题研究.博士论文.清华大学,2008.
    [152] Comon P. Canonical tensor decompositions[R].Technology report, Laboratory of Information Signal System, French National Center for Scientific Research, June 2004.
    [153] Ten Berge J M F, Sidiropoulos N D. On uniqueness in CANDECOMP /PARAFAC. Psychometrika, 2002 (67):399–409.
    [154] Hua Zhang,Da-Zheng Feng, Wei Xing Zheng, A study of identifiability for blind source separation via nonorthogonal joint diagonalization. IEEE International Symposium on Circuits and Systems, 2008:3230-3233.
    [155] Eriksson, J,Koivunen, V. Identifiability, separability, and uniqueness of linear ICA models.IEEE Signal Processing Letter, 2004, 11(7): 601–604.
    [156] Taleb A. An algorithm for the blind identification of n independent signals with 2 sensors. Proc. ISSPA"01, 2001: pp.5–8.
    [157] Taleb A, Jutten C.On underdetermined source separation.Proc. ICASSP"99, vol. 3, 1999: pp.1445–1448.
    [158] Cardoso J F. Super-Symmetric decomposition of the fourth-order cumulant tensor. blind identification of more sources than sensors. Proc. ICASSP"91, 1991: pp.3109–3112.
    [159] Lee T W, Lewicki M S, Girolami M,et al. Blind source separation of more sources than mixtures using overcompelete representations. IEEE Signal Processing Letter.1999,6(4):87–90.
    [160] Zibulevsky M, Pearlmutter B A. Blind source separation by sparse decomposition. Neural Computation. 2001,13(4):863–882.
    [161] Pearlmutter B A, Potluru V K. Sparse separation: Principles and tricks. Proc .SPIE, Independent Component Analyses,Wavelets, and Neural Networks, vol 5102, 2003: pp.1–4
    [162] Li Yuanqing, Amari S, Cichocki A,et al.Underdetermined blind source separation based on sparse representation. IEEE Trans. Signal Process.2006, 54(2): 423–437.
    [163] Jourjine A, Rickard S, Yilmaz O. Blind separation of disjoint orthogonal signals: Demixing N sources from 2 mixtures. in Proc. 2000 IEEE Int. Conf. Acoustics, Speech, Signal Processing (ICASSP), vol. 5, Istanbul, Turkey, 2000: pp.2985–2988.
    [164] Yilmaz O, Rickard S.Blind separation of speech mixtures viatime-frequency masking.IEEE Trans. Signal Process. 2004, 52(7):1830–1847.
    [165] Abrard F, Deville Y, White P.From blind source separation toblind source cancellation in the underdetermined case: A new approachbased on time-frequency analysis. in Proc. 3rd Int. Conf. IndependentComponent Analysis Signal Separation (ICA), San Diego, CA, 2001:pp. 734–739.
    [166] Abrard F, Deville Y.Blind separation of dependent sources using the time-frequency ratio of mixtures approach. the 7th Int. Symp. Signal Processing Applications (ISSPA), Paris, France, Jul., 2003:pp.1-4.
    [167] Abrard F, Deville Y.A time-frequency blind signal separation method applicable to underdetermined mixtures of dependent sources. Signal Process.2005, 85(7):1389–1403.
    [168] Li Yuanqing, Cichocki A, Amari S. Analysis of sparse representation and blind source separation.Neural Computation.2004,16:1193–1234.
    [169]何昭水,谢胜利,傅予力.稀疏表示与病态混叠盲分离.中国科学E辑信息科学.2006,36(8):864-879.
    [170] De Lathauwer L, Joséphine Castaing.Blind Identification of Underdetermined Mixtures by Simultaneous Matrix Diagonalization. IEEE Transactions on Signal Processing, 2008,56(3): 1096–1105.
    [171] Cardoso J F.Multidimensional Independent Component Analysis. Proceeding of ICASSP’98,Seattle,WA, 1998:pp.12-15.
    [172] Theis F J. Multidimensional Independent Component Analysis Using Characteristic Functions. In Proc.EUSIPCO 2005, Antalya, Turkey, 2005:pp.1-4.
    [173] Theis F J. Blind signal separation into groups of dependent signals using joint block diagonalization. IEEE Int. Symp. Circuits Systems, Kobe: 2005, pp. 5878–5881.
    [174] Buchner H, Aichner R, Kellermann W. A generalization of blind source separation algorithms for convolutive mixtures based on second-order statistics. IEEE Trans. Speech and Audio Process., 2005, 13(1): 120–134.
    [175] Ghennioui H, Fadaili E M, Thirion-Moreau N, et al, A nonunitary joint block diagonalization algorithm for blind separation of convolutive mixtures of sources, IEEE Signal Process. Lett., 2007, 14(11): 860–863.
    [176] Cardoso J F, Souloumiac A. Jacobi angles for simultaneous diagonalization.SIAM J. Matrix Anal. Appl., 1996, 17(1): 161–164.
    [177] Mansour A, Jutten C, Loubaton P. Adaptive subspace algorithm for blind separation of independent sources in convolutive mixture. IEEE Trans. Signal Process., 2000, 48(2): 583–586.
    [178] Xu X, Feng D Z, Zheng W, et al. Convolutive blind source separation based on joint block Toeplitzation and block-inner diagonalization. Signal Process., 2010, 90(1): 119–133.
    [179] Bousbia-Saleh H, Belouchrani A, Abed-Meraim K.Blind separation of convolutive mixtures using joint block diagonalization. Proceeding of ISSPA’2001, Kuala Lumpur,Malaysia,2001:pp.13-16.
    [180]徐先峰,冯大政.一种充分利用变量结构的解卷积混合盲源分离新方法.电子学报.2009,37(1):112-117.
    [181] Cichocki A, Amari S. Adaptive blind signal and image processing. John Wiley & Sons Inc:2002.
    [182] Pham D T.Blind separation of instantaneous mixture of sources via an independent component analysis. IEEE Trans. Signal Process., 1996, 44(11): 2768–2779.
    [183] Lee T W, Girolami M, Sejnowski T J.Independent Component Analysis Using an Extended Infomax Algorithm for Mixed Subgaussian and Supergaussian Sources.Neural Computation,1999, 11(2):417-441.
    [184] Roberts S J, Husmeier D, Rezek I, et al. Bayesian approaches to gaussian mixture modeling. IEEE Trans. Pattern and Machines Intelligence, 1998, 20(11): 1143–1142.
    [185] Girolami M. An alternative perspective on adaptive independent component analysis algorithms. Neural Computation, 1998, 10(8):2103-2114.
    [186]徐士良.数值分析与算法.北京:机械工业出版社,2007.
    [187] Samareh S, Massoud B, Christian J. Quasi-optimal EASI algorithm based on the Score Function Difference(SFD).Neurocomputing, 2006 ,69(13): 1415–1424.
    [188] Cichocki A. General component analysis and blind source separation methods for analyzing multichannel brain signals. in: M.J.Wenger, C. Schuster (Eds.), Statistical and Process Models of Cognitive Aging, Notre Dame Series on Quantitative Methods,Erlbaum, Mahwah, NJ, 2007.
    [189] Cichocki A. Blind source separation: new tools for extraction of source signals and denoising, Proceedings of the SPIE 5818, Orlando,FL, 2005, pp. 11–25.
    [190] Cichocki A,Georgiev P. Blind source separation algorithms with matrix constraints, IEICE Trans. Fund. Electron. Commun. ComputSci. 2003, E86-A(3) :522–531.
    [191] Tanaka T, Cichocki A.Subband decomposition independent component analysis and new performance criteria, in: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2004), Montreal, Canada, 2004, pp. 541–544.
    [192] Zhang K, Chan L W.An adaptive method for subband decomposition ICA, Neural Comput.2006,18(1): 191–223.
    [193] Zhang K, Chan L W.Enhancement of source independence for blind source separation, Lecture Notes in Computer Science .2006(3889):731–738.
    [194] Kopriva I, Sersic D. Wavelet packets approach to blind separation of statistically dependent sources. Neurocomputing. 2008 (71):1642–1655.
    [195] Caiafa C F, Proto A N. Separation of statistically dependent sources using an L2-distance non-Gaussianity measure. Signal Processing. 2006 (86): 3404–3420.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700