高质量荧光量子点的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来科学界发展了多种具有优异性能的复合纳米晶(主要包括合金纳米晶、核/壳结构纳米晶、掺杂纳米晶)。而当今的科研趋势是向着环境友好型,成本节约型,操作简易型的方向发展。半导体纳米晶的制备技术在逐渐成熟的过程中,也与主流趋势同步,逐渐的向着采用无毒的低成本的化合物的方向发展。
     本文采用不同的方法合成了高质量的核/壳结构的CdSe/CdS/ZnS纳米晶和掺杂纳米晶Mn:ZnS。CdSe/CdS/ZnS纳米晶中CdSe核的制备过程没有涉及烷基磷(如三辛基膦,TOP)之类的昂贵的高毒性的物质,而是直接采用硒粉作为硒源合成了闪锌矿结构CdSe核。CdSe核上的CdS和ZnS壳层的生长过程采用普通商用的单分子前驱物CDC(二乙基二硫代氨基甲酸镉)和ZDC(二乙基二硫代氨基甲酸锌),代替了以往作为前驱物的有毒的有机金属物质,比如双(三甲基硫化硅)和二乙基锌。在实验操作更简单的同时,制备的CdSe/CdS/ZnS半导体纳米晶具有很高的荧光量子产率(有机相中高达90%,以及通过MPA配体交换转移至水相后仍高达60%。掺杂纳米晶Mn:ZnS的制备采用了成核掺杂的方法。制备的Mn:ZnS纳米晶的荧光量子产率达到了54%。实验结果表明制备尺寸尽可能小的MnS核是实验成功的关键因素。通过采用配位能力相对较弱的十二硫醇作配体、合适的反应温度以及合适的Mn:S比例可以控制MnS核的尺寸,从而实现增强锰的发射峰强度的目的。并且通过研究光谱特性的变化推断了CdSe/CdS/ZnS纳米晶和掺杂纳米晶Mn:ZnS形成的机理,以及通过TEM、XRD等测试方法对产物的结构进行了表征。
Recent years, the scientific community has developed a variety of semiconductor nanocrystals with excellent performance (including alloy nanocrystals, core/shell structure nanocrystals, doped nanocrystals). However, the current research trend is toward the direction of environmentally friendly, cost savings, operating simple. As the synthesis technology of semiconductor nanocrystals is becoming mature, the mainstream trend is gradually toward the use of low-cost and non-toxic compounds.
     With different methods we synthesize core/shell structured nanocrystals CdSe/CdS/ZnS and doped nanocrystals Mn:ZnS. The preparation of CdSe core does not involve highly toxic and expensive substances such as alkylphosphine (TOP, etc.) which is used as solvent in most approaches. During the CdS and ZnS shell growth process on the CdSe core, a kind of common commercial single molecule precursor CDC(cadmium diethyl dithiocarbamate) and ZDC(zinc diethyl dithiocarbamate)are used instead of the toxic organic metals, such as bis(trimethylsilyl)sulfide and diethyl zinc. In the experiment, not only operation is more simplely, but also the fluorescence quantum yield of CdSe/CdS/ZnS nanocrystals is high (up to 90% in organic phase, and up to 60% in the water phase through the MPA ligand exchange). Doped nanocrystals Mn:ZnS is prepared by nucleation-doping method. The fluorescence quantum yield of Mn:ZnS nanocrystals is up to 54%. The results show that prepareing the smallest size of MnS nucleus is a critical factor. Through the use dodecanethiol as ligand which have the relatively weak coordination ability, a suitable reaction temperature and the right Mn:S ratio, we can control the size of MnS core. As a result, the Mn emission intensity can be enhanced. What's more, by studying the spectral characteristics we inferred the formation mechanism of CdSe/CdS/ZnS and doped nanocrystals Mn:ZnS, and characterize the structure of the product by TEM, XRD and other testing methods.
引文
[1]Coe S, Woo W K, Bawendi M G, Bulovic V. Electroluminescence from Single Monolayers of Nanocrystals in Molecular Organic Devices. Nature,2002,420,800-803
    [2]Medintz I L, Uyeda H T, Goldman E R, Mattoussi H. QuantumDot Bioconjugates for Imaging, Labelling and Sensing. Nat. Mater.2005,4,435-446
    [3]Weller H. Kolloidale Halbleiter-Q-Teilchen:Chemie im Ubergangsbereich zwischen Festkorper und Molekul. Angew. Chem.1993,105(1):43-55
    [4]Heath J R. Nanoscale Materials. Ace. Chem. Res.1999,32(5):388-388
    [5]Colvin V L, Schlamp M C, Alivisatos A P. Light-Emitting Diodes Made From Cadmium Selenide Nanocrystals And A Semiconducting Polymer. Nature.1994,370(6488): 354-357
    [6]Tessler N, Medvedev V, Kazes M, Kan S H, Banin U. Efficient Near-Infrared Polymer Nanocrystal Light-Emitting Diodes. Science.2002,295(5559):1506-1508
    [7]Klimov V I, Mikhailovsky A A, Xu S, Malko A, Hollingsworth J A, Leatherdale C A, Eisler H J, Bawendi M G. Optical Gain And Stimulated Emission In Nanocrystal Quantum Dots. Science.2000,290(5490):314-317
    [8]Kazes M, Lewis D Y, Ebenstein Y, Mokari T, Banin U. Lasing from Semiconductor Quantum Rods in a Cylindrical Microcavity. Adv. Mater.2002,14(4):317-321
    [9]Warren C W, Nie S M. Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection. Science.1998,281(5385):2016-2018
    [10]Chan W C, Nie S. Qtmntum dot bioconjugates for ultmsensitive nonisotopic detection[J]. Science.1998,281,1030-1931
    [11]孙宝全,徐咏蓝,陈德朴等.半导体纳米晶的光致发光特性及在生物材料荧光标记中的应用[J].分析化学.2002,30(9):1130-1136
    [12]Peng X G, Sehlamp M C, Alivisatos A P, etal. Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photo stability and electronic accessibity[J]. J. Am. Chem. Soc.1997,119(30):7019-7029
    [13]Yu W W, Chang E, Drezek R, Colvin V L. Water-soluble quantum dots for biomedical applications. BiochemBiophys Res Commun.2006,348,781-786
    [14]Mews A, Eychmu'ller A, Giersig M, Schooss D, Weller H. Preparation, characterization, and photophysics of the quantum dot quantum well system cadmium sulfide/mercury sulfide/cadmium sulfide. J. Phys. Chem.1994,98,934-941
    [15]Battaglia D, Li J J, Wang Y J, Peng X G. Colloidal two-dimensional systems:CdSe quantum shells and wells. Angew. Chem. Int. Ed.2003,42,5035-5039
    [16]Zhong X H, Xie R, Basche T, Knoll W. High-Quality Violet-to Red-Emitting ZnSe/CdSe Core/Shell Nanocrystals. Chem. Mater.2005,17,4038-4042
    [17]Yu W W, Qu L H, Guo W Z, Peng X G. Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals. Chem. Mater.2003,15,2854-2860
    [18]Adam S, Talapin D V, Weller H, Moller T. The effect of nanocrystal surface structure on the luminescence properties:Photoemission study of HF-etched InP nanocrystals. J. Chem. Phys.2005,123(8)
    [19]Li J J, Wang Y A, Guo W Z, Keay J C, Mishima T D, Johnson M B, Peng X G, Large-Scale Synthesis of Nearly Monodisperse CdSe/CdS Core/Shell Nanocrystals Using Air-Stable Reagents via Successive Ion Layer Adsorption and Reaction. J. Am. Chem. Soc.2003,125,12567-2575
    [20]Bae W K, Char K, Hur H, Lee S. Single-Step Synthesis of Quantum Dots with Chemical Composition Gradients Chem. Mater.2008,20,531-539
    [21]Yu Z H, Guo L, Du H, Krauss T, Silcox J. Shell Distribution on Colloidal CdSe/ZnS Quantum Dots. Nano Lett.2005,5,565-570
    [22]Borchert H, Talapin D V, McGinley C, Adam S, Lobo A, T Moller, Weller H. J. Chem. Phys.2003,119,1800-1807
    [23]Rafeletos G, Norager S, O'Brien P. J. Mater. Chem.2001,11,2542-2544
    [24]Kim S, Fisher B, Eisler H J, Bawendi M. Type-II Quantum Dots: CdTe/CdSe(Core/Shell) and CdSe/ZnTe(Core/Shell) Heterostructures. J. Am. Chem. Soc. 2003,125,11466-11467
    [25]Bleuse J, Carayon S, Reiss P. Optical properties of core/multishell CdSe/Zn(S,Se) nanocrystals. Physica E.2004,21,331-335
    [26]Talapin D V, Mekis I, Gotzinger S, Kornowski A, Benson O, Weller H. CdSe/CdS/ZnS and CdSe/ZnSe/ZnS Core-Shell-Shell Nanocrystals. J. Phys. Chem. B 2004,108, 18826-18831
    [27]Xie R G, Kolb U, Li J X, Basche T, Mews A. Synthesis and Characterization of Highly Luminescent CdSe-Core CdS/Zn0.5Cd0.5S/ZnS Multishell Nanocrystals. J. Am. Chem. Soc.2005,127,7480-488
    [28]Kim S W, Zimmer J P, Ohnishi S, Tracy J B, Frangioni J V, Bawendi M G. Engineering InAsxP1-x/InP/ZnSe III-V Alloyed Core/Shell Quantum Dots for the Near-Infrared. J. Am. Chem. Soc.2005,127,10526-10532
    [29]Aharoni A, Mokari T, Popov I, Banin U. Synthesis of InAs/CdSe/ZnSe Core/Shell1/Shell Structures with Bright and Stable Near-Infrared Fluorescence. J. Am. Chem. Soc.2006,128,257-264
    [30]Cheng C T, Chen C Y, Lai C W, Chiu H T. Syntheses and photophysical properties of type-II CdSe/ZnTe/ZnS (core/shell/shell) quantum dots. J. Mater. Chem.2005,15, 3409-3414
    [31]Chen C Y, Cheng C T, Lai C W, Hu Y H, Chou P T, Chou Y H, Chiu H T. Type-Ⅱ CdSe/CdTe/ZnTe (core-shell-shell) quantum dots with cascade band edges:The separation of electron (at CdSe) and hole (at ZnTe) by the CdTe layer. Small.2005,1, 1215-1220
    [32]Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos A P. Semiconductor Nanocrystals as Fluorescent Biological Labels. Science.1998,281,2013-2016
    [33]Chan W C, Nie S M. Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection. Science.1998,281,2016-2018
    [34]Dabbousi B O, RodriguezViejo J, Mikulec F V, Heine J R, Mattoussi H, Ober R, Jensen K F, Bawendi M G. (CdSe)ZnS Core-Shell Quantum Dots:Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites. Phys. Chem. B 1997,101,9463-9475
    [35]Brus L E. Electron-electron and electron-hole interactions in small semiconductor crystallites:The size dependence of the lowest excited electronic state. J. Chem. Phys. 1984,80,4403-4409
    [36]Talapin D V, Rogach A L, Kornowski A, Haase M, Weller H. Highly Luminescent Monodisperse CdSe and CdSe/ZnS Nanocrystals Synthesized in a Hexadecylamine-Trioctylphosphine Oxide-Trioctylphospine Mixture. Nano. Lett.2001, 1,207-211
    [37]Katari J, Colvin V L, Alivisatos A P. X-ray Photoelectron Spectroscopy of CdSe Nanocrystals with Applications to Studies of the Nanocrystal SurfaceJ. Phys. Chem.1994, 98,4109-4117
    [38]Vossmeyer T, Katsikas L, Giersig M, Popovic I G, Diesner K, Chemseddine A, Eychmuller A, Weller H. CdS Nanoclusters:Synthesis, Characterization, Size Dependent Oscillator Strength, Temperature Shift of the Excitonic Transition Energy, and Reversible Absorbance Shift. J. Phys. Chem.1994,98,7665-7673
    [39]Peng Z A, Peng X. Formation of High-Quality CdTe, CdSe, and CdS Nanocrystals Using CdO as Precursor. J. Am. Chem. Soc.2001,123,183-184
    [40]Qu L H, Peng Z A, Peng X G. Alternative Routes toward High Quality CdSe Nanocrystals. Nano. Lett.2001,1,333-337
    [41]Yin Y, Alivisatos A P. Colloidal nanocrystal synthesis and the organic-inorganic interface. Nature.2005,437,664
    [42]Klimov V I et al. Single-exciton optical gain in semiconductor nanocrystals. Nature. 2007,447,441
    [43]Pradhan N, Goorskey D, Thessing J, Peng X G. An Alternative of CdSe Nanocrystal Emitters:Pure and Tunable Impurity Emissions in ZnSe Nanocrystals. J. Am. Chem. Soc. 2005,127,17586
    [44]Murray C B, Kagan C R, Bawendi M G. From materials to devices:Scaling and integration. Annu. Rev.Mater. Sci.2000,30,545
    [45]Swihart M T, Opin Curr. Vapor-phase synthesis of nanoparticles. Colloid Interface Sci. 2003,8,127
    [46]Bhargava R N, Gallagher D, HonX g, Nurmikko A. Optical properties of manganese-doped nanocrystals of ZnS. Phys. Rev. Lett.1994,72,416
    [47]Hoffman D M et al. Giant internal magnetic fields in Mn doped nanocrystal quantum dots. Solid State Commun.2000,114,547-550
    [48]Norris D J, Yao N, Charnock F T, Kennedy T A. High-Quality Manganese-Doped ZnSe Nanocrystals. Nano Lett.2001,1,3
    [49]Bryan J D, Gamelin D R. Prog. Doped Semiconductor Nanocrystals:Synthesis, Characterization, Physical Properties, and Applications Inorg. Chem.2005,54,47-126
    [50]Pradhan N, Goorskey D, Thessing J, Peng X G. An Alternative of CdSe Nanocrystal Emitters:Pure and Tunable Impurity Emissions in ZnSe Nanocrystals. J. Am. Chem. Soc.2005,127,17586
    [51]Hanif K M, Meulenberg R W, Strouse G F. Magnetic Ordering in Doped Cd1-xCoxSe Diluted Magnetic Quantum Dots. J. Am.Chem. Soc.2002,124,11495
    [52]Stowell C A, Wiacek R J, Saunders A E, Korgel B A. Synthesis and Characterization of Dilute Magnetic Semiconductor Manganese-Doped Indium Arsenide Nanocrystals. Nano Lett.2003,3,1441
    [53]Orlinskii S B et al. Probing the wave function of shallow Li and Na donors in ZnO nanoparticles. Phys. Rev. Lett.2004,92,047603
    [54]Fujii M, Yamaguchi Y, Takase Y, Ninomiya K, Hayashi S. Photoluminescence from impurity codoped and compensated Si nanocrystals. Appl. Phys. Lett.2005,87,211919
    [55]Suyver J F, Wuister S F, Kelly J J, Meijerink A. Luminescence of nanocrystalline ZnSe: Mn2+. Phys. Chem. Chem. Phys.2000,2,5445
    [56]Mikulec F V et al. Organometallic Synthesis and Spectroscopic Characterization of Manganese-Doped CdSe Nanocrystals. J. Am. Chem. Soc.2000,122,2532
    [57]Turnbull D. Formation of Crystal Nuclei in Liquid Metals J. Appl. Phys.1950,21,1022
    [58]Dalpian G M, Chelikowsky J R. Self-purification in semiconductor nanocrystals. Phys. Rev. Lett.2006,96,226802
    [59]Son D H, Hughes S M, Yin Y, Alivisatos A P. Cation Exchange Reactions in Ionic Nanocrystals. Science.2004,306,1009
    [60]Robinson R D. et al. Spontaneous Superlattice Formation in Nanorods Through Partial Cation Exchange. Science.2007,317,355
    [61]Erwin S C. et al. Doping semiconductor nanocrystals. Nature.2005,436,91
    [62]Suyver J F, Wuister S F, Kelly J J, Meijerink A. Luminescence of nanocrystalline ZnSe:Mn2+. Phys. Chem. Chem. Phys.2000,2,5445-5448
    [63]Bol A A, Meijerink A. Long-lived Mn2+ emission in nanocrystalline ZnS:Mn2+. Phys. Rev. B 1998,58,15997-16000
    [64]Bol A A, Ferwerda J, Meijerink A. Temperature dependence of the luminescence of nanocrystalline CdS/Mn2+. J. Phys. Chem. Solids 2003,64,247-252
    [65]Pradhan N, Battaglia D M, Liu Y, Peng X. Efficient, stable, small, and water soluble doped ZnSe nanocrystal emitters as non-cadmium biomedical labels. Nano Lett.2007,7, 312-317
    [66]Gumlich H E. Electro-and photoluminescence properties of Mn2+ in ZnS and ZnCdS. J. Lumin.1981,23,73-99
    [67]Norman T J, Magana D, Wilson T, Burns C, Zhang J Z. Optical and surface structural properties of Mn2+-doped ZnSe nanoparticles. J. Phys. Chem. B 2003,107,6309-6317
    [68]Norberg N S, Kittilstved K R, Amonette J E, Kukkadapu R K, Schwartz D A, Gamelin D R. Synthesis of colloidal Mn2+:ZnO quantum dots and high-TC ferromagnetic nanocrystalline thin films. J. Am. Chem. Soc.2004,126,9387-9398
    [69]Dijken A, Meulenkamp E A, Vanmaekelbergh D, Meijerink A. Identificationof the transition responsible for the visible emission in ZnO using quantum size effects. J. Lumin.2000,90,123-128
    [70]Nakayama M, Tanaka H, Masuko K, Fukushima T, Ashida A, Fujimura N. Photoluminescence properties peculiar to the Mn-related transition in a lightly alloyed ZnMnO thin film grown by pulsed laser deposition. Appl. Phys. Lett.2006,88,241908
    [71]Norberg N S, Parks G L, Salley G M, Gamelin D R. Giant excitonic Zeeman splittings in Co2+-doped ZnSe quantum dots. J. Am. Chem. Soc.2006,128,13195-13203
    [72]Bryan J D, Gamelin D R. Doped semiconductor nanocrystals:synthesis, characterization, physical properties, and applications. Prog. Inorg. Chem.2005,54,47-126
    [73]Beaula R, Archer P I, Liu X, Lee S, Salley G M, Gamelin D R, Spin-polarizable excitonic luminescence in colloidal Mn2+-doped CdSe quantum dots. Nano Lett.2008,8, 1197-1201
    [74]Hines M A, Guyot-Sionnest P. Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals. J. Phys. Chem.1996,100,468-471
    [75]Dabbousi B O, Rodriguez-Viejo J, Mikulec F V, Heine J R, Mattoussi H, Ober R, Jensen K F, Bawendi M. (CdSe)ZnS Core-Shell Quantum Dots:Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites. J. Phys. Chem. B 1997,101,9463-9475
    [76]Peng X, Schlamp M C, Kadavanich A, Alivisatos A. Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility. J. Am. Chem. Soc.1997,119,7019-7029
    [77]Mekis I, Talapin D V, Kornowski A, Haase M, Weller H. One-Pot Synthesis of Highly Luminescent CdSe/CdS Core-Shell Nanocrystals via Organometallic and "Greener" Chemical Approaches. J. Phys. Chem. B 2003,107,7454-7462
    [78]Reiss P, Bleuse J, Pron A. Highly Luminescent CdSe/ZnSe Core/Shell Nanocrystals of Low Size Dispersion. Nano Lett.2002,2,781-784 17
    [79]Talapin D V, Koeppe R, Gotzinger S, Kornowski A, Lupton J M, Rogach A L, Benson O, Feldmann J. Highly Emissive Colloidal CdSe/CdS Heterostructures of Mixed Dimensionality. Nano Lett.2003,3,1677-1681
    [80]Li J J, Wang Y A, Guo W, Keay J C, Mishima T D, Johnson M B, Peng X. Large-Scale Synthesis of Nearly Monodisperse CdSe/CdS Core/Shell Nanocrystals Using Air-Stable Reagents via Successive Ion Layer Adsorption and Reaction. J. Am.Chem. Soc.2003, 125,12567-12575
    [81]Chen Y, Vela J, Htoon H, Casson J L, Werder D J, Bussian D A, Klimov V I, Hollingsworth J A. "Giant" Multishell CdSe Nanocrystal Quantum Dots with Suppressed Blinking. J. Am. Chem. Soc.2008,130,5026-5027
    [82]Talapin D V, Mekis I, Gotzinger S, Kornowski A, Benson O, Weller H. CdSe/CdS/ZnS and CdSe/ZnSe/ZnS Core-Shell-Shell Nanocrystals. J. Phys. Chem. B 2004,108, 18826-18831
    [83]Lim S J, Chon B, Joo T, Shin S K. Synthesis and Characterization of Zinc-Blende CdSe-Based Core/Shell Nanocrystals and Their Luminescence in Water. J. Phys. Chem. C 2008,112,1744-1747
    [84]Xie R, Kolb U, Li J, Basche T, Mews A. Synthesis and Characterization of Highly Luminescent CdSe-Core CdS/Zn0.5Cd0.5S/ZnS Multishell Nanocrystals. J. Am. Chem. Soc.2005,127,7480-7488
    [85]Trindade T, O'Brien P, Zhang X, Motevali M. Synthesis of PbS Nanocrystallites Using a Novel Single Molecule Precursors Approach:X-ray Single-Crystal Structure of Pb(S2CNEtPri)2. J. Mater. Chem.1997,7,1011-1016
    [86]Nair P S, Radhakrishnan T, Revaprasadu N, Kolawole G, O'Brein P. J. Cadmium ethylxanthate:A novel single-source precursor for the preparation of CdS nanoparticles. Mater. Chem.2002,12,2722-2725
    [87]Protiere M, Reiss P. Facile synthesis of monodisperse ZnS capped CdS nanocrystals exhibiting efficient blue emission. Nanoscale Res. Lett.2006,1,62-67
    [88]Zhang W, Chen G, Wang J, Ye B C, Zhong X. Design and Synthesis of Highly Luminescent Near-Infrared-Emitting Water-Soluble CdTe/CdSe/ZnS Core/Shell/Shell Quantum Dots. Inorg. Chem.2009,48,9723-9731
    [89]Deng Z, Cao L, Tang F, Zou B. A New Route to Zinc-Blende CdSe Nanocrystals: Mechanism and Synthesis. J. Phys. Chem. B 2005,109,16671-16675
    [90]Pong B K, Trout B L, Lee J Y. Modified Ligand-Exchange for Efficient Solubilization of CdSe/ZnS Quantum Dots in Water: A Procedure Guided by Computational Studies. Langmuir 2008,24,5270-5276
    [91]Zhong X, Han M, Dong Z, White T J, Knoll W. Composition-Tunable ZnxCd1-xSe Nanocrystals with High Luminescence and Stability. J. Am.Chem. Soc.2003,125, 8589-8594
    [92]Zhong X, Feng Y, Knoll W, Han M. Alloyed ZnxCd1-xS Nanocrystals with Highly Narrow Luminescence Spectral Width. J. Am. Chem. Soc.2003,125,13559-13563
    [93]Wei S H, Zunger A. Calculated natural band of all Ⅱ-Ⅵ and Ⅲ-Ⅴ semiconductors: Chemical thrends and the role of cation d-orbitals. Appl. Phys. Lett.1998,72,2011-2013
    [94]Peng Z A, Peng X. Mechanisms of the Shape Evolution of CdSe Nanocrystals. J. Am. Chem. Soc.2001,123,1389-1395
    [95]Talapin D V, Rogach A L, Haase M, Weller H. Evolution of an Ensemble of Nanoparticles in a Colloidal Solution:Theoretical Study. J. Phys. Chem. B 2001,105, 12278-12285
    [96]Domenicano A, Torelli L, Vaciago A, Zambonelli L, Structural studies of metal dithiocarbamates. Part IV. The crystal and molecular structure of cadmium(II) NN-diethyldithiocarbamate. J. Chem. Soc. A.1968,1351
    [97]Pradhan N, Efrima S. Single-Precursor, One-Pot Versatile Synthesis under near Ambient Conditions of Tunable, Single and Dual Band Fluorescing Metal Sulfide Nanoparticles. J. Am. Chem. Soc.2003,125,2050
    [98]Nair P S, Radhakrishnan T, Revaprasadu N, O'Brien P. Some effects of single molecule precursors on the synthesis of US nanoparticles. Mater. Sci. Tech.2005,21(2):237
    [99]Kirchner C, Liedl T, Stoelzle S, Fertig N, ParakW J. Cytotoxicity of Colloidal CdSe and CdSe/ZnS Nanoparticles. Nano Lett.2005,5,331-338
    [100]Pradhan N, Goorskey D, Thessing J, Peng X. An Alternative of CdSe Nanocrystal Emitters:Pure and Tunable Impurity Emissions in ZnSe Nanocrystals. J. Am. Chem. Soc. 2005,127,17586-17587
    [101]Pradhan N, Peng X. Efficient and Color-Tunable Mn-Doped ZnSe Nanocrystal Emitters:Control of Optical Performance via Greener Synthetic Chemistry. J. Am. Chem. Soc.2007,129,3339-3347
    [102]Norris D J, Efros A L,Erwin S C.Doped Nanocrystals. Science 2008,319,1776-1779
    [103]Norris D J, Yao N, Charnock F T, Kennedy T A. High-Quality Manganese-Doped ZnSe Nanocrystals.Nano Lett.2001,1,3-7
    [104]Jana S, Srivastava B B, Acharya S, Santra P K, Jana N R, Sarma D D, Pradhan N. Prevention of Photooxidation in Blue-Green Emitting Cu Doped ZnSe Nanocrystals. Chem. Commun.2010,46,2853-2855
    [105]Bhargava R N, Gallagher D, Hong X, Nurmikko A.Optical Properties of Manganese-Doped Nanocrystals of Zinc Sulfide. Phys. Rev. Lett.1994,72,416-419
    [106]Yang Y, Chen O, Angerhofer A, Cao Y C. Radial-Position-Controlled Doping in CdS/ZnS Core/Shell Nanocrystals. J. Am. Chem. Soc.2006,128,12428-12429
    [107]Archer P I, Santangelo S A, Gamelin D R. Inorganic Cluster Syntheses of TM2P-Doped Quantum Dots (CdSe, CdS, CdSe/CdS):Physical Property Dependence on Dopant Locale. J. Am. Chem. Soc.2007,129,9808-9818
    [108]Nag A, Chakraborty S, Sarma D D. To Dope Mn2p in a Semiconducting Nanocrystal. J. Am. Chem. Soc.2008,130,10605-10611
    [109]Soo Y L, Ming Z H, Hunag S W, Kao Y H, Bhargava R N, Gallagher D. Local Structures around Mn Luminescent Centers in Mn-Doped Nanocrystals of ZnS. Phys. Rev. B:Condens. Matter.1994,50,7602-7
    [110]Zheng J, Yuan X, Ikezawa M, Jing P, Liu X, Zheng Z, Kong X,ZhaoJ, Masumoto Y. Efficient Photoluminescence of Mn2p Ions in Mn:ZnS Core/Shell Quantum Dots. J. Phys. Chem. C 2009,113,16969-16974
    [111]Acharya S, Sarma D D, Jana N R, Pradhan N. An Alternate Route to High-Quality ZnSe and Mn-Doped ZnSe Nanocrystals. J. Phys. Chem. Lett.2010,1,485-488
    [112]Yang Y, Angerhofer A, Cao Y C. Radial-Position-Controlled Doping of CdS/ZnS Core/Shell Nanocrystals:Surface Effects and Position-Dependent Properties. Chem. Eur. J.2009,15,3186-3197
    [113]Peng X, Wickham J, Alivisatos A P. Kinetics of Ⅱ-Ⅵ and Ⅲ-Ⅴ Colloidal Semiconductor Nanocrystal Growth:"Focusing"of Size Distributions. J. Am. Chem. Soc. 1998,120,5343-5344
    [114]Li L, Pradhan N,Wang Y, Peng X. High Quality ZnSe and ZnS Nanocrystals Formed by Activating Zinc Carboxylate Precursors. Nano Lett.2004,4,2261-2264
    [115]Suyver J F, Beek T V, Wuister S F, Kelly J J, Meijerink A. Luminescence of nanocrystalline ZnSe:Cu. Appl. Phys. Lett.2001,79,4222-4224
    [116]Battaglia D, Li J J, Wang Y, Peng X. Colloidal two-dimensional systems:CdSe quantum shells and wells. Angew. Chem. Int. Ed.2003,42,5035-5039
    [117]Becker W G, Bard A J. Photoluminescence and photoinduced oxygen adsorption of colloidal zinc sulfide dispersions. J. Phys. Chem.1983,87,4888
    [118]Bhargava R N, Gallagher D, Hong X, Nurmikko A. Optical properties of manganese-doped nanocrystals of ZnS. Phys. ReV. Lett.1994,72,416
    [119]Bol A A, Meijerink A. Long-lived Mn2+ emission in nanocrystalline ZnS:Mn2+. Phys. ReV. B 1998,58, R15997
    [120]Smith B A, Zhang J Z, Joly A, Liu J. Luminescence decay kinetics of Mn2+ -doped ZnS nanoclusters grown in reverse micelles. Phys. ReV. B 2000,62,2021
    [121]Pradhan N, Peng X. Efficient and Color-Tunable Mn-Doped ZnSe Nanocrystal Emitters:Control of Optical Performance via Greener Synthetic Chemistry. J. Am. Chem. Soc.2007,129,3339
    [122]Chen D G, Viswanatha R J, Ong G L, Xie R G, Balasubramaninan M, Peng X G. Temperature Dependence of "Elementary Processes" in Doping Semiconductor Nanocrystals. J. Am. Chem. Soc.2009,131,9333
    [123]Sooklal K, Cullum B S, Angel S M, Murphy C J. Photophysical Properties of ZnS Nanoclusters with Spatially Localized Mn2+. J. Phys. Chem.1996,100,4551
    [124]Beaulac R, Archer P I, Ochsenbein S T, Gamelin D R. Mn2+-Doped CdSe Quantum Dots:New Inorganic Materials for Spin-Electronics and Spin-Photonics.AdV. Funct. Mater.2008,18,3873
    [125]Gao C C, Feng Y. Chin.Influence of surface quenching effects on luminescent dynamics of ZnS:Mn2+ nanocrystals. Phys. Lett.2008,25,698
    [126]Yang Y G, Chen O, Angerhofer A, Cao Y. Radial-Position-Controlled Doping of CdS/ZnS Core/Shell Nanocrystals:Surface Effects and Position-Dependent Properties. Angew. Chem. Eur. J.2009,15,3186

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700