基于功能型核酸的电化学生物传感器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
核酸适体,核酸酶和适体酶统称为功能型核酸,其能力超越了传统意义上核酸的遗传作用。功能型核酸具有适用于生物传感器的优越性质,包括高度的稳定性,低成本,易于合成与修饰等,一般认为能够用于检测任何分析物。因此,功能型核酸在生物传感领域起着越来越重要的作用。本文开发了三种类型的功能型核酸电化学传感器,首先研究了核酸适体传感器,再进一步研究了DNA酶传感器和适体酶传感器,具体内容如下:
     在本文第二章,报道了一种基于目标物诱导置换适体的无标记电化学传感器,用于以腺苷为分析物模型的目标物检测。该传感器使用金纳米颗粒层修饰的金电极为传感基底。腺苷适体可与捕获探针杂交,在电极表面形成双链复合物。腺苷加入后把适体置换下来,使其从电极表面解离,从而减少了适体/捕获探针双链的数量,同时使与核酸双链结合的电化学活性指示剂亚甲基兰从电极表面解吸。指示剂氧化还原电流的大小能够反映被分析物的浓度。该传感器具有高度的灵敏性和选择性。
     在本文第三章,报道了一种基于邻近DNA杂交的电化学DNA酶传感器用于检测DNA。目标DNA的部分序列与识别探针杂交,形成一个稳定的杂交体。杂交体一侧目标DNA与识别探针其余序列邻近,形成一个完整的10-23 DNA酶结构,能够切断发卡型底物序列中的RNA碱基位点,产生两条单链DNA片段。其中一条标记有生物素,作为信号探针被电极表面的巯基探针捕获,再与标记碱性磷酸酯酶的链霉亲和素反应。最后通过测量1-萘磷酸盐经过酶反应后得到的1-萘酚的量,考察目标DNA的浓度。实验结果表明该传感器对检测幽门螺旋菌的片段互补序列具有高度的灵敏性,并能够特异性区分错配序列。
     在本文第四章,报道了一种基于适体酶的电化学传感器用于检测腺苷。通过在8-17 DNA酶序列的一段连接一条包含腺苷适体的核酸抑制链,来调节适体酶的活性。没有腺苷时,DNA酶的部分序列与抑制链杂交,不能形成催化结构。引入腺苷与适体结合后,抑制链从DNA酶序列解离,使DNA酶与发卡型底物杂交,在铅离子存在下切断RNA碱基位点,产生两条单链DNA片段。其中一条标记有二茂铁,作为信号探针被电极表面巯基探针捕获产生电化学信号。该传感器具有高度的灵敏性和选择性,在构建合理的适体酶传感器设计与腺苷的临床诊断方面具有广阔的应用前景。
Aptamers, nucleic acid enzymes, and aptazymes are collectively called functional nucleic acids (FNAs), whose functions are beyond the conventional genetic roles of nucleic acids. FNAs, which have superior properties as excellent sensors, including high stability, low cost, and ease of synthesis and modification, are generally believed to be able to target any analyte of choice. Hence, FNAs have taken an increasingly significant role in biosensing events. The topics presented in this paper focus on three signaling methods developed to construct electrochemical FNA sensors. Aptamer-based sensors are described first, followed by DNAzyme and aptazyme sensors. The details are summarized as follows:
     In Chapter 2, a label-free electrochemical sensor based on target-induced displacement was reported with adenosine as the model analyte. The sensing substrate was prepared using a gold electrode modified with a gold nanoparticle film. An aptamer for adenosine was applied to hybridizing with the capture probe. The interaction of adenosine with the aptamer displaced the aptamer sequence and caused it to dissociate from the interface. This resulted in a decrease in the amount of aptamer/capture probe duplex form, and accordingly, the desorption of methylene blue from the electrode. Then, the redox current of the indicator could reflect the concentration of the analyte. The fabricated sensor was shown to exhibit high sensitivity, desirable selectivity and a three-decade wide linear range.
     In Chapter 3, a novel electrochemical DNAzyme sensor was reported for the detection of nucleic acids based on proximity-dependent DNA ligation assays. When the target DNA was introduced into the system, part of it was complementary to 5'-end of the recognition probe, resulting in the ligation of a stable duplex. This duplex containing a complete 10-23 DNAzyme structure could cleave the purine-pyrimidine cleavage site of the hairpin substrate, which resulted in the fragmentation of the hairpin structure and the release of two single-stranded nucleic acids, one of which was biotinylated and acted as the signal probe. An immobilized thiolated capture probe could bind with the signal probe, using biotin as a tracer in the signal probe, and streptavidin-alkaline phosphatase (SA-ALP) as reporter molecule. The activity of the immobilized enzyme was voltammetrically determined by measuring the amount of 1-naphthol generated after 5 min of enzymatic dephosphorylation of 1-naphthyl phosphate. The results revealed that the sensor showed a sensitive response to complementary target sequences of H. pylori. In addition, the sensing system could discriminate the complementary sequence from mismatched sequences.
     In Chapter 4, an aptazyme-based electrochemical biosensor for the detection of adenosine was reported. Aptazyme activity was modulated by appending an "inhibitor" oligonucleiotide strand containing a 32-base adenosine aptamer to the 8-17 DNAzyme. In the absence of adenosine, the DNAzyme could not form appropriate catalytic structure due to the binding with the inhibitor strand. Upon adenosine binding to the aptamer, the inhibitor strand was dissociated from the DNAzyme sequence. This allowed the DNAzyme to open and bind with the hairpin substrate, cleaving the substrate at its ribonucleotide site in the presence of Pb2+. Cleavage of the substrate yields two single-stranded products, one of which was ferrocene-tagged and acted as the signal probe. The thiolated probe modified on the gold electrode could capture the signal probe. As a result, the ferrocene moiety was brought in close proximity to the electrode surface and the Faradaic current was observed. The fabricated sensor is shown to exhibit high sensitivity and desirable selectivity, which might be promising for the rational construction of aptazyme-based biosensors and the determination of adenosine in clinical examination.
引文
[1]张炯, 万莹, 王丽华等.电化学DNA生物传感器.化学进展,2007,19(10):1576-1584
    [2]陈玲.生物传感器的研究进展综述.传感器与微系统,2006,25(9):4-7
    [3]张先恩.生物传感技术原理与应用.吉林科学技术出版社,1990:6-8
    [4]Downs M E A, Kobayashi S, Karube I. New DNA technology and the DNA biosensor. Analytical Letters,1987,20(12):1897-1927
    [5]Kruger K, Grabowski P J, Zaug A J, et al. Self-splicing RNA:autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell,1982,31:147-157
    [6]Guerrier-Takada C, Gardiner K, Marsh T, et al. The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell,1983,35:849-857
    [7]Breaker R R. Natural and engineered nucleic acids as tools to explore biology. Nature,2004,432:838-845
    [8]Achenbach J C, "CHiuman W, Cruz R P, et al. DNAzymes:from creation in vitro to application in vivo. Current Pharmaceutical Biotechnology,2004,5:321-336
    [9]Silverman S K. In vitro selection, characterization, and application of deoxyribozymes that cleave RNA. Nucleic Acids Research,2005,33:6151-6163
    [10]Robertson D L, Joyce G F. Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature,344:467-468
    [11]Ellington A D, Szostak, J W. In vitro selection of RNA molecules that bind specific ligands. Nature,1990,346:818-822
    [12]Wilson D S, Szostak J W. In vitro selection of functional nucleic acids. Annual Review of Biochemistry,1999,68:611-647
    [13]Mandal M, Breaker R R. Gene regulation by riboswitches. Nature Reviews Molecular Cell Biology,2004,5:451-463
    [14]Liu J, Cao Z, Lu Y. Functional nucleic acid sensors. Chemical Reviews,2009, 109:1948-1998
    [15]Sullenger B A, Gilboa E. Emerging clinical applications of RNA. Nature,2002, 418:252-258
    [16]Cho E J, Rajendran M, Ellington A D. Aptamers as emerging probes for macro-molecular imaging. Topics in Fluorescence Spectroscopy,2005,10:127-155
    [17]Famulok M. Allosteric aptamers and aptazymes as probes for screening approaches. Current Opinion in Molecular Therapeutics,2005,7:137-143
    [18]Blank M, Blind M. Aptamers as tools for target validation. Current Opinion in Chemical Biology,2005,9 (4):336-342
    [19]Ravelet C, Peyrin E. Recent developments in the HPLC enantiomeric separation using chiral selectors identified by a combinatorial strategy. Journal of Separation Science,2006,29:1322-1331
    [20]Lu Y, Liu J. Smart nanomaterials inspired by biology:dynamic assembly of error-free nanomaterials in response to multiple chemical and biological stimuli. Accounts of Chemical Research,2007,40:315-323
    [21]Feldkamp U, Niemeyer C M. Rational design of DNA nanoarchitectures. Angewandte Chemie International Edition,2006,45(12):1856-1876
    [22]Baum D A, Silverman S K. Deoxyribozymes:useful DNA catalysts in vitro and in vivo. Cellular and Molecular Life Sciences,2008,65:2156-2174
    [23]Li Y, Lu Y. Functional nucleic acids for analytical applications. New York: Springer,2009,111-254
    [24]Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNAligands to bacteriophage T4 DNA polymerase. Science,1990,249:505-510
    [25]Gold L. Oligonucleotides as research, diagnostic and therapeutic agents. Journal of the American Chemical Society,1995,270(23):13581-13584
    [26]Bunka D H J, Stockley P G. Aptamers come of age-at last. Nature Reviews Microbiology,2006,4(8):588-586
    [27]Clark S L, Remcho V T. Aptamers as analytical reagents. Electrophoresis,2002, 23(9):1335-1340
    [28]Rupcich N, Chiuman W, Nutiu R, et al. Quenching of fluorophore-labeled DNA oligonucleotides by divalent metal ions:implications for selection, design and applications of signaling aptamers and signaling deoxyribozymes. Journal of the American Chemical Society,2006,128(3):780-790
    [29]Hofmann H P, Limmer S, Hornung V, et al. Ni2+-binding RNA motifs with an asymmetric purine-rich internal loop and a G-A base pair. RNA,1997,3(11): 1289-1300
    [30]Haller A A, Sarnow P. In vitro selection of a 7-methyl-guanosine binding RNA that inhibits translation of capped mRNA molecules. Proceedings of the National Academy of Science USA,1997,94(16):8521-8526
    [31]Williams K P, Liu X H, Schumacher T N M, et al. Bioactive and nuclease-resistant L-DNA ligand of vasopressin. Proceedings of the National Academy of Science USA,1997,94(21):11285-11290
    [32]Kubik M F, Stephens A W, Schneider D, et al. High-affinity RNA ligands to human alpha-thrombin. Nucleic Acids Research,1994,22(13):2619-2626
    [33]Bock L C, Griffin L C, Latham J A, et al. Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature,1992,355(6360): 564-566
    [34]Jellinek D, Lynott C K, Rifkin D B, et al. High-affinity RNA ligands to basic fibroblast growth factor inhibit receptor binding. Proceedings of the National Academy of Science USA,1993,90(23):11227-11231
    [35]Green L S, Jellinek D, Jenison R, et al. Inhibitory DNA ligands to platelet-derived growth factor B-chain. Biochemistry,1996,35(45): 14413-14424
    [36]Wiegand T W, Williams P B, Dreskin S C, et al. High-affinity oligonucleotide ligands to human IgE inhibit binding to Fc epsilon receptor I. Journal of Immunology,1996,157(1):221-230
    [37]Nazarenko I A,Uhlenbeck O C. Defining a smaller RNA substrate for elongation factor Tu. Biochemistry,1995,34(8):2545-2552
    [38]Lochrie M A, Waugh S, Pratt D G, et al. In vitro selection of RNAs that bind to the human immunodeficiency virus type-1 Gag polyprotein. Nucleic Acids Research,1997,25(14):2902-2910
    [39]Davis KA, Lin Y, Abrams B, et al. Staining of cell surface human CD4 with 2'-F-pyrimidine-containing RNA aptamers for flow cytometry. Nucleic Acids Research,1998,26(17):3915-3924
    [40]Kraus E, Barclay A N, Barclay A N. Cutting edge:novel RNA ligands able to bind CD4 antigen and inhibit CD4+T lymphocyte function. Journal of Immunology,1998,160(11):5209-5212
    [41]Wallis M G, Ahsen U V, Schroeder R, et al. A novel RNA motif for neomycin recognition. Chemistry& Biology,1995,2(8):543-552
    [42]Clonis Y D. Affinity chromatography matures as bioinformatic and combinatorial tools develop. Journal of Chromatography A,2006,1101(1-2): 1-24
    [43]Geiger A, Burgstaller P, von der Eltz H, et al. RNA aptamers that bind L-arginine with sub-micromolar dissociation constants and high enantioselectivity. Nucleic Acids Research,1996,24(6):1029-1036
    [44]Famulok M. Molecular recognition of amino acids by RNA aptamers:an L-citrulline binding RNA motif and its evolution into an L-arginine binder. Journal of the American Chemical Society,116(5):1698-1706
    [45]Burgstaller P, Famulok M. Isolation of RNA aptamers for biological cofactors by in vitro selection. Angewandte Chemie, International Edition in English,1994, 33(10):1084-1087
    [46]Wallis M G, Streicher B, Wank H, et al. In vitro selection of a viomycin-binding RNA pseudoknot. Chemistry& Biology,1997,4(5):357-366
    [47]Kruger K, Grabowski P J, Zaug A J, et al. Selfsplicing RNA:Autoexcision and autocy clixation of the ribosomal RNA intervening sequence of tetrahymena. Cell,1982,31:147-157
    [48]Guerrier-Takada C, Gardiner K, Marsh T. The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell,1983,35:849-857
    [49]Symons R H. Small catalytic RNAs. Annual Review of Biochemistry,1992,61: 641-671
    [50]Ban N, Nissen P, Hansen J, et al. The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. Science,2000,289:902-920
    [51]Pan T, Uhlenbeck OCA small metalloribozyme with a two-step mechanism. Nature,1992,358:560-563
    [52]Bartel D P, Szostak J W. Isolation of new ribozymes from a large pool of random sequences. Science,1993,261:1411-1418
    [53]Curtis E A, Bartel D P. New catalytic structures from an existing ribozyme. Nature Structural and Molecular Biology,2005,12:994-1000
    [54]Ekland E H, Bartel D P. RNA-catalysed RNA polymerization using nucleoside triphosphates. Nature,1996,382:373-376
    [55]Sun L L, Cui Z Y, Gottlieb R L, et al. A selected ribozyme catalyzing diverse dipeptide synthesis. Chemical Biology,2002,9:619-628
    [56]Tsukiji S, Pattnaik S B, Suga H. Reduction of an aldehyde by a NADH/Zn2+-dependent redox active ribozyme. Journal of the American Chemical Society,2004,126(16):5044-5045
    [57]Tsukiji S, Pattnaik S B, Suga H. An alcohol dehydrogenase ribozyme. Nature Structural Biology,2003,10:713-717
    [58]Breaker R R, Joyce G F. A DNA enzyme that cleaves RNA. Chemical Biology, 1994,1:223-229
    [59]Li Y, Breaker R R. Kinetics of RNA degradation by specific base catalysis of transesterification involving the 2'-hydroxyl group. Journal of the American Chemical Society,1999,121(23):5364-5372
    [60]Smith R M, Hansen D E. The pH-rate profile for the hydrolysis of a peptide bond. Journal of the American Chemical Society,1998,120(35):8910-8913
    [61]Santoro S W, Joyce G F. A general purpose RNA-cleaving DNA enzyme. Proceedings of the National Academy of Sciences USA,1997,94(9):4262-4266
    [62]Liu J, Brown A K, Meng X, et al. A catalytic beacon sensor for uranium with parts-per-trillion sensitivity and millionfold selectivity. Proceedings of the National Academy of Sciences USA,2007,104(7):2056-2061
    [63]Cruz R P G, Withers J B, Li Y. Dinucleotide junction cleavage versatility of 8-17 deoxyribozyme. Chemistry and Biology,2004,11(1):57-67
    [64]Brown A K, Li J, Pavot C M, et al. A lead-dependent DNAzyme with a two-step mechanism. Biochemistry,2003,42(23):7152-7161
    [65]Santoro S W, Joyce G F, Sakthivel K, et al. RNA cleavage by a DNA enzyme with extended chemical functionality. Journal of the American Chemical Society, 2000,122(11):2433-2439
    [66]Carmi N, Balkhi H R, Breaker R R. Cleaving DNA with DNA. Proceedings of the National Academy of Sciences USA,1998,95(5):2233-2237
    [67]Robertson M P, Ellington A D. Design and optimization of effector-activated ribozyme ligase. Nucleic Acids Research,2000,28(8):1751-1759
    [68]Davidson E A, Ellington A D. Engineering regulatory RNAs. Trends in Biotechnology,2005,23(3):109-112
    [69]Wang D Y, Lai B H Y, Feldman A R, et al. A general approach for the use of oligonucleotide effectors to regulate the catalysis of RNA-cleaving ribozymes and DNAzymes. Nucleic Acids Research,2002,30(8):1735-1742
    [70]Najafi-Shoushtari S H, Famulok M. DAN aptamer-mediated regulation of the hairpin ribozyme by human alpha-thrombin. Blood Cells, Molecules, and Diseases,2006,38(1):19-24
    [71]Lai E C. RNA sensors and riboswitches:self-regulating messages. Current Biology,2003,13(7):285-291
    [72]Famulok M. Allosteric aptamers and aptazymes as probes for screening approaches. Current Opinion in Molecular Therapeutics,2005,7(2):137-143
    [73]Cuenoud B, Szostak J W. A DNA metalloenzyme with DNA ligase activity. Nature,1995,375:611-614
    [74]Tuschl T, Eckstein F. Hammerhead ribozymes:importance of stem-loop II for activity. Proceedings of the National Academy of Sciences USA,1993,90: 6991-6994
    [75]Levy M, Ellington A D. In vitro selection of a deoxyribozyme that can utilize multiple substrates. Journal of Molecular Evolution,2002,54:180-190
    [76]Long D M, Uhlenbeck O C. Kinetic characterization of intramolecular and intermolecular hammerhead RNAs with stem II deletions. Proceedings of the National Academy of Sciences USA,1994,91:6977-6981
    [77]Hartig J S, Najafi-Shoushtari S H, Gruene I, et al. Protein-dependent ribozymes report molecular interactions in real time. Nature Biotechnology,2002,20: 717-722
    [78]Achenbach J C, Nutiu R, Li Y. Structure switching signaling deoxyribozyme. Analytica Chimica Acta,2005,534(1):41-51
    [79]Wang D Y, Lai B H Y, Sen D J. A general strategy for effector-mediated control of RNA-cleaving ribozymes and DNA enzymes. Journal of Molecular Biology, 2002,318:33-43
    [80]Shen Y, Chiuman W, Brennan J D, et al. Catalysis and rational engineering of trans-acting pH6DZl, an RNA-cleaving and fluorescence-signaling deoxyribozyme with a four-way junction structure. ChemBioChem,2006,7(9): 1343-1348
    [81]Chang H, Tang L, Wang Y, et al. Graphene fluorescence resonance energy transfer aptasensor for the thrombin detection. Analytical Chemistry,2010,82(6): 2341-2346
    [82]Zhang S, Yan Y, Bi S. Design of molecular beacons as signaling probes for adenosine triphosphate detection in cancer cells based on chemiluminescence resonance energy transfer. Analytical Chemistry,2009,81(21):8695-8701
    [83]Xu W, Lu Y. Label-free fluorescent aptamer sensor based on regulation of malachite green fluorescence. Analytical Chemistry,2010,82(2):574-578
    [84]Deng C, Chen J, Nie Z, et al. Impedimetric aptasensor with femtomolar sensitivity based on the enlargement of surface-charged gold nanoparticles. Analytical Chemistry,2009,81(2):739-745
    [85]Du Y, Li B, Wei H, et al. Multifunctional label-free electrochemical biosensor based on an integrated aptamer. Analytical Chemistry,2008,80(13):5110-5117
    [86]Zayats M, Huang Y, Gill R, et al. Label-free and reagentless aptamer-based sensors for small molecules. Journal of the American Chemical Society,2006, 128(42):13666-13667
    [87]Xiao Y, Piorek B D, Plaxco K W, et al. A reagentless signal-on architecture for electronic, aptamer-based sensors via target-induced strand displacement. Journal of the American Chemical Society,2005,127(51):17990-17991
    [88]Lai R Y, Plaxco K W, Heeger A L. Aptamer-based electrochemical detection of picomolar platelet-derived growth factor directly in blood serum. Analytical Chemistry,2007,79(1):229-233
    [89]Mir M, Vreeke M, Katakis I. Different strategies to develop an electrochemical thrombin aptasensor. Electrochemistry Communications,2006,8(3):505-511
    [90]Polsky R, Gill R, Kaganovsky L, et al. Nucleic acid-functionalized Pt nanoparticles:catalytic labels for the amplified electrochemical detection of biomolecules. Analytical Chemistry,2006,78(7):2268-2271
    [91]Zhou L, Ou L, Chu X, et al. Aptamer-based rolling circle amplification:a platform for electrochemical detection of protein. Analytical Chemistry,2007, 79(19):7492-7500
    [92]Zhang Y, Huang Y, Jiang J, et al. Electrochemical aptasensor based on proximity-dependent surface hybridization assay for single-step, reusable, sensitive protein detection. Journal of the American Chemical Society,2007, 129(50):15448-15449
    [93]Liss M, Petersen B, Wolf H, et al. An aptamer-based quartz crystal protein biosensor. Analytical Chemistry,2002,74(17):4488-4495
    [94]Nutiu R, Li Y Structure-switching signaling aptamers:transducing molecular recognition into fluorescence signaling. Chemistry-A European Journal,2004, 10(8):1868-1876
    [95]Nutiu R, Li Y. Aptamers with fluorescence-signaling properties. Methods,2005, 37(1):16-25
    [96]Cao Z, Suljak S W, Tan W. Molecular beacon aptamers for protein monitoring in real-time and in homogeneous solutions. Current Proteomics,2005,2:31-40
    [97]Zhang P, Beck T, Tan W. Design of a molecular beacon DNA probe with two fluorophores. Angewandte Chemie International Edition,2001,40():402-405
    [98]Li J, Lu Y. A highly sensitive and selective catalytic DNA biosensor for lead ions. Journal of the American Chemical Society,2000,122(42):10466-10467
    [99]Perkins T A, Wolf D E, Goodchild J. Fluorescence resonance energy transfer analysis of ribozyme kinetics reveals the mode of action of a facilitator oligonucleotide. Biochemistry,1996,35(50):16370-16377
    [100]Perkins T A, Goodchild J. Using fluorescence resonance energy transfer to investigate hammerhead ribozyme kinetics.Methods in Molecular Biology,1997, 74:241-251
    [101]Liu J, Lu Y. Improving fluorescent DNAzyme biosensors by combining inter-and intramolecular quenchers. Analytical Chemistry,2003,75(23):6666-6672
    [102]Mei S H J, Liu Z, Brennan J D, et al. An efficient RNA-cleaving DNA enzyme that synchronizes catalysis with fluorescence signaling. Journal of the American Chemical Society,2003,125(2):412-420
    [103]Liu Z, Mei S H J, Brennan J D, et al. Assemblage of signaling DNA enzymes with intriguing metal-ion specificities and pH dependences. Journal of the American Chemical Society,2003,125(25):7539-7545
    [104]Chiuman W, Li Y. Evolution of high-branching deoxyribozymes from a catalytic DNA with a three-way junction. Chemistry& Biology,2006,13(10):1061-1069
    [105]Chiuman W, Li Y. Efficient signaling platforms built from a small catalytic DNA and doubly labeled fluorogenic substrates. Nucleic Acids Research,2007,35: 401-405
    [106]Tian Y, Mao C. DNAzyme amplification of molecular beacon signal. Talanta, 2005,67(3):532-537
    [107]Wang H, Kim Y, Liu H, et al. Engineering a unimolecular DNA-catalytic probe for single lead ion monitoring. Journal of the American Chemical Society,2009, 131(23):8221-8226
    [108]Xiang Y, Tong A, Lu Y. Abasic site-containing DNAzyme and aptamer for label-free fluorescent detection of Pb2+and adenosine with high sensitivity, selectivity, and tunable dynamic range. Journal of the American Chemical Society,2009,131(42):15352-15357
    [109]Swearingen C B, Wernette D P, Cropek D M, et al. Immobilization of a Catalytic DNA Molecular Beacon on Au for Pb(II) Detection. Analytical Chemistry,2005, 77(2):442-448
    [110]Wernette D P, Swearingen C B, Cropek D M, et al. Incorporation of a DNAzyme into Au-coated nanocapillary array membranes with an internal standard for Pb(II) sensing. Analyst,2006,131(1):41-47
    [111]Yim T J, Liu J, Lu Y, et al. Highly active and stable DNAzyme-carbon nanotube hybrids. Journal of the American Chemical Society,2005,127(35):12200-12201
    [112]Shen Y, Mackey, G, Rupcich N, et al. Entrapment of fluorescence signaling DNA enzymes in sol-gel-derived materials for metal ion sensing. Analytical Chemistry,2007,79(9):3494-3503
    [113]Willner I, Willner B, Katz E. Biomolecule-nanoparticle hybrid systems for bioelectronic applications. Bioelectrochemistry,2007,70(1):2-11
    [114]Willner I, Baron R, Willner B. Integrated nanoparticle-biomolecule systems for biosensing and bioelectronics. Biosensors and Bioelectronics,2007,22(9-10): 1841-1852
    [115]Niazov T, Pavlov V, Xiao Y, et al. DNAzyme-functionalized Au nanoparticles for the amplified detection of DNA or telomerase activity. Nano Letters,2004,4(9): 1683-1687
    [116]Liu J, Lu Y. A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles. Journal of the American Chemical Society,2003,125(22): 6642-6643
    [117]Liu J, Lu Y. Accelerated color change of gold nanoparticles assembled by DNAzymes for simple and fast colorimetric Pb2+detection. Journal of the American Chemical Society,2004,126(39):12298-12305
    [118]Liu J, Lu Y. Design of asymmetric DNAzymes for dynamic control of nanoparticle aggregation states in response to chemical stimuli. Organic& Biomolecular Chemistry,2006,4(18):3435-3441
    [119]Lee J H, Wang Z, Liu J, et al. Highly sensitive and selective colorimetric sensors for uranyl (UO22+):development and comparison of labeled and label-Free DNAzyme-gold nanoparticle systems. Journal of the American Chemical Society, 2008,130(43):14217-14226
    [120]Wang Z D, Lee J H, Lu Y. Label-free colorimetric detection of lead ions with a nanomolar detection limit and tunable dynamic range by using gold nanoparticles and DNAzyme. Advanced Materials,2008,20(17):3263-3267
    [121]Xiao Y, Rowe A A, Plaxco K W. Electrochemical Detection of Parts-Per-Billion Lead via an Electrode-Bound DNAzyme Assembly. Journal of the American Chemical Society,2007,129(2):262-263
    [122]Shen L, Chen Z, Li Y, et al. Electrochemical DNAzyme sensor for lead based on amplification of DNA-Au bio-bar codes. Analytical Chemistry,2008,80(16): 6323-6328
    [123]Pelossof G, Tel-Vered R, Elbaz J, et al. Amplified biosensing using the horseradish peroxidase-mimicking DNAzyme as an electrocatalyst. Analytical Chemistry,2010,82(11):4396-4402
    [124]Li D, Shlyahovsky B, Elbaz J, et al. Amplified analysis of low-molecular-weight substrates or proteins by the self-assembly of DNAzyme-aptamer conjugates. Journal of the American Chemical Society,2007,129(18):5804-5805
    [125]Liu J, Lu Y. Adenosine-dependent assembly of aptazyme-functionalized gold nanoparticles and its application as a colorimetric biosensor. Analytical Chemistry,2004,76(6):1627-1632
    [126]Knudsen S M, Lee J, Ellington A D, et al. Ribozyme-mediated signal augmentation on a mass-sensitive biosensor. Journal of the American Chemical Society,2006,128(50):15936-15937
    [127]Hesselberth J R, Robertson M P, Knudsen S M, et al. Simultaneous detection of diverse analytes with an aptazyme ligase array. Analytical Biochemistry,2003, 312(2):106-112
    [128]Collett J R, Cho E J, Ellington A D. Production and processing of aptamer microarrays. Methods,2005,37(1):4-15
    [129]Seetharaman S, Zivarts M, Sudarsan N, et al. Immobilized RNA switches for the analysis of complex chemical and biological mixtures. Nature Biotechnology, 2001,19(4):336-341
    [130]Kleinjung F, Klussmann S, Erdmann V A, et al. High-affinity RNA as a recognition element in a biosensor. Analytical Chemistry,1998,70(2):328-311
    [131]Stadtherr K, Wolf H, Lindner P. An aptamer-based protein biochip.. Analytical Chemistry,2005,77(11):3437-3443
    [132]Wu Z-S, Guo M-M, Zhang S-B, et al. Reusable electrochemical sensing platform for highly sensitive detection of small molecules based on structure-switching signaling aptamers. Analytical Chemistry,2007,79(7):2933-2939
    [133]Zuo X, Song S, Zhang J, et al. A target-responsive electrochemical aptamer switch (TREAS) for reagentless detection of nanomolar ATP. Journal of the American Chemical Society,2007,129(5):1042-1043
    [134]Baker B R, Lai R Y, Wood M S, et al. An electronic, aptamer-based small-molecule sensor for the rapid, label-free detection of cocaine in adulterated samples and biological fluids. Journal of the American Chemical Society,2006,128(10):3138-3139
    [135]Bang G S, Cho S, Kim B-G. A novel electrochemical detection method for aptamer biosensors. Biosensors and Bioelectronics,2005,21(6):863-870
    [136]Kawde A-N, Rodriguez M C, Lee T M H, et al. Label-free bioelectronic detection of aptamer-protein interactions. Electrochemistry Communications,2005,7(5):537-540
    [137]Kerman K, Ozkan D, Kara P, et al. Voltammetric determination of DNA hybridization using methylene blue and self-assembled alkanethiol monolayer on gold electrodes. Analytica Chimica Acta,2002,462(1):39-47
    [138]Kara P, Kerman K, Ozkan D, et al. Electrochemical genosensor for the detection of interaction between methylene blue and DNA. Electrochemistry Communications,2002,4(9):705-709
    [139]Ozkan D, Erdem A, Kara P, et al. Electrochemical detection of hybridization using peptide nucleic acids and methylene blue on self-assembled alkanethiol monolayer modified gold electrodes. Electrochemistry Communications,2002,4(10):796-802
    [140]Huang M-F, Kuo Y-C, Huang C-C, et al. Separation of long double-stranded DNA by nanoparticle-filled capillary electrophoresis. Analytical Chemistry, 2004,76(1):192-196
    [141]Huizenga D E, Szostak J W. A DNA aptamer that binds adenosine and ATP. Biochemistry,1995,34(2):656-665
    [142]Osborn S E, Ellington A D. Nucleic acid selection and the challenge of combinatorial chemistry. Chemical Reviews,1997,97(2):349-370
    [143]Breaker R R. Catalytic DNA:in training and seeking employment. Nature Biotechnology,1999,17:422-423
    [144]Breaker R R. Making catalytic DNAs. Science,2000,290:2095-2096
    [145]Lu Y, Liu J. Functional DNA nanotechnology:emerging applications of DNAzymes and aptamers. Current Opinion in Biotechnology,2006,17(6): 580-588
    [146]Xiao Y, Qu X, Plaxco K W, et al. Label-free electrochemical detection of DNA in blood serum via target-induced resolution of an electrode-bound DNA pseudoknot. Journal of the American Chemical Society,2007,129(39): 11896-11897
    [147]Yin B-C, Ye B-C, Tan W, et al. An allosteric dual-DNAzyme unimolecular probe for colorimetric detection of copper(II). Journal of the American Chemical Society,2009,131(41):14624-14625
    [148]Elbaz J, Moshe M, Shlyahovsky B, et al. Cooperative multicomponent self-assembly of nucleic acid structures for the activation of DNAzyme cascades: A paradigm for DNA sensors and aptasensors. Chemistry-A European Journal, 2009,15(14):3411-3418
    [149]Sando S, Sasaki T, Kanatani K, et al. Amplified nucleic acid sensing using programmed self-cleaving DNAzyme. Journal of the American Chemical Society, 2003,125(51):15720-15721
    [150]Sando S, Narita A, Sasaki T, et al. Locked TASC probes for homogeneous sensing of nucleic acids and imaging of fixed E. coli cells. Organic and Biomolecular Chemistry,2005,3(6):1002-1007
    [151]Cairns M J, King A, Sun L-Q. Nucleic acid mutation analysis using catalytic DNA. Nucleic Acids Research,2000,28:e9
    [152]Stojanovic M N, Prada P, Landry D W. Catalytic molecular beacons. ChemBioChem.2001,2(6):411-415
    [153]Zhang X, Li L, Li L, et al. Ultrasensitive electrochemical DNA assay based on counting of single magnetic nanobeads by a combination of DNA amplification and enzyme amplification. Analytical Chemistry,2009,81(5):1826-1832
    [154]Zhang Y, Wang Y, Wang H, et al. Electrochemical DNA biosensor based on the proximity-dependent surface hybridization assay. Analytical Chemistry,81(5): 1982-1987
    [155]Gong H, Zhong T, Gao L, et al. Unlabeled hairpin DNA probe for electrochemical detection of single-nucleotide mismatches based on MutS-DNA interactions. Analytical Chemistry,81(20):8639-8643
    [156]Xiao Y, Lou X, Uzawa T, et al. An electrochemical sensor for single nucleotide polymorphism detection in serum based on a triple-stem DNA probe. Journal of the American Chemical Society,2009,131(42):15311-15316
    [157]Fredriksson S, Gullberg M, Jarvius J, et al. Protein detection using proximity-dependent DNA ligation assays. Nature Biotechnology,2002,20, 473-477
    [158]Miranda-Castro R, de-los-Santos-Alvarez P, Lobo-Castanon M J, et al. Hairpin-DNA probe for enzyme-amplified electrochemical detection of Legionella pneumophila. Analytical Chemistry,2007,79(11):4050-4055
    [159]Azek F, Grossiord C, Joannes M, et al. Hybridization assay at a disposable electrochemical biosensor for the attomole detection of amplified human cytomegalovirus DNA. Analytical Biochemistry.2000,284(1):107-113
    [160]Takenaka S, Yamashita K, Takagi M, et al. DNA sensing on a DNA probe-modified electrode using ferrocenylnaphthalene diimide as the electrochemically active ligand. Analytical Chemistry,2000,72(6):1334-1341
    [161]Markham N R, Zuker M. DINAMelt web server for nucleic acid melting prediction. Nucleic Acids Research,2005,33:W577-W581
    [162]Lucarelli F, Marrazza G, Mascini M. Dendritic-like streptavidin/alkaline phosphatase nanoarchitectures for amplified electrochemical sensing of DNA sequences. Langmuir,2006,22(9):4305-4309
    [163]Del Giallo M L, Lucarelli F, Cosulich E, et al. Steric factors controlling the surface hybridization of PCR amplified sequences. Analytical Chemistry,2005, 77(19):6324-6330
    [164]Liu G, Wan Y, Gau V, et al. An enzyme-based E-DNA sensor for sequence-specific detection of femtomolar DNA targets. Journal of the American Chemical Society,2008,130(21):6820-6825
    [165]Navani N K, Li Y. Nucleic acid aptamers and enzymes as sensors. Current Opinion in Chemical Biology,2006,10(3):272-281
    [166]Lee J F, Stovall G M, Ellington A D. Aptamer therapeutics advance. Current Opinion in Chemical Biology,2006,10(3):282-289
    [167]Travascio P, Bennet A J, Wang D Y, et al. A ribozyme and a catalytic DNA with peroxidase activity:active sites versus cofactor-binding sites. Chemistry& Biology,1999,6(11):779-787
    [168]Famulok M, Mayer G, Blind M. Nucleic Acid Aptamers-From Selection in Vitro to Applications in Vivo. Accounts of Chemical Research,2000,33(9): 591-599
    [169]Shangguan D, Li Y, Tang Z, et al. Aptamers evolved from live cells as effective molecular probes for cancer study. Proceedings of the National Academy of Science USA,2006,103(32):11838-11843
    [170]Deng C, Chen J, Nie L, et al. Sensitive bifunctional aptamer-based electrochemical biosensor for small molecules and protein. Analytical Chemistry, 2009,81(24):9972-9978
    [171]Zuo X, Xiao Y, Plaxco K W. High specificity, electrochemical sandwich assays based on single aptamer sequences and suitable for the direct detection of small-molecule targets in blood and other complex matrices. Journal of the American Chemical Society,2009,131(20):6944-6945
    [172]Tang Z, Mallikaratchy P, Yang R, et al. Aptamer switch probe based on intramolecular displacement. Journal of the American Chemical Society,2008, 130(34):11268-11269
    [173]Neumann O, Zhang D, Tam F, et al. Direct optical detection of aptamer conformational changes induced by target molecules. Analytical Chemistry,2009, 81(24):10002-10006
    [174]Wang Z G, Wilner O I, Willner I. Self-assembly of aptamer-circular DNA nanostructures for controlled biocatalysis. Nano Letters,2009,9(12):4098-4102
    [175]Breaker R R. Engineered allosteric ribozymes as biosensor components. Current Opinion in Biotechnology,2002,13(1):31-39
    [176]Soukup G A, Breaker R R. Engineering precision RNA molecular switches. Proceedings of the National Academy of Science USA,1999,96(7):3584-3589
    [177]Chiuman W, Li Y. Simple fluorescent sensors engineered with catalytic DNA 'MgZ'based on a non-classic allosteric design. PLoS ONE,2007,2:e1224
    [178]Levy M, Ellington A D. ATP-dependent allosteric DNA enzymes. Chemistry& Biology,2002,9(4):417-426
    [179]Schlosser K, Li Y. Biologically inspired synthetic enzymes made from DNA. Chemistry& Biology,2009,16(3):311-322
    [180]Ali M M, Li Y. Colorimetric sensing by using allosteric-DNAzyme-coupled rolling circle amplification and a peptide nucleic acid-organic dye probe. Angewandte Chemie International Edition,2009,48(19):3512-3515
    [181]Teller C, Shimron S, Willner I. Aptamer-DNAzyme hairpins for amplified biosensing. Analytical Chemistry,2009,81(21) 9114-9119
    [182]Ferapontova E E, Olsen E M, Gothelf K V. An RNA aptamer-based electrochemical biosensor for detection of theophylline in serum. Journal of the American Chemical Society,2008,130(13):4256-4258
    [183]Laforge F O, Kakiuchi T, Shigematsu F, et al. Comparative study of electron transfer reactions at the ionic liquid/water and organic/water interfaces. Journal of the American Chemical Society,2004,126(47):15380-15381
    [184]Fahlman R P, Sen D J. DNA conformational switches as sensitive electronic sensors of analytes. Journal of the American Chemical Society,2002,124(17): 4610-4616
    [185]Tang Z, Wang K, Tan W, et al. Real-time monitoring of nucleic acid ligation in homogenous solutions using molecular beacons. Nucleic Acid Research,2003, 31:e148

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700