多分量线性调频信号的时频分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在对大量实测ISAR飞机成像数据的研究中,我们发现,由于飞机的飞行速
    度及姿态的变化,目标各散射点回波是非平稳的,许多情况下,可近似为多分量
    线性调频信号。因此,对于机动飞行的飞机,传统的傅立叶交换成像法已不适用,
    而是要设法获得各散射点正确的时频结构,进行目标的瞬时成像。
     线性调频信号这种大时宽带宽积信号,不仅常出现在,也广泛应用于雷达、
    声纳、通信、医学、地震探测等等众多信号处理领域中,因而,对线性调频信号
    展开讨论,具有理论意义和实用价值。
     对于非平稳信号,时频分布提供了一种更为直接且有效的手段,以获得其时
    频结构。然而,在有多分量信号存在时,时频分布中交叉项的出现,却严重影响
    了信号时变谱规律的可分辨性和可解释性。抑制交叉项,一直是时频分布研究领
    域中一个棘手的问题,也是时频分布得以更广泛应用于各信号处理领域所要克服
    的困难。
     本文针对多分量线性调频信号,着重探讨如何抑制多分量线性调频信号时频
    分布中交叉项的问题,以期获得具有高时频分辨力的时频结构图。全文主要从两
    个角度出发来抑制交叉项的影响。一是基于模糊域自适应信号来设计核函数,获
    得自适应核的时频分布;二是将多分量信号分解,并分别对被分解后的各子分量
    进行时频分析。主要工作概述如下:
    ◇ 针对多分量线性调频信号,提出了一种新的自适应核时频分布—自适应高斯
     核分布(AGD),采用高斯型核函数,并基于信号模糊域的特点,自适应设
     计核函数,给出了简单而有效的核函数估计准则。仿真数据及实测ISAR飞
     机成像数据的实验结果表明,采用自适应高斯核分布,能够较好地抑制多分
     量线性调频信号时频分布中的交叉项,同时,保持了较高的信号时频聚集度。
     利用AGD的时频分析结果对实测数据进行瞬时成像,能够较清晰地反映目
     标的飞行姿态。
    ◇ 以自适应高斯核分布为例,分析了基于模糊域自适应设计核函数的时频分布
     以及核参数的估计对信号自身项及交叉项的影响,从而说明自适应核相对于
     固定核的优势所在。总结了基于模糊域自适应设计多分量线性调频信号核函
    
    
    -11 多分量线性调频信号的时频分析
    一
     数的一般方法,分析了不同类型核函数的选取对时频分布的影响,进而说明
     己有的一些基于模糊域自适应设计核函数的方法所存在的缺陷。
    4 借鉴“ CLEAN”快速谱估计算法的思想。针对各分量具有不同持续长度、包
     络缓变的多分量线性调频信号,提出了一种基于频域“CLEAN”分离多分量
     信号,从而抑制其Wgner分布中交叉项的方法,简称其为FC-WVD。详细介
     绍了该方法的原理及实现过程,并讨论了基于信号频域采用滤波技术提取信
     号分量对信号中各分量及其WgnCr分布的作用和影响。仿真及实测ISAR成
     像数据的实验结果表明,FC-WVD在提高信号时频分辨力、抑制交叉项的干
     扰方面,有着令人较为满意的表现。该方法也适用于处理近似的正弦或线性
     调频信号,这一点在实际应用中更有意义。
    个 分析了频域“ CLEAN”与分数阶傅立叶变换和 Radon-Wgner变换(RWT)
     的关系,并讨论了FC-WVD与RWT-滤波反投影的相似与不同。这些分析,
     使得FC-WVD更具有理论意义。
    个 依照自适应投影分解法的思想,针对多分量线性调频信号,以高斯型线性调
     频小波作为基函数,提出一种简单而有效的自适应线调频小波基估计算法。
     分析了算法的适用范围,实验结果证明了算法的有效性和准确性。采用该算
     法可更好地恢复信号中各分量的时频信息,因而对各基函数分别进行时频分
     析,可得到原信号具有高时频分辨力的时频分布。
The studies of real-world ISAR imaging data of airplanes indicate that, because of
     the time-varying speeds and poses of the targets, the scatters?signals are nonstationary,
     which in many cases can be approximated as multicomponent Linear Frequency-
     Modulated signals( LFM, Chirp). Therefore, for the maneuvering targets, it is necessary
     to obtain the correct time-frequency structure of each scatter for instantaneous imaging.
    
     LFM signal not only appears but also is widely used in multitudinous signal
     processing areas, such as Radar. Communications, Sonar, Medicine, and so on, which
     makes its studies meaningful in both theories and applications.
    
     Time-frequency Distribution (TFD) provides a direct and effective way to analyze
     the time-frequency structures of nonstationary signals. The crossterms, however, which
     arise in the TFD of multicomponents, make it difficult to identify and explain the tine-
     varying spectrum of each component. Suppression of the crossterms is always -a hot
     potato in time-frequency analysis.
    
     With respect to multicomponent LFM signals, the dissertation is mainly concerned
     with looking for ways to suppress the crossterms appearing in the TFD of
     multicomponent signals, in order to obtain a TFD with high time-frequency resolution.
     The following is the summarization of the main work:
    
    
     <~- With respect to multicomponent LFM signals, a new kind of TFD-ada~ve
     Gaussian kernel distribution (AGD), is proposed. in which the Gaussian kem~l is
     designed adaptively based on the signals ambiguity function. A simple and
     effective algorithm to estimate the kernel is given, and the experiments with
     simulated and real-world data confirm the effects of the AGD in suppressing
     crossterms and keeping high time-frequency concentration.
    
     ~- With the AGD as an example. the influence of the adaptive-kernel distribution
     based on ambiguity domain and the kernel estimation on the crossterms and
     signalterms is analyzed, which consequently explains the advantages of adaptive
     kernels over fixed kernels. The method to adaptively design kernel based on the
    
    
    
    
    
    
    
    
    
     -Iv-
     ambiguity function of muliticomponent LFM signals is generalized and the effect
     of different kind of kernels on TFD is also discussed.
     ~ Based on the 揅LEANZ~ algorithm, with respect to muliticomponent LFM signals.
     in which each component has slowly-varying envelope and different time duration,
     a new method called FC-WVD to suppress crossterrns in Wigner distribution is
     presented. The basic idea of FC-WVIY is to first decompose the multicomponents
     into separate subcomponents by use of band-pass filters with the 揅LEAN?
     algorithm in frequency domain, and then each subcomponent is analyzed using
     TFD. The influence of the band-pass filter on different component and its Wigner
     distribution is discussed in detail, and the experiment with simulated and real-
     world cl~a show satisfactory results of the FC-WVD in improving the time-
     frequency resolution of multieomponent signals. FC-WVD is also suitable for the
     time-frequency analysis of signals close to LFMs?or sinusoids.
     ~ The relationship between the decomposition algorithm based on the 揅LEAN?in
     the frequency domain and the Fractional Fourier Trax~form (FRFT), the Radon-
     Wigner Transform (RWT) is analyzed. Furthermore, the comparison between FC-
     WVD and RWI?Filtered Back-projection algorithm is n~mde. These work makes the
     FC-WVD method more meaningful
引文
[1] Kh.Rosenbach, J.schiller, "Construction and test of a classifier for noncooperative air-target identification based on 2-D ISAR images", Proc. International Radar Symposium(IRS'98),Munich, Germany, Sept. 15-17,1998, pp. 1023-1033.
    [2] Kh.Rosenbach, J.Schiller, "Identification of aircraft on the basis of 2-D-radar images", Proc.IEEE International Radar conf., 1995,5.
    [3] W.M.Brown, "Synthetic aperture radar", IEEE Trans.AES,Vol.3, NO.2,pp217-229,1967.
    [4] W.M.Brown and Porrcello, "An introduction to synthetic aperture radar", IEEE Spectectrum,Vol.4,Sept. Pp.52-62,1969.
    [5] 张澄波,综合孔径雷达,科学出版社,1989。
    [6] 张直中,微波成像技术,科学出版社,1990。
    [7] M.J. Prickect and C.C.Chen, "Principle of inverse synthetic aperture radar(ISAR)imaging",EASCON record, pp.340-345,1980.
    [8] C.C.Chen and H.C.Andrews, "Target-motion-induced radar imaging", IEEE Trans. AES,Vol.16, No.1,pp.2-14,1980.
    [9] K.K.Erland, "application of inverse synthetic aperture radar on aircraft", Proc. Of the international conference on radar, Paris,pp618-623,1984.
    [10] S.Krishnamachar and W.J.Williams, "Adaptive kernel design in the generalized marginals domain for time-frequency analysis," in Proc. IEEE ICASSP, 1994, Vol.Ⅲ.
    [11] D.L.Jones and R.G.Baraniuk,"An adaptive optimal-kernel time-frequency representation," IEEE Trans. SP, Vol.43, pp.2361-2371, Oct.1995.
    [12] P. Fladrin, "Time-frequency processing of bat sonar signals," in Proc. Animal Sonar Systems Syrup., 1988.
    [13] 丁鹭飞,张平,雷达系统,西北电讯工程学院出版社,1984。
    [14] Carles V.Jakowatz, Jr., Daniel E. Wahl, Paul H. Eichel, Dennis C. Ghighlia, Paul A. Thompson, Sandia National Laboratories, Albuquerque, New Mexico, "Spotlight-mode synthetic aperture radar: a signal processing approach", KLUWER ACADEMIC PUBLISHERS, Boston/London/Dordrecht, pp51-61,1996.
    [15] Xiang-Gen Xia, "System identification using chirp signals and time-variant filters in the joint time-frequency domain", IEEE Trans. SP. Vol.45,No.8,pp.2072-2084,1997.
    
    
    [16] B.Boushash and H.J. Whitehouse, "Seismic applications of the Wigner-Ville distribution," in Proc. IEEE Int. Conf. Circuits Syst.,1986, pp.34-37.
    [17] C.Sun, Z. Bao, "SAR Motion through Resolution Cell Compensation and Feature Extraction by a RELAX-based Algorithm." Proceeding of SPIE on Algorithm for Synthetic Aperture Radar Imagery VI, Vol. 3721, Orlando, Florida. pp58-69, April 1999.
    [18] Graeme Jones and Boualem Boashash," Generalized instantaneous parameters and window matching in the time-frequency plane", IEEE Trans. SP, Vol.45, No.5, pp.1264-1275, 1997.
    [19] Steven B.hearon and Moeness G.Amin,"Minimum-variance time-frequency distribution kernels", IEEE Trans. SP,Vol. 43, No.5, pp.1258-1261,1995.
    [20] A.Salim Kayhan, "Difference equation representation of chirp signals and instantaneous frequency/amplitude estimation", IEEE Trans. SP, Vol.44, No. 12, pp2948-2958, 1996.
    [21] S.McCandles, "An algorithm for automatic formant extraction using linear prediction spectra," IEEE Trans. Acoust., Speech, Signal Processing, Vol. 22, No.2, pp145-141,1974.
    [22] Y. Grenier," time-dependent ARMA modeling of nonstationary signals," IEEE Trans.Acoust., Speech, Signal Processing, Vol. 31, No.4, pp899-911,1983.
    [23] K.C.Sharman and B.Friedlander," Time-varying auto regressive modeling of a class of nonstationary signals," in Proc. IEEE ICASSP' 84, pp.22.2.1-22.2.4.
    [24] N.Martin," An AR spectral analysis of nonstationary signals," Signal Processing,Vol. 10, No.1, pp.61-74, 1986.
    [25] L.科恩 著,白居宪 译,时-频分析:理论与应用,西安交通大学出版社,1997。
    [26] R.Koenig, H.K.Dunn, and L.Y. Lacy," The sound spectrograph," J. Acoust Soc. Am.,Vol.18,pp.19-49,1946.
    [27] R.Altes, "Detection, estimation and classification with spectrograms," J.Acoust Soc.Am., Vol.67, pp.1232-1246, 1980.
    [28] J.F. Allen and L.R.Rabiner," A unified approach to short-time Fourier analysis and synthesis," Proc.IEEE, Vol.65, pp.1558-1564,1977.
    [29] Xiaobing Sun and Zheng bao," Adaptive spectrogram for time-frequency signal analysis," 8th IEEE Workshop on Statistical Signal and Array Processing, Conf, Greece,June, 1996,pp.460-463.
    [30] Vladimir Katkovnik, Ljubisa Stankovic, "Periodogram with varying and data-driven window length," Signal Processing 67(1998), pp.345-458, ELSEVIER.
    
    
    [31] 王民胜,保铮,“一种基于最小熵准则的加窗傅氏变换时频分析”,西安电子科技大学学报,Vol.20,No.4,pp.13-18,1993。
    [32] D.Gabor, "Theory of communication", J.IEE(London), Vol.93,pp.429-457, 1946.
    [33] J.Ville, "Theorite et applications de la notion de signal analytique," Cables et Transmission,Vol.2A,pp.61-74, 1948.
    [34] C.H.Page," Instantaneous power spectra", J. Appl.Phys., Vol.23, pp. 103-156, 1952.
    [35] Leon Cohen, "Time-frequency distribution—A review", Proc. of IEEE, Vol.77, No.7,July 1989.
    [36] Ljubi(?)a Stankovi(?), "Highly concentrated time-frequency distributions: Pseudo quantum signal representation", IEEE Trans. SP., Vol. 45, No. 3, pp.543-551,1997.
    [37] E.P. Wigner, "On the quantum correction for thermodynamic equilibrium," Phys. Rev.,Vol.40, pp.749-759, 1932.
    [38] J.G.Kirkwood, "Quantum statistics of almost classical ensembles," Phys. Rev., Vol.44,pp.31-37,1933.
    [39] J.E.Moyal, "Quantum mechanics as a statistical theory," Proc. Cambridge Phil. Soc.,Vol.45,pp.99-124,1949.
    [40] H.Margenal and R.N.Hill, "Correlation between measurements in quantum theory,"Prog. Theor. Phys.,Vol.26, pp.722-738.,1961.
    [41] W. Rihaczek, "Signal energy distribution in time and frequency," IEEE Trans.Information Theory, Vol. 14, pp.369-374,1968.
    [42] T.A.C.M.Claasen and W.F.G. Mecklenbr(?)uker, "The Wigner distribution-a tool for time-frequency signal analysis," Part Ⅰ, Ⅱ, Ⅲ, Philips J. Res. 35, No. 3, pp217-250;No.4/5, pp.276-300;No.6, pp.372-389, 1980.
    [43] L.Cohen," Generalized phase-space distribution functions," J.Math. Phys.,Vol7,pp:781-786,1966.
    [44] W.D.Markk. "Spectral analysis of the convolution and filtering of non-stationary stochastic processes," J. Sound Vib., Vol.11, pp19-63,1970.
    [45] B.Bouachache, "Representation temps-frequency," Soc. Nat, ELF Aquitaine, Pau, France, Publ. Recherches,pp.373-378,1978.
    [46] C.P.Janse and J.M.Kaizer,"Time-frequency distributions of loudspeakers: the application of the Wigner distribution," J.Audio Eng. Soc.,Vol.31,pp.198-223,1983.
    [47] D.S.K.Chan, "A non-aliased discrete-time Wigner distrbution for time-frequency signal analysis," in Proc.IEEE ICASSP'82,pp.1333-1336,1982.
    
    
    [48] T.A.C.M.Claasen and W.F.G. Mecklenbrauker,"The aliasing problem in discrete-time Wigner distribution," IEEE Trans. Acoust, Speech, Signal Processing, Vol.31, pp. 1067-1072,1983.
    [49] Boualem Boashash," Note on the use of the Wigner distribution for time-frequency signal analysis", IEEE Trans. ASSP., Vol.36,No.9,1988.
    [50] Francoise Peyrin and Remy Prost, " A unified definition for the discrete-time, discrete-frequency and discrete-time/frequency Wigner distributions," IEEE Trans. ASSP., Vol. 34,No.4, 1986.
    [51] Boualem , and Peter J. Black, " An efficient real-time implementation of the Wigner-Ville distribution", IEEE Trans. ASSP, vol.35, No. 11, 1987.
    [52] S.S.Abeysekera, "Computation of Wigner-Ville distribution for complex data," Electronics Letters, Vol.26, No. 16, 1990.
    [53] Jechang Jeong, and William J. Williams, " Alias-free generalized discrete-time time-frequency distributions," IEEE Trans. SP. Vol.40, No.11, pp2757-2765,1992.
    [54] Jeffrey C.O'Neill and William J. Williams," Shift covariant time-frequency distributions of discrete signals", IEEE Trans. SP. Vol.47, No.l, pp.133-146,1999.
    [55] MJ.Bastiaans, " Application of the Wigner distribution function to partially coherent light," J. Opt. Soc.Am.Vol.3,ppl227-1238, 1986.
    [56] B.Boashash and HJ.Whitehouse, "Seismic applications of the Wigner-Ville distribution," in Proc. IEEE Int. Conf. Systems and Circuits, pp.34-37,1986.
    [57] B.Boashash, B.Lovell and L.White, " Time frequency analysis and pattern recognition using singular value decomposition of the Wigner-Ville distribution," in Advanced Algorithms and Architecture for Signal Processing, Proc. SPIE, Vol.828,pp.l04-114,1987.
    [58] C.F.Boudreaux-Bartels and T.W.Parks, " Time-varying filtering and signal estimation using Wigner distribution synthesis techniques," IEEE Trans. Acous., Speech, Signal Processing, Vol.34,pp.442-451,1986.
    [59] S.Kay and G.F.Boudreaux-Bartels, "On the optimality of the Wigner-Ville distribution for detection," in Proc. ICASSP'85,pp.l017-1020,1985.
    [60] B.V.K. V.Kumar and W.C.Carroll," Pattern recognition using Wigner distribution function," in IEEE Proc 10th Int. Optical Computing Conf.,pp.l30-135,1983.
    [61] N.M.Marinovic and W.A.Smith, " Application of joint time frequency distributions to ultrasonic transducers," in Proc. 1986 IEEE Int.Symp. Circuits and Systems,pp.50-54,1986,
    [62] E.F.Valez and R.G.Absher," Transient analysis of speech signals using the Wigner
    
    time-frequency representation," in Proc. IEEE ICASSP'89.
    [63] B.D.Forrester," Use of the Wigner-Ville distributioa in helicopter fault detection," in Proc.ICASSP'89,pp.78-82,1989.
    [64] N.Cartwright, "A non-negative quantum mechanical distribution function," Physica., Vol.83A,pp.210-212,1976.
    [65] J.C.Andrieux, M.R-Feix, G.Mourgues, et.al," Optimum smoothing of the Wigner-Ville distribution," IEEE Trans. ASSP., Vol.35, pp.764-769,1987.
    [66] Franz Hlawatsch, " Interference terms in the Wigner distribution," in ICASSP'84, pp.363-367, 1984.
    [67] P,Flandrin, " Some features of time-frequency representations of multi-component signals," in Proc. IEEE ICASSP'84, pp.41B.4. 1-4. 4,1984.
    [68] Patrick J. Loughlin, James W. Pitton and Les E.Atlas, " Bilinear time-frequency representations: New insights and properties," IEEE Trans. SP. Vol.4l,No.2,1993.
    [69] Hyung-Ⅲ Choi and William J.Williams, " Improved time-frequency representation of multicomponent signals using exponential kernels," IEEE Trans. ASSP., Vol.37, No.6,1989.
    [70] L.Cohen, "generalized phase-space distribution functions," J.Math. Phys., Vol.7,pp.781-786,1966.
    [71] L.Cohen and T.Posch, Generalized ambiguity functions," in Proc.IEEE ICASSP'85mpp.l025-1028,1985.
    [72] YunXin Zhao, Les E.Atlas, Rober J. Marks, " The use of cone-shaped kernels for generalized time-frequency representations of nonstationary signals," IEEE Trans. ASSP., Vol.38,No.7,pp.l084-1091,1990.
    [73] Seho Oh and Rober J. Marks, " Some properties of the generalized time frequency representation with cone-shaped kernel," IEEE Trans. SP., Vol.40, No.7,pp.l735-1745,1992.
    [74] Jechang Jeong, and William J. Williams, " Kernel design for reduced interference distributions," IEEE Trans. SP., Vol.40, No.2,pp.402-419,1992.
    [75] Bilin Zhang and Shunsuke Sato," A time-frequency distribution of Cohen's class with a compound kernel and its application to speech signal processing," IEEE Trans. SP.,Vol.42,No.l, pp.54-64,1994.
    [76] Ljubisa Standovic, " A method for time-frequency analysis," IEEE Trans. SP. Vol.42, No.l,pp.225-229,1994.
    [77] Z.Guo, L.G.Durand, H.C. Lee, " The time-frequeacy distribution of nonstationary signals based on a Bessel kernel," IEEE Trans. ASSP. Vo.42, pp. 1700-1707,1994.
    
    
    [78] A.H.Costa, G.F.Boudreaox-Bartels, " Time-frequency representations with multiform, tillable Chebyshev kernels," ICASSP'95, pp.1001-1004,1995.
    [79] A.H.Costa, G.F.Boudreaux-Bartels, " Design of time-frequency representations using a multiform, tillable exponential kernel," IEEE Trans. SP. Vol43, No.10, pp.2283-2301, 1995.
    [80] Moeness G.Amin, " Recursive kernels for time-frequency signal representations," IEEE Signal Processing Letters, Vol.3,No.1, pp 16-18,1996.
    [81] G.T.Venkatesan, M.G. Amin, " Time-frequency distribution kernel design over a discrete power-of-two space," IEEE Signal Processing Letters, Vol.3, No.l2,pp.305-306, 1996.
    [82] G.T.Venkatesan, M.G. Amin," Discrete powers-of-two kernels for time-frequency distributions,: ICASSP'96, pp. 1407-1410,1996.
    [83] P.Zavarsky and N.Fujii," Introduction of cross ambiguity function for elimination of crossterms in Wigner distribution of the third order," Electronics Letters, Vol.32, No.2,pp.94-95, 1996.
    [84] G.T.Venkatesan, M.G. Amin, " Time-frequency distribution kernels using FIR filter design kernels," IEEE Trans. SP. Vol.45, No.6, pp.1650-1655, 1997.
    [85] G.Zhengyu,D.Louis-Gilles, C.Lee Howard, "The time-frequency distributions of nonstationary signals based on a Bessel kernel," IEEE Trans. SP Vol.42, No.7, pp. 1700-1707, 1997.
    [86] H.Oehlmann, D.Brie, " The reduced-interference local Wigner-Ville distribution," ICASSP'97,Vol.5,pp.3645-3648,1997.
    [87] Moeness G.Amin and William J. Williams, " High spectral resolution time-frequency distribution kernels," IEEE Trans. SP.Vol46, No. 10, pp.2796-2804,1998.
    [88] Richard G. Baraniuk, Douglas L. Jones, " Signal-dependent time-frequency analysis using a radially Gaussian kernel," Signal Processing 32( 1993) ,pp.263-284, Elsevier, 1993.
    [89] Richard G. Baraniuk, Douglas L. Jones, " An adaptive time-frequency representation using a cone-shaped kernel," ICASSP'93, Vol.4,pp.404-407, 1993.
    [90] Richard G. Baraniuk, Douglas L. Jones, "A signal-dependent time-frequency representation: optimal kernel design," IEEE Trans. SP., Vol.41,No.4,pp.1589-1602, 1993.
    [91] Marwan U.Bikdas, Kai-Bor Yu, " Analysis and filtering using the optimally smoothed Wigner distribution," IEEE Trans. SP. Vol.41, No.4,pp.l603-1617,1993.
    [92] Douglas L. Jones, Richard G. Baraniuk, "A simple scheme for adapting time-
    
    frequency representations," IEEE Trans. SP, Vol.42, No.12, pp.3530-3535,1994.
    [93] Richard G. Baraniuk, Douglas L.Jones, "A signal-dependent time-frequency representation: fast algorithm for optimal kernel design," IEEE Trans. SP, Vol.42, No.1,pp.134-146,1994.
    [94] Douglas L. Jones, Richard G. Baraniuk, "An adaptive optimal-kernel time-frequency representation," IEEE Trans. Sp,Vol.43, No.10,pp.2361-2379,1995.
    [95] R.N.Czerwinski, D.L.Jones," Adaptive cone-kernel time-frequency analysis," IEEE Trans. Sp,Vol.43,No.7, pp. 1715-1719,1995.
    [96] Akbar M.Sayeed and Douglas L.Jones, "Optimal kernels for nonstationary spectral estimation," IEEE Trans. Sp,Vol.43,No.2, pp.478-491,1995.
    [97] Tzu-Hsien Sang and William J.Williams," Renyi information and signal-dependent optimal kernel design," ICASSP'95, pp.997-1000,1995.
    [98] L.F. Wisur-Olsen, R.G.Baraniuk, "Optimal kernel for time-frequency analysis," in Proc.ICASSP'96, pp.1419-1422,1996.
    [99] Ljubisa Stankovic, "Auto-term representation by the reduced interference distributions: a procedure for kernel design," IEEE Trans. Sp,Vol.44,No.6, pp.1557-1563,1996.
    [100] Wisur-Olsen L F, Baraniuk R.G., "Optimal kernels for time-frequency analysis,: in Proc. ICASSP'96, pp.419-422,1996.
    [101] Fredrik Gustafsson, Svante Gunnarsson and Lennart Ljung," Shaping frequency-dependent time resolution when estimating spectral properties with parametric methods,"IEEE Trans. SP,Vol.45,No.4, pp.1025-1035,1997.
    [102] 徐春光,谢维信,“基于相位核的时频信号分析,”西安电子科技大学学报,Vol.26,No.3,pp.315-319,1999.
    [103] 王民胜,保铮,“一种基于最小熵准则的加窗傅氏变换时频分析”,西安电子科技大学学报,Vol.20,No.4,PP.13-18,1993.
    [104] S.Hearon, M. Amin, "Minimum variance time-frequency distribution kernels," IEEE Trans. SP,Vol.43, No.5, pp.1258-1262,1995.
    [105] M.G.Amin, "Minimum variance time-frequency distribution kernels for signals in additive noise," IEEE Trans. SP,Vol.44, No.9, pp.2352-2356,1996.
    [106] LJ Stankovic, Vi.Ivanovic, "Further result on the minimum variance time-frequency distribution kernels," IEEE Trans. SP,Vol.45, No.6, pp. 1650-1655,1997.
    [107] Ljubisa Stankovic, Vladirmir Katkovnikm" The Wigner distribution of noisy signals with adaptive time-frequency varying window," IEEE Trans. SR, Vol.47, No.4, pp.1099-1108, 1999.
    
    
    [108] LJ. Stankovic,"Algorithm for the Wigner distribution of noisy signals realization," Electronic Letters, Vol.34,No.1,1998.
    [109] Branko Ristic and Boualem Boashash, "Kernel design for time-frequency signal analysis using the Radon transform," IEEE Trans. SP.,Vol.41,No.5,pp.1996-2008, 1993.
    [110] Srivathsan Krishnamachari, William J. Williams, "Adaptive kernel design in the generalized marginals domain for time-frequency analysis," ICASSP'94, Vol.Ⅲ, pp.341-344,1994.
    [111] Ning Ma, Didier Vray, Philippe Delachartre, Gerard Gimenez, "Signal Processing,56(1997), pp. 149-155, 1997.
    [112] 万建伟,“线性核时频信号分析方法研究,”系统工程与电子技术,No.5,pp.10-13,1997.
    [113] Zou Hong and Bao Zheng, 'An adaptive-kernel design method based on ambiguity domain', Proceedings of IEEE-SP International Symposium on Time-Frequency and TimeScale Analysis, 1998, pp.197-200.
    [114] S.Barbarossa, "Analysis of multicomponent LFM signals by a combined WignerHough transform," IEEE Trans. SP,Vol.43, No.6, pp.1511-1515, 1995.
    [115] Mingsheng wang, Andrew K.Chan, Charles K. Chui," Linear frequency-modulated signal detection using Radon-ambiguity transform," IEEE Trans. SP, Vol.46, No.3, pp.571-586, 1998.
    [116] Cohen and Posch, "Positive time-frequency distribution functions," IEEE Trans.AESP, Vol.33, No.1, pp.31-38, 1985.
    [117] Ptrick J, Loughlin, James W. Pitton and Les E. Atlas," A information-theoretic approach to positive time-frequency distribution," ICASSP'92, CA, pp. V125-128,1992.
    [118] James W. Pitton, Ptrick J, Loughlin, and Les E. Atlas," Positive time-frequency distributions via maximum entropy deconvolution of the evolutionary specturm," in Proc.ICASSP'93, NM, pp.Ⅳ436-439, 1993.
    [119] Ptrick J, Loughlin, James W. Pitton and Les E. Atlas, "Construction of positive time-frequency distributions," IEEE Trans. SP, Vol.42, No.10, pp.2697-2705, 1994.
    [120] Ptrick J, Loughlin," Comments on scale invariance of time-frequency distributions,"IEEE Signal Processing Letters, Vol.2, No.12, pp.217-220, 1995.
    [121] Javier Prodriguez Fonollosa," Positive time-frequency distributions based on joint
    
    marginal constraints," IEEE Trans. SP, Vol.44, No.8, pp.2086-2091, 1996.
    [122] S.I.Shah, P.J.Loughlin, etc, " Information priors for minimum cross-entropy positive time-frequency distributions," IEEE Signal Processing Letters, Vol.4, No.6, pp. 176-177, 1997.
    [123] J.W.Pitton, " Linear and quadratic method for positive time-frequency distributions," ICASSP'97, Vol5, pp.3649-3652,1997.
    [124] Musafa K. Emresoy and Patrick J. Loughlin, " Weighted least squares implementation of Cohen-Posch time-frequency distributions, " EEE Trans. SP, Vol.46, No.3, pp.753-757, 1998.
    [125] Musafa K. Emresoy and Patrick J. Loughlin, " Weighted least-squares implementation of Cohen-Posch time-frequency distributions with specific conditional and joint moment constraints," IEEE Trans. SP, Vol.47, No.3, pp.893-900, 1999.
    [126] Amir Francos and Moshe Porat, " Analysis and synthesis of multicomponent signals using positive time-frequency distributions," IEEE Trans. SP, Vol.47, No.2, pp.893-900, 1999.
    [127] Javier R.Fonollosa, Chrysostomos L. Nikias, "Wigner higher order moment spectra: definition, properties, computation and application to transient signal analysis, " IEEE Trans. SP, Vol.41, No. 1, pp.245-266, 1993.
    [128] Ljubisa Stankovic, " A method for time-frequency analysis, " IEEE Trans. SP, Vol.42, No. 1, pp. 225-229, 1994.
    [129] Boualem Boashash and Peter O'Shea, " Polynomial Wigner-Ville distributions and their relationship to time-varying higher order spectra," IEEE Trans. SP, Vol.42, No.1, pp.216-220, 1994
    [130] Ljubisa Stankovic, " A multitime definition of the Wigner higher order distribution: L-Wigner distributions," IEEE signal Processing Letters, Vol.1, No.7, pp.106-109, 1994.
    [131] Ljubisa Stankovic, " A method for improved distribution concentration in the time-frequency analysis of multicomponent signals using the L-Wigner distribution," IEEE Trans. SP, Vol.43, No.5, pp.1262-1268, 1995.
    [132] V.Katkovnik, " A new form of the Fourier transform for time-varying frequency estimation, " Signal Processing 47(2) , pp. 187-200, 1995.
    [133] V.Katkovnik, " A local polynomial periodogram for time-varying frequency estimation, " South African Statist, J.29(2) ,pp. 169-198, 1995.
    [134] Brando Ristic and Boualem , " Relationship between the polynomial and the higher
    
    order Wigner-Ville distribution," IEEE Signal Processing Letters, Vol.2, No.12, pp.227229, 1995.
    [135] Ljubisa Stankovic, "L-class of time-frequency distributions," IEEE Signal Processing Letters, Vol.3, No.1, pp.22-25,1996.
    [136] Ljubisa Stankovic, " A time-frequency distribution concentrated along the instantaneous frequency," IEEE Signal Processing Letters,Vol.3, No.3, pp.89-92,1996.
    [137] Ljubisa Stankovic, " S-class of time-frequency distribution," IEEE Proc. Vision, Image, and Signal Processing, Vol.144, No.2, pp.57-64,1997.
    [138] Ljubisa Stankovic, "Local polynomial Wigner distribution," Signal Processing 59 (1997) , pp. 123-128, 1997.
    [139] G.T.Zhou, Y.Wang, "Exploring lag diversity in the high-order ambiguity for polynomial phase signals, "IEEE Signal Processing Letters, Vol.4, No.8, pp.240-242,1997.
    [140] Y.Wang, G.Zhou, " On the use of high-order ambiguity function for multicomponent polynomial phase signals, "Signal Processing , Vol.65, No.2, pp.283-296,1998.
    [141] Boualem Boashash and brando Ristic," Polynomial time-frequency distribution and time-varying higher order spectra: application to the analysis of multicomponent FM signals and to the treatment of multiplicative noise.," Signal Processing 67 (1998) , pp.1-23,1998.
    [142] Braham Barkat and Boualem Boashash, " Design of higher order polynomial Wigner-Ville Distributions," IEEE Trans. SP, Vol.47, No.9, pp.2608-2611,1999.
    [143] Richard G. Baraniuk, and Leon Cohen," On joint distributions for arbitrary variable," IEEE Signal Processing Letters, Vol.2, No.l, pp.10-13,1995.
    [144] Leon Cohen, " A general approach for obtaining joint representations in signal analysis-Part Ⅰ: characteristic function operator method," IEEE Trans. SP, Vol.44,No.5, pp.1080-1090,1996.
    [145] Leon Cohen, " A general approach for obtaining joint representations in signal analysis-Part Ⅱ :general class, mean and local values, and bandwidth," IEEE Trans. SP, Vol.44,No.5, pp.1091-1098,1996.
    [146] Akbar M. Sayeed," On the equivalence of the operator and kernel methods for joint distributions of arbitrary variable," IEEE Trans. SP, Vol.45, No.4, pp. 1067-1070,1997.
    [147] Richard G.Baraniuk, "Beyond time-frequency analysis: energy densities in one and many dimensions," IEEE Trans.SP, Vol.46, No.9, pp.2305-2314,1999.
    [148] B.Boashash, P. O'Shea, " Time-frequency analysis applied to signaturing of underwater acoustic signals," ICASSP'88, pp. 1817-1820,1988.
    
    
    [149] G.Cristobal, J. Bescos, J.Santamaria,"Image analysis through the Wigner distribution," Applied Optics, Vol.28,No.2, pp.262-271, 1989.
    [150] Warren L.J.Fox, James C. Luby, etc," Sonar and Radar range-doppler processing using a cone-shaped kernel time-frequency representation," ACSSC'90, pp. 1079-1083,1990.
    [151] S.Barbarossa, A.Farina,"A novel procedure for detecting and focusing moving objects with SAR based on Wigner-Ville distribution," in Proc.of the IEEE Int. Radar Conference, pp.44-50,1990.
    [152] S.Barbarossa, A.Farina,"Space-time-frequency processing of synthetic aperture radar signals, "IEEE Trans. On AES, Vol.30, No.2, pp.341-358,1994.
    [153] S.Haykin, T. Bhattacharya, A.Singh, "Wigner-Ville distribution: an important functional block for radar target detection in clutter," Proc. 28~(th) Asilomar Conference on Signal,System, and Computers, Vol. 1, pp.68-72, 1994.
    [154] F. Hlawatsch, W. Kozek, "Time-frequency projection filters and time-frequency signals expansions," IEEE Trans. SP, Vol.42, No.12, pp.3321-3334,1994.
    [155] ZhuZhaoda, SheZhishurL, "One-dimensional ISAR imaging of multiple target using time-frequency techniques," in Proc. IEEE 1994 national Aerospace and Electronics Conference, NAECON'94, Vol.1, pp.171-174.
    [156] 王民胜,“时频分析在信号处理中的应用,”西安电子科技大学博士论文,1994年。
    [157] M.P. Fargues, W.A.Bracks, "Comparative study of time-frequency and time-scale transforms for ultra-wideband radar transient signal detection," IEE Proc. pt-F, Vol.42, No.5,1995.
    [158] S.Abrahamson, B.Brasmark, etc, "Aspect dependence of time-frequency signatures of a complex target extracted by impulse radar," IEEE international Radar Conference,Washington DC, pp.444-449, 1995.
    [159] M.Rangoussi, A.Delopoulos, "Recognition of unvoiced stops from their timefrequency representation," ICASSP'95, pp.792-795, Detroit, USA, 1995.
    [160] Y. Wang, H.Ling and V.C.Chen, "ISAR motion compensati6n via adaptive joint timefrequency technique," IEEE AES, Vol.34,No.2, pp.670-677, 1996.
    [161] Guillermo C.Gaunaurd, and Hans C. Strifors," Signal analysis by means of timefrequency (Wigner-type) distributions-applications to sonar and radar echoes," Proc. IEEE, Vol.84, No.9, pp. 1231-1248,1996.
    
    
    [162] William J. Williams, "Reduced interference distributions: biological applications and interpretations," Proc.IEEE, Vol.84, No.9, pp. 1264-1280,1996.
    [163] J.C.Mossing, T.A.Tuthill, "Reduced interference distribution for the detection and classification of outside sound source acoustic estimation," ICASSP'96,Vol.5, pp.2758-2761.
    [164] 孙晓兵,“非平稳信号的时频分析方法及其应用,”西安电子科技大学博士论文,1996年7月。
    [165] 孙晓兵,保铮,罗琳,“时频信号分析与雷达的多目标分辨”,系统工程与电子技术,No.11,PP.12-16,1997.
    [166] Xiang-gen Xia, "System identification using chirp signals and time-variant filters in the joint time-frequency domain," IEEE Trans. SP, Vol.45, No.8, pp.2072-2084,1997.
    [167] P.K.Kumar, K.M.M.Prablu, "Simulation studies of moving-target detection: a new approach with Wigner-Ville distribution," IEE Proc. of Radar, Sonar, and Navigation,Vol.144, No.5, pp.259-265, 1997.
    [168] V.C.Chen, S.Qian, "Joint time-frequency transform for radar range-doppler imaging, "IEEE Trans. AES, Vol.34, No.2, pp.486-499, 1998.
    [169] 保铮,王根原,罗琳,“逆合成孔径雷达的距离—多普勒成像方法”,电子学报,Vol.26,No.12,pp.79-83,1998.
    [170] 张贤达,保铮,“非平稳信号分析与处理,”国防工业出版社,1998年9月。
    [171] Adel Belouchrani and Moeness B. Amin," Blind source separation based on timefrequency signal representations," IEEE Trans. SP, Vol.46, No. 11, pp.2888-2897, 1998.
    [172] Bor-Sen Chen, Yue-Chiech Chung, etc,"Optimal time-frequency deconvolution filter design for nonstationary signal transmission through a fading channel: AF filter bank approach," IEEE Trans. SP, Vol.46, No.12, pp.3220-3234, 1998.
    [173] Sergio Barbarossa, Anna Scaglione,"Adaptive time-varying cancellation of wideband interference in spread-spectrum communications based on time-frequency distributions,"IEEE Trans. SP, Vol.47, No.4, pp.957-965, 1999.
    [174] F. Hlawatsch and W. Krattenthaler,"Bilinear signal synthesis," IEEE Trans. SP, Vol.40,No.2, pp.352-363, 1992.
    [175] S.kay and F.G.Boudreaux-Bartesls, "On the optimality of the Winger distribution for detection," in Proc. ICASSP'85, pp.1017-1020,1985.
    [176] R.G.Baraniuk and L.F.Wisur-Olsen, "Optimal phase kernel for time-frequency analysis," Technical Report ECE9611, Rice University, 1996.
    
    
    [177] Dougla L.Jones, and Thomas W.Parks, "A resolution comparison of several time-frequency representations", IEEE Trans. SP. Vol40, No.2, pp.413420. 1992.
    [178] Fred J Harris and Hana Abu Salem, " Performance comparison of Wigner-Ville based techniques to standard FM-discriminators for estimating instantaneous frequency of a rapidly slewing FM sinusoid in the presence of noise" SPIE, Advanced Algorithm and Architectures for Signal Processing Ⅲ, Vol.975, pp. 232-244,1988.
    [179] Franz Hlawatsch , Thulasinath G.Manickam, Rudiger L. Urbanker, and William Jones, "Smoothed pseudo-Wigner distribution, Choi-Williams distribution, and cone-kernel representation: ambiguity-domain analysis and experimental comparison," Signal Processing 43(1995) , pp. 150-167.
    [180] L.Cohen, "Distributions concentrated along the instantaneous frequency," SPIE-Advanced Algorithm and Architectures for Signal Processing, Vol.1348, pp.149-157, 1990.
    [181] LJ. Stankovic and S.Stankovic, " An analysis of the instantaneous frequency representation by some time-frequency distributions-generalized Wigner distribution," IEEE Trans. SP. Vol. 43, pp.549-552, 1995.
    [182] B.Boashash, "Estimating and interpreting the instantaneous frequency of a signal-Part Ⅰ : Fundamentals, " Proc. IEEE, Vol.80, pp.519-538, 1992.
    [183] Ram G.Shenoy and Thomas W. Parks, " The Weyl correspondence and time-frequency analysis," IEEE Trans. SP. Vol.42, pp.318-331, 1994.
    [184] Patrick Flandrin, Richard G.Baraniuk, and Oliver Michel," Time-frequency complexity and information," ICASSP-94, Vol.Ⅲ, pp.329-332.
    [185] Genyuan Wang, Zheng Bao," the minimum entropy criterion of range alignment in ISAR motion compensation," in Proc. Conference Radar'97, Edinburgh(UK), pp.14-16, 1997.
    [186] John C.Wood and Daniel T.Barry, " Radon Transformation of Time-Frequency Distributions for Analysis of Multicomponent Signals" , IEEE Trans. SP-42, No.11, pp.3166-3177, 1994.
    [187] Leon Cohen, Chongmoon Lee, "Instantaneous Frequency, Its Standard Deviation and Multicomponent Signals", SPIE Vol.975 Advanced Algorithms and Architectures for Signals ProcessingⅢ.,pp. 186-208, 1988.
    [188] J.A.Hogbom," Aperture synthesis with non-rectangular distribution of interferometric baselines," Astron .Astropys. Suppl., Vole.15,No.3, pp.417-426, June, 1974.
    [189] Peter T.Gough , "A Fast Spectral Estimation Algorithm Based on the FFT", IEEE
    
    Trans. SP-42, No.6 pp1317-1322,1994.
    [190] J.Li and P. Stoica, "Effici?nt Mixed-Spectrum Estimation with Applications to Target Feature Extraction". IEEE Trans. SP-44, No.2, pp281-295, 1996.
    [191] C.Sun, Z.Bao, "SAR Motion through Resolution Cell Compensation and Feature Extraction by a RELAX-based Algorithm." Proceeding of SPIE on Algorithm for Synthetic Aperture Radar Imagery VI, Vol. 3721, Orlando, Fiorida. pp58-69, April 1999.
    [192] Shie Qian and Joel M. Morris," Wigoer distribution decomposition and cross-terms deleted representation," Signal Processing 27(1992), Elsevier, pp. 125-144.
    [193] Shie Qian, Dapang Chen,"Signal representation using adaptive normalized Gaussian functions," Signal Processing 36(1994), Elsevier, pp.1-11.
    [194] Stephane G. Mallat, and Zhifeng Zhang, "Matching pursuits with time-frequency dictionaries", IEEE Trans. SP-41, No. 12, pp. 3397-3415, 1993.
    [195] Steven Mann and Simon Hnykin," The chirplet transform: physical considerations," IEEE SP, Vo.43, No.11, pp.2745-2761,1995.
    [196] Aykut Bultan, "A four-parameter atomic decomposition of chirplets".IEEE Trans.Sp-47, No.3, pp.731-745, Mar.1999.
    [197] 殷勤业,倪志芳,钱世锷,陈大庞,“自适应旋转投影分解法,”电子学报,Vol.25,No.4,pp.2-58,1997.
    [198] H.E.Jones, "Weighting coefficient for chirp rate estimation," IEEE Trans. SO, Vol.43,No.1,pp.366-367, 1995.
    [199] Peter Handel and Petr Tichavsky, "Frequency rate estimation at high SNR," IEEE Trans. SP, Vol.45, No.8, pp.2101-2105, 1997.
    [200] Petar M. Djuric and Steven M. Kay, "Parameter estimation of Chirp signals," IEEE Trans. ASSP-38, No.12, pp.2118-2126,1990.
    [201] Muhannad Z.Ikram, K.Abed-Meraim, and Yingbo Hua, "Estimating the parameters of Chirp signals: an iterative approach," IEEE Trans. SP, Vol.46, No.12, pp.3436-3441,1998.
    [202] Charles V.Jakowata, Jr. Daniel E.Wahl, Paul H.Eichel, Dennis C.Ghiglia, and Paul A.Thompson,"Spotlight-mode synthetic aperture radar: a signal processing approach,"KLUWER ACADEMIC PUBLISHERS, 1996.
    [203] J.C.Wood and Daniel T. Barry, "Radon transformation of time-frequency distributions for analysis of multicomponent signals," ICASSP'92, Vol.Ⅳ, pp.257-260,1992.
    [204] John C.Wood and Daniel T.Barry, "Linear signal synthesis using the Radon-Wigner transform," IEEE Trans. SP, Vol.42, No.8,1994.
    
    
    [205] John C.Wood and Daniel T .Barry, " Tomographic time-frequency analysis and its application toward time-varying filtering and adaptive kernel design for multicomponent linear-FM signals," IEEE Trans. SP, Vol.42, No.8, pp.2094-2103,1994.
    [206] J.C.Wood and Daniel T.Barry, " Radon transformation of time-frequency distributions for analysis of multicomponent signals," IEEE Trans. SP, Vol.42, No.11, pp.3166-3177, 1994.
    [207] Steven Kay and G.Faye Boudreaux-Bartels, " On the optimality of the Wigner distribution for detection," ICASSP-85, pp.1017-1020, 1985.
    [208] Luis B.Almeida, " The fractional Fourier transform and time-frequency representations," IEEE Trans. SP, Vol.42, No.11,1994.
    [209] WeiPin Li, "Wigner distribution method equivalent to dechirp method for detecting a Chirp signal," IEEE Trans. ASSP, Vol.35,No.8, pp.1210-1211,1987.
    [210] S.Mallat and Zhifeng Zhang, "Adaptive time-frequency transform," IEEE ICASSP'93, Vol.Ⅲ, pp.241-244, Minneapolis, Minnesota, USA.
    [211] Berkant Tacer and Patrick J. Loughlin, " Instantaneous frequency and time-frequency distribution," IEEE ICASSP'95, pp.1013-1016.
    [212] Boualem Boashash and Peter.'Shea, "Use of the cross Wigner-Ville distribution for estimation of instantaneous frequency," IEEE SP, Vol.41, No.3, pp.1439-1445, 1993.
    [213] Branko Ristk and Boualem Boashash, " Instantaneous frequency estimation of quadratic and cubic FM signals using the cross polynomial Wigner-Ville distribution," IEEE SP, Vol.44, No.6, pp.1549-1553,1996.
    [214] Leon Cohen, Chongmoon Lee, " Instantaneous frequency, its standard deviation and multicomponent signals," SPIE Vol.975, Advanced algorithms and Architectures for Signal Processing Ⅲ, pp. 186-208, 1988.
    [215] B.Boashash, "Estimating and interpreting the instantaneous frequency of a signal-Part 2: algorithms and applications," Proc. IEEE, Vol.80, pp.539-567, 1992.
    [216] Mark A. Poletti, " Instantaneous frequency and conditional moments in the time-frequency plane," IEEE Trans. SP, Vol.39, No.3, pp.755-756,1991.
    [217] Ljubisa Stankovic and Srdjan Stankovic, " An analysis of instantaneous frequency representation using time-frequency distribution-generalized Wigner distribution," IEEE Trans. SP, Vol.43, No.2, pp.549-552, 1995.
    [218] Jechang Jeong, Gregory S.Cunningham, and William J.williams, "The discrete-time phase derivative as a definition of discrete instantaneous frequency and its relation to
    
    discrete time-frequency distribution," IEEE Trans. SP, Vol.43, No.1, pp.341-344,1995.
    [219] Brian C.Lovell, Robert C. Williamson and Boualem Boashansh, "The relationship between instantaneous frequency and time-frequency representations," IEEE Trans SP, Vol.41, No.3, pp.1458-1461,1993.
    [220] Theagenis J.Abatzoglou and Grefory O.Gheen, "Range, radial velocity, and acceleration MLE using radar LFM pulse train," IEEE Trans. AES, Vol.34, No.4, pp. 1070-1083,1998.
    [221] Simon Haykin, James H. Justice, Norman L. Owsley, J.L. Yen and Avi C.Kak, " Array signal processing," Prentice-Hall, 1985.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700