基于纳米材料的无酶生物传感器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米科技将引发人类认知和工业的革命。其中,纳米技术在生物传感器上的应用引起了全世界科学家研究的浓厚兴趣。生物传感技术是一个由生物、化学、物理、电子技术等多种学科相互渗透形成的研究领域。生物传感器具有选择性高、分析速度快、操作简易和仪器价格低廉等特点,而且可进行在线甚至活体分析,在临床诊断、环境监测、食品工业等方面得到了高度重视和广泛应用。纳米材料的应用将进一步提高生物传感器的性能,特别是对无酶生物传感器的构建将产生积极和深远的影响,具有广阔的发展前景。
     本论文利用纳米材料构建和发展了无酶生物传感器,并应用于β-D葡萄糖、H202和NADH的检测。具体研究工作如下:
     1.Ni(Ⅲ)对葡萄糖有很好的催化氧化功能,能直接氧化葡萄糖为葡萄糖酸内酯。本文采用电沉积的方法在金电极的表面修饰一薄层Ni纳米颗粒,研究发现这种纳米级的镍颗粒比常规镍材料具有更为明显的电催化活性。在0.1mol/L的NaOH溶液中,以0.6 V作为应用电位,测得葡萄糖浓度在10.0μmol/L~2.5 mmol/L范围内呈良好的线性关系,检出限为5.0μmol/L(S/N=3);响应时间为3s。传感器制备简单,无需特殊保管,可重复使用。
     2.以室温离子液体正辛基-吡啶-六氟磷酸盐(OPFP)代替传统固体石蜡为粘合剂与多壁碳纳米管(MWCNT)、石墨粉相混合制备了一种新型的以多壁碳纳米管修饰的碳离子液体电极(MWCNT-CILE)。优化出制备电极时多壁碳纳米管、离子液体(OPFP)与石墨的比例为1:5:4,以铁氰化钾为电化学探针对碳纳米管/离子液体/石墨复合物电极的电化学行为进行了研究,并与离子液体碳糊电极进行了比较。结果表明由于MWCNT具有很高电催化活性,疏水性的IL(OPFP)有很强的电子传导性能和协同催化作用,使碳纳米管/离子液体/石墨复合物电极对H202和NADH具有更好的电流响应。
     3.以第3章中构建的多壁碳纳米管修饰的碳离子液体电极(MWCNT-CILE)为无酶葡萄糖传感器在碱性条件下测定葡萄糖浓度。研究表明通过在0.5mol/L的H2SO4中对电极表面的进一步活化,选择在0.1mol/L的NaOH支持电解液中,0.6V的应用电位,测得葡萄糖浓度在50.0μmol/L~8.0 mmol/L范围内呈良好的线性关系,检出限为10.0μmol/L(S/N=3),响应灵敏度高达445.8μAmM-1cm-2;响应时间小于5s。重现性和稳定性良好,对抗坏血酸(AA)和尿酸(UA)具有一定的抗干扰作用,因而具有实际应用于血糖中葡萄糖含量检测的可能。
Nanotechnology will become a revolution of human cognition and the industrial. Herein, nanotechnology applied in biosensor has caused the study interest of scientists over the world. Biosensors have developed to be a frontier and newly-interdisciplinary including chemistry, biology, physics and electronics. Due to its simplicity, high sensitivity and potential ability for real-time and on-site analysis, biosensors have been widely applied in various fields including clinical diagnosis, environment monitoring, food control and industrial process and so on.The application of nanometer materials will further improve the performance of biosensors, especially produce positive and far-reaching influence for non-enzymatic biosensors, and has a broad development prospects.
     The main work of this paper focuses on using nanometer material to fabricate and develop non-enzymatic biosensors, and applying their novel biosensors to detect p-D Glucose,H2O2 and NADH. The main points of this thesis are summarized as follows:
     1. The Ni (Ⅲ) had a good function for catalytic oxidation of glucose, which could oxidate glucose to glucolactone directly. A thin film of Ni nanoparticles modified electrode has been fabricated by electrodeposition. It was found that the Ni nanoparticles showed obvious electrocatalytic activity than conventional Ni materials. The modified was used to detection glucose at 0.6V in 0.1mol/L NaOH solution, the response current was good proportional to the concentration of glucose over the range 10.0μmol/L~2.5 mmol/L, with a detection limit of 5.0μmol/L(S/N= 3) and a response time of 3s. The preparation of the sensor is simple and has a lower cost, as well as can be used repeatedly.
     2. A new kind of room temperature ionic liquid (n-octylpyridinum hexafluorophosphate,OPFP) mixed with multiwall carbon nanotubes(MWCNT) and graphite powder composite eletrode was constructed based on the substitute of the paraffin oil. The optimal condition for preparation was selected as 1:5:4(mass ratio) for MWCNT, OPFP and graphite powder. The electrochemical behaviors of the MWCNT/IL/graphite composite electrode(MWCNT-CILE) was investigated by using K3 [Fe (CN) 6] as probe and compared with IL(OPFP)/graphite electrode(CILE) as mass ratio of 5:5. The result indicated that the novel composite electrode had a better response to H2O2 and NADH than CILE due to the high catalytic performance of MWCNT and the strong electronic transmission performance and collaborative catalysis of OPFP.
     3. Using the MWCNT/IL/graphite composite electrode(MWCNT-CILE) fabricated in Chapter 3 as a non-enzymatic glucose biosensor detect the concrntration of glucose in alkaline medium. It was observed that the novel composite electrode showed a higher response current to glucose after further oxidation in 0.5 mol/L H2SO4. Under the optimized condition, glucose was determined by chronoamperometry in in 0.1 mol/L NaOH supporting electrolyte at applied potential of 0.6V, the calibration curve is linear in the concentration range of 50.0μmol/L~8.0 mmol/L with a detection limit of 10.0μmol/L(S/N=3) and excellent sensitivity of 445.8μAmM-1 cm-2; the response time is less than 5 seconds. The non-enzymatic glucose biosensor exhibited fine reproducibility and stability. In addition, the biosensor can eliminate interference from ascorbic acid(AA) and uric acid(UA). Thus it has a practical application probable in detecting the blood sugar levels of glucose.
引文
[1]Janata J, Josowicz M, Vanysek P, et al. Chemical sensors. Anal. Chem.,1998, 70:179~208
    [2]Clark L C, Lyons C. Electrode systems for continuous monitoring in cardiovascular surgery. Ann. N. Y. Acad. Sci.,1962,102:29~45
    [3]Updike S J, Hicks G P. The enzyme electrode. Nature,1967,214(92):986~988
    [4]Singh A K, Srivastava S, Srivastava J, et al. Studies in kinetics and mechanism of oxidation of d-glucose and d-fructose by alkaline solution of potassium iodate in the presence of Ru(III) as homogeneous catalyst. Journal of Molecular Catalysis A:Chemical,2007,278 (1):72~81
    [5]Zhao C Z, Shao C L, Li M H, et al. Flow-injection analysis of glucose without enzyme based on electrocatalytic oxidation of glucose at a nickel electrode. Talanta,2007,71:1769~1773
    [6]Park S, Boo H, Chung T D. Electrochemical non-enzymatic glucose sensors. Analytica Chimica Acta,2006,556:46~57
    [7]Gorski W, Kennedy R T. Electrocatalyst for non-enzymatic oxidation of glucose in neutral saline solutions. J. Electroanal. Chem.,1997,424 (1):43~48
    [8]Wilder J W G, Venema L C, Rinzler A G, et al. Electronic structure of atomically resolved carbon nanotubes. Nature,1998,391(6662):59~62
    [9]董绍俊,车广礼,谢远武.化学修饰电极.北京:科学出版社,2003
    [10]Iwuoha E I, Villaverde D S, Garcia N P, et al. Reactivities of organic phase biosensors.2. The amperometric behaviour of horseradish peroxidase immobilised on a platinum electrode modified with an electrosynthetic polyaniline film. Biosens. Bioelectron.,1997,12(8):749~761
    [11]Losito I, Zambonin C G. Double electropolymer modified platinum electrode to follow the kinetic process H2O2+ascorbic acid. Influence of the reaction on amperometric biosensor applications. J. Electroanal. Chem.,1996,410, 181~187
    [12]EI-Deab M S, Ohsaka T. Molecular-level design of binary self-assembled monolayers on polycrystalline gold electrodes. Electrochim. Acta,2004,49(13): 2189~2194
    [13]Bello A, Giannetto M, Mori G. Electrochemically induced derivatization of poly (2,2'-bithiophene) and characterization of functionalized polymers by FT-IR microscopy, SEM microanalysis and EQCM. J. Electroanal. Chem.,2005,575: 257~266
    [14]Lu X Q, Jin J, Kang J W,et al. The characterization of 5-{[4(4-mercapto) phenylmethoxy]phenyl}-10,15,20-tris(phenyl)porphyrin cobalt(II) self-assembled monolayers(SAMs) and its electrocatalytic oxidation for ascorbic acid. Mater. Chem. Phys.,2003,77:952~957 Buttry D A. Electroanalytical Chemistry. Taylor&Francis Ltd, New York, 1991
    [16]Millan K M M S R. Sequence-selective biosensor for DNA based on electroactive hybridization indicators. Anal.Chem.,1993,65(17):2317~2323.
    [17]Yoon H C K H S. Multilayered assembly of dendrimers with enzymes on gold:thickness-controlled biosensing interface. Anal.Chem.,2000,72(5): 922~926.
    [18]Kolb D M. Advances in Electrochemistry and Electrochemical Engineering. Wiley, New York,1978
    [19]Kuhn H, Mobius D, Bucher H. Physical Methods of Chemistry. Wiley, New York,1972
    [20]Nishikata Y, Kakimoto M, Morikawa A, et al. Evaluation of defects of polyimide langmuir-blodgett films by electrochemical method. Chem. Lett.,1989,209(6): 861~864
    [21]Daifuku H, Yoshimura I, Hirata I, et al. Analysis of current-potential curves for mediated electron-transfer reactions at rotating disk electrodes:Electrocatalysis by polypyridine osmium and ruthenium complexes confined to tin oxide electrodes as a Langmuir-Blodgett monomolecular layer. J. Electroanal. Chem., 1986,199(1):47~68
    [22]Miyasaka T, Watanabe T, Fujishima A, et al. Highly efficient quantum conversion at chlorophyll a-lecithin mixed monolayer coated electrodes. Nature, 1979,277:638~640
    [23]Miyasaka T, Watanabe T, Fujishima A, et al. Light energy conversion with chlorophyll monolayer electrodes. In vitro electrochemical simulation of photosynthetic primary processes. J Am Chem Soc.,1987,100(21):6657~6665
    [24]Zeng B Z, Yang Y X, Zhao F Q. Electrochemical study and detection of erphenazine using a gold electrode modified with decanethiol SAM. Talanta, 2003,61(6):819~827
    [25]Chou H A, Zavitz D H, Ovadia M. In vivo CH3(CH2)11SAu SAM electrodes in the beating heart:In situ analytical studies relevant to pacemakers and interstitial biosensors. Biosens. Bioelectro.,2003,18(1):11~21
    [26]Zhou H H, Chen H, Luo S L, et al. Preparation and Bioelectrochemical responses of the poly(m-poenyenediamine) glucose oxidase electrode. Sensors and Actuators B,2004,101:224~230
    [27]Andreescu S, Andreescu D, Sadik O A. A new electrocatalytic mechanism for the oxidation of phenols at platinum electrodes. Electrochem. Commun.,2003, 5(8):681~688
    [28]Aurbach D, Gamolsky K, Markovsky B, et al. On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries. Electrochim. Acta,2002,47:1423~1439
    [29]Kreuzer M P, O'Sullivan C K, Guilbault G G. Alkaline phosphatase as a label for immunoassay using amperometric detection with a variety of substrates and an optimal buffer system. Anal. Chim. Acta,1999,393:95~102
    [30]Ribeiro A S, Gazotti W A, Filho P F S, et al. New functionalized 3-(alkyl)thiophene derivatives and spectroelectrochemical characterization of its polymers. Synthetic Metals,2004,145(1):43~49
    [31]Dong S, Li F. Researches on chemically modified electrodes:Part ⅩⅤ. Preparation and electrochromism of the vanadium hexacyanoferrate film modified electrode. J.Electroanal.Chem.,1986,210(1):31~44
    [32]刘有芹,金松子,刘六战,等.铁氰化锰修饰玻碳电极的制备及其电化学行为.分析化学,2004,32(7):847~851
    [33]Zagal J H. Metallophthalocyanines as catalysts in electrochemical reactions. Coordination Chem. Reviews,1992,119:89~136
    [34]Whiteley L D, martin C R. Perfluorosulfonate ionomer film coated electrodes as electrochemical sensors:fundamental investigations. Anal.Chem.,1987, 59(14):1746~1751
    [35]Li Y H, Liu X Y, Zeng X D,et al. Nonenzymatic hydrogen peroxide sensor based on a Prussian Blue-modified carbon ionic liquid electrode. Microchimica Acta, 2009,165(3-4):393~398
    [36]Yabuki S, Mizutani F, Hirata Y. Preparation of a microperoxidase and ferrocene-immobilized polyion complex membrane for the detection of hydrogen peroxide. J.Electroanal.Chem.,1999,468(1):117~120
    [37]Adams R N. Carbon paste electrodes. Anal. Chem.,1958,30(9):1576~1576
    [38]肖小华,刘淑娟,刘霞,等.离子液体及其在分离分析中的应用进展.分析化学,2005,33(4):569-574
    [39]Liu H T, He P, Li Z Y, et al. An ionic liquid-type carbon paste electrode and its polyoxometalate-modified properties. Electrochemistry. Communications,2005, (7):1357~1363 Safavi A, Maleki N, et al. Highly improved electrocatalytic behavior of sulfite at carbon ionic liquid electrode:Application to the analysis of some real samples. Analytica Chimica Acta,2008,625,8~12
    [41]Maleki N, Safavi A, Tajabadi F. High-performance carbon composite electrode based on an ionic liquid as a binder. Anal. Chem.,2006,78:3820~3826
    [42]Musameha M M, Kachoosangi R T, Xiao L, et al. Ionic liquid-carbon composite glucose biosensor. Biosens. Bioelectro.,2008,24:87~92
    [43]白春礼.纳米科技及其发展前景.科学通报,2001,46(2):89~92
    [44]Iijima S. Helical microtubles of graphite carbon. Nature,1991,354(6348): 56~58
    [45]Iijima S, Ichlhashi T. Single shell carbon nanotubes of 1 nm diameter. Nature, 1993,363(6430):603~605
    [46]Bethune D S, Kiang C H, Devries M S, et al. Cobalt catalyzed growth of carbon nanotubes with single atomic layer walls. Nature,1993,363(6430):605~607
    [47]Kong J, Franklin N R, Zhou C W, et al. Nanotube molecular wires as chemical sensors. Science,2000,287:622~625
    [48]Rinzler A G, Liu J, Nikolaev P, et al. Large-scale purification of single-wall carbon nanotubes:process, product, and characterization. Appl. Phys.,1998, A67:29~37
    [49]杨占红,吴洁清,李晶,等.碳纳米管的纯化-电化学氧化法.高等学校化学学报,2001,3:446~449
    [50]Jia Z J, Wang Z Y, Liang J, et al. Production of short multi-walled carbon nanotubes. Carbon,1999,37:903~906
    [51]Liu J, Rinzler A G, Dai H J, et al. Fullerene pipes. Science,1998,280: 1253~1256
    [52]Chen J, Hamon M A, Hu H, et al. Solution properties of single-walled carbon nanotubes. Science,1998,282:95~98
    [53]罗红霞,施祖进,李南强,等.羧基化单壁碳纳米管修饰电极的电化学表征及其电催化作用.高等学校化学学报,2000,21(9):1372~1374
    [54]Wu F H, Zhao G C, Wei X W. Electrocatalytic oxidation of nitric oxide at multi-walled carbon nanotubes modified electrode. Electrochem. Commun., 2002,4(9):690~694
    [55]Luo H X, Shi Z J, Li N Q, et al. Investigation of the electrochemical and electrocatalytic behavior of single-wall carbon nanotube film on a glassy carbon electrode. Anal. Chem.,2001,73:915~920
    [56]Britto P J, Santhanam K S V, Ajayan P M. Carbon nanotube electrode for oxidation of. Dopamine. Bioelectrochem. Bioenerg.,1996,41:121~125
    [57]Britto P J, Santhanam K S V, Alonso V, et al. Improved charge transfer at carbon nanotube electrode. Adv. Mater.,1999,11:154~157
    [58]Wu F H, Zhao G C, Wei X W. Electrocatalytic oxidation of nitric oxide at multi-walled carbon nanotubes modified electrode. Electrochem. Commun., 2002,4:690~694
    [59]Musameh M, Wang J, Merkoci A, et al. Low-potential stable NADH detection at carbon-nanotube-modified glassy carbon electrodes. Electrochem. Commun., 2002,4(10):743~746
    [60]Wang J, Musameh M, Lin Y J. Solubilization of carbon nanotubes by nafion towards the preparation of amperometric Biosensor. J. Am. Chem. Soc.,2003, 125:2408~2409
    [61]Yamamoto K, Shi G, Zhou T, et al. Study of carbon nanotubes-HRP modified electrode and its application for novel on-line biosensors. Analyst,2003,128: 249~254
    [62]Wang S G, Zhang Q, Wang R, et al. A novel multi-walled carbon nanotube-based biosensor for glucose detection. Biochem. Biophys. Res. Commun.,2003, 311(3):572~576
    [63]Wang S G, Zhang Q, Wang R, et al. Multi-walled carbon nanotubes for the immobilization of enzyme in glucose biosensors. Electrochem. Commun.,2003, 5(9):800~803
    [64]张凌燕,袁若,柴雅琴,等.基于辣根过氧化物酶/纳米金/辣根过氧化物酶/多壁纳米碳管修饰的过氧化氢生物传感器的研究.化学学报,2006,64(16):1711~1715
    [65]Wang J X, Li M X, Shi Z J, et al. Direct electrochemistry of cytochrome c at a glassy carbon electrode modified with single-wall carbon nanotubes. Anal. Chem.,2002,74(9):1993~1997
    [66]Davis J J, Coles R J, Hill H A O. Protein electrochemistry at carbon nanotube electrodes. J. Electroanal. Chem.,1997,440:279~282
    [67]Zhao Y D, Zhang W D, Chen H, et al. Direct electrochemistry of horseradish peroxidase at carbon nanotube powder microelectrode. Sens. Actuators. B,2002, 87:168~172
    [68]Davis J J, Green M L H, Leung Y C. The immobilisation of proteins in carbon nanotubes. Inorganica Chimica Acta,1998,272:261~266
    [69]Liu C Y, Bard A J, Wudl F, et.al. Electrochemical characterization of films of single-walled carbon nanotubes and their possible applications in supercapacitors. Electrochem Solid State Lett.,1999(2):577~578
    [70]Brown K R, Fox A P, Natan M J. Morphology-dependent electrochemistry of cytochrorome C at Au collide-modified SnO2 electrodes. J. Am. Chem. Soc., 1996,118:1154~1157
    [71]Xiao Y, Ju H X, Chen H Y. Hydrogen peroxide sensor based on horseradish peroxidase-labeled Au colloids immobilized on gold electrode surface by cysteamine monolayer. Anal. Chim. Acta,1999,391:73~82
    [72]Xiao Y, Ju H X, Chen H Y. Direct electrochemistry of horseradish peroxidase immobilized on a colloid/cysteamine-modified gold electrode. Anal. Biochem., 2000,278(1):22~28
    [73]Bharathi S, Nogami M. A glucose biosensor based on electrodeposited biocomposites of gold nanoparticles and glucose oxidase enzyme. Analyst, 2001,126:1919~1922
    [74]Wang M, Sun C, Wang L, et al. Electrochemical detection of DNA immobilized on gold colloid particles modified self-assembled monolayer electrode with silver nanoparticle label. J. Pharm. Biomed. Anal.,2003,33:1117~1125
    [75]Cai H, Xu C, He P, et al. Colloid Au-enhanced DNA immobilization for the electrochemical detection of sequence-specific DNA. J. Electroanal. Chem., 2001,510:78~85
    [76]Wang J. Nanoparticle-based electrochemical DNA detection. Anal. Chim. Acta, 2003,500:247~257
    [77]Shen Y, Liu J, Wu A, et al. Preparation of multilayer films containing Pt nanoparticles on a glassy carbon electrode and application as an electrocatalyst for dioxygen reduction. Langmuir,2003,19:5397~5401
    [78]Liu J, Cheng L, Song Y, et al. Simple preparation method of multilayer polymer films containing Pd nanoparticles. Langmuir,2001,17:6747~6750
    [79]You T, Niwa O, Tomita M, et al. Characterization of platinum nanoparticle-embedded carbon film electrode and its detection of hydrogen peroxide. Anal. Chem.,2003,75:2080~2085
    [80]You T, Niwa O, Chen Z, et al. An amperometric detector formed of highly dispersed Ni nanoparticles embedded in a graphite-like carbon film electrode for sugar determination. Anal. Chem.,2003,75:5191~5196
    [81]Miyake M, Torimoto T, Sakata T, et al. Photoelectrochemical Characterization of Nearly Monodisperse CdS Nanoparticles-Immobilized Gold Electrodes. Langmuir,1999,15(4):1503~1507
    [82]Miyake M, Torimoto T, Sakata T, et al. Effects of surface charges and surface states of chemically modified cadmium sulfide nanoparticles immobilized to gold electrode substrate on photoinduced charge transfers. Langmuir,1999, 15(8):2714~2718
    [83]Lemon B I, Hupp J T. EQCM investigations of dye-functionalized nanocrystalline titanium dioxide electrode/Solution interfaces:does luminescence report directly on interfacial electron transfer kinetics. J. Phys. Chem.B,1999,103(19):3797~3799
    [84]Hickey S G., Riley D J. Photoelectrochemical studies of CdS nanoparticle-modified electrodes. J. Phys. Chem.B,1999,103(22):4599~4602
    [85]Drouard S, Hickey S G, Riley D J. CdS nanoparticle-modified electrodes for potoelectrochemical studies. Chem. Commun.,1999,1:67~68
    [86]Yang Q L, Atanaov P, Wilkins E. Development of needle-type glucose sensor with High selectivity. Sens. Actuator B,1998,46(3):249~256
    [87]俞建国,李建平.高选择性的镍基无酶葡萄糖微传感器的研制及应用.分析化学,2008,36(9):1201~1206
    [88]Zhou H H, Chen H, Luo S L, et al. Glucose biosensor based on platinum microparticles dispersed in nano-fibrous polyaniline. Biosensors and Bioelectronics,2005,20(7):1305~1311
    [89]Ward M D, Ebersole R C. Piezoelectric specific binding assay with mass amplified reagents. US patent:550:1986~1996
    [90]Bauer G, Pittner F, Scalkhammer T. Metal nano-cluster biosensors. Microchim. Acta,1999,131:107~114
    [91]Clark H A, Tjalkens R, Philbert M A, et al. Optical nanosensors for chemical analysis inside single living cells.2. Sensors for pH and calcium and the intracellular application of PEBBLE sensors. Anal. Chem.,1999,71(21): 4837~4843
    [92]Ivo Safarik, Mirka Safarikova. Use of magnetic techniques for the isolation of cells. J. Chromatogr B, Biomed. Sci. Appl,1999,722:33~53
    [93]Richardson J, Hawkins P, Luxton R. The use of coated paramagnetic particles as a physical label in a magneto-immunoassay. Biosen. Bioelectron.,2001,16: 989~993
    [94]Gonzalez-Garcia M B, Fernandez-Sanchez C, Costa-Garcia A. Colloidal gold as an electrochemical label of streptavidin-biotin interaction. Biosen. Bioelectron., 2000,15:315~321
    [95]Patolsky F, Gabriel T, Winner I. Controlled electrocatalysis by microperoxidase-11 and Au-nanoparticle superstructures on conductive supports. J. Electroanal. Chem.,1999,479:69~73
    [96]Shipway A N, Katz E, Willner I. Nanoparticle arrays on surfaces for electronic, optical and sensoric applications. Chemphyschem.,2000,1:18~52
    [97]Singh A K, Flounders A W, Volponi J V, et al. Development of sensors for direct detection of organophosphates. Part I:immobilization, characterization and stabilization of acetylcholinesterase and organophosphate hydrolase on silica supports. Biosen. Bioelectron.,1999,14:703~713
    [98]Hoshi T, Anzai J L, Osa T. Controlled deposition of glucose oxidase on platinum electrode based on an avidin/biotin system for the regulation of output current of glucose sensors. Anal. Chem.,1995,67(4):770~774
    [99]Popovi c'K D, Tri pkovic'A V, AdN ic 'R R. Oxidation of glucose on single-crystal platinum electrodes:A mechanistic study. J. Electroanal Chem.,1992,339:227~245
    [100]Ernst S, Heitbaum J, Hamann C H. The electr ooxidati on of glucose in phos phate buffer soluti ons Part I Reactivity and kinetics bel ow 350 mV/RHE. J. Electroanal. Chem.,1979,100:173~183
    [101]Beden B, Largeaud F, Kokoh K B, et al. Fourier transform infrared reflectance spectroscop ic investigati on of the electrocatalytic oxidati on of glucose: Identificati on of reactive intermediates and reaction products. Electrochim. Acta,1996,41:701~709
    [102]Deo R P, Wang J. Electrochemical detecti on of carbohydrates at carbon nanotube modified glassy carbon electrodes. Electrochem.Commun.,2004,6: 284~287
    [103]Batchelor-McAuley C, Wildgoose G G, Compton R G, et al. Copper oxide nanoparticle i mpurities are responsible for the electroanalytical detecti on of glucose seen using multiwalled carbon nanotubes. Sens. Actuators B,2008,132: 356~360
    [104]Zhang X, Chan K Y, Tseung A C C J. Electrochemical oxidation of glucose by Pt/WO3 electrode. Electroanal. Chem.,1995,386:241~243
    [105]Zhou Y G, Yang S, Qian Q Y, et al. Gold nanoparticles integrated in a nanotube array for electrochemical detection of glucose. Electrochemistry Communications,2009,11:216~219
    [106]Wilson R, Turner A P F. Glucose oxidase:an ideal enzyme. Biosens. Bioelectron. 1992,7:165~185
    [107]Fu Y C, Chen C, Xie Q J, et al. Immobilization of enzymes through one-pot chemical preoxidation and electropolymerization of dithiols in enzyme-containing aqueous suspensions to develop biosensors with Improved performance. Anal. Chem.,2008,80:5829~5838
    [108]You T, Niwa O, Chen Z, et al. An amperometric detector formed of highly dispersed Ni nanoparticles embedded in a graphite-like carbon film electrode for sugar determination. Anal.Chem.,2003,75:5191~5196
    [109]Prabhu S V, Baldwin R P. Constant potential amperometric detection of carbohydrates at a copper-based chemically modified electrode. Anal. Chem.,1989,61:852~856
    [110]Sun Y P, Buck H, Mallouk T E. Combinatorial discovery of alloy electrocatalysts for amperometric glucose sensors. Anal. Chem.,2001, 73:1599~1604
    [111]Quintino M S M, Winnischofer H, Nakamura M, et al. Amperometric sensor for glucose based on electrochemically polymerized tetraruthenated nickel-porphyrin. Analytica Chimica Acta,2005,539(1):215~222
    [112]Salimi A, Roushani M. Non-enzymatic glucose detection free of ascorbic acid interference using nickel powder and nafion sol-gel dispersed renewable carbon ceramic electrode. Electrochemistry Communications,2005,7,879~887
    [113]Kong J, Chapline M G, Dai H. Functionalized carbonnanotubes for molecular hydrogen sensors. Adv Mater,2001,13 (18):1384~1386
    [114]Zeng X D, Li X F, Xing L, et al. Electrodeposition of chitosan-ionic liquid-glucose oxidase biocomposite onto nano-gold electrode for amperometric glucose sensing. Biosens. Bioelectron,2009,24:2898~2903
    [115]Matsui K, Pradhan B K, Kyotani T, et al. Formation of nickel oxide nanoribbons in the cavity of carbon nanotubes. J Phys Chem B,2001,105(24):5682~5688
    [116]Wu H Q, Cao Y J, Yuan P S, et al. Controlled synthesis,structure and magnetic properties of Fe-Ni alloy nanoparticles attached on carbon nanotubes. Chem Phys Lett,2005,406(1-3):148~153
    [117]王立平,高燕,薛群基,等.电沉积镍纳米晶材料制备及性能.电镀与涂饰,2004,23(3):1~2
    [118]Safavi A, Maleki N, Farjami E. Fabrication of a glucose sensor based on a novel nanocomposite electrode. Biosens. Bioelectron,2009,24:1655~1660
    [119]Seghiour A, Chevalet J B A E A. Electrochemical oxidation of nickel in alkaline solutions:a voltammetric study and modeling. J. Electroanal. Chem.,1998,442: 113~123
    [120]Salimi A, Sharifi E, Noorbakhsh A, et al. Direct voltammetry and electrocatalytic properties of hemoglobin immobilized on a glassy carbon electrode modified with nickel oxide nanoparticles. Electrochem Commun,2006, 8(9):1499~1508
    [121]赵常志,张志慧,葛童,等.无酶葡萄糖传感器.应用化学,2007,24(2):192~195
    [122]Mohammadi A, Moghaddam A B, et al. Synthesis of nickel oxides nanoparticles on glassy carbon as an electron transfer facilitator for horseradish peroxidase: Direct electron transfer and H2O2 determination. Materials Science and Engineering C,2009,29:1752~1758
    [123]邓妹皓,龚竹青,陈文泪.电沉积纳米晶体电催化电极的制备及性能.中南工业大学学报,2002,33(6):571~575
    [124]Kaja S, Pickering H W, Bitler W R. Effect of pH on the microstructure of nickel electrodeposits:A TEM study. Plat & Surf Finish,1998,1:58~61
    [125]Gill K S, Cooper W C, Erb U. The effect of pH on the growth morphology of thick nickel electrodeposits. Plat & Surf Finish,1990,11:68~72
    [126]D'Eramo F, Marioli J M, Arevalo A A, et al. HPLC analysis of carbohydrates with electrochemical detection at a poly-1-naphthylamine/copper modified electrode. Electro-analysis,1999,11 (7):481~486
    [127]Buzzeo M C, Christopher H, Compton R G. Use of room temperature ionic liquids in gas sensor design. Anal. Chem.,2004,76(15):4583~4588
    [128]He P, Liu H T, Li Z Y, et al. Electrochemical deposition of Silver in room-temperature ionic liquids and its surface-enhanced raman scattering effect. Langmuir,2004,20(23):10260~10267
    [129]He P, Liu H T, Li Z Y, et al. Electrodeposition of platinum in room temperature ionic liquids and its electrocatalytic effect on electro-oxidation of methanol.J. Electrochem. Soc.,2005,152:E146~E153
    [130]Lei C X, Hu S Q, Shen G L, et al. Immobilization of horseradish peroxidase to a nano-Au monolayer modified chitosan-entrapped carbon paste electrode for the detection of hydrogen peroxide. Talanta,2003,59(5):981~988
    [131]Yang M H, Yang Y H, Yang Y, et al. Bienzymatic amperometric biosensor for choline based on mediator thionine in situ electropolymerized within a carbon paste electrode. Anal. Biochem.,2004,334(1):127~134
    [132]Guo M D, Li Y Q, Guo H X, et al. Electrochemical detection of short sequences related to the hepatitis B virus using MB on chitosan-modified CPE. Bioelectrochemistry,2007,70(2):245~249.
    [133]王月荣,胡坪,梁琼麟,等.碳纳米管修饰电极在生命电分析化学中的应用进展.分析化学,2008,36(8):1011-1016
    [134]Wang J, Li M X, Shi Z J, et al. Direct electrochemistry of cytochrome c at a glassy carbon electrode modified with single-wall carbon nanotubes. Anal. Chem.,2002,74:1993~1997
    [135]PedanoM L, Rivas G A. Adsorption and electrooxidation of nucleic acids at carbon nanotubes paste electrodes. Electrochem. Comm un.,2004,6:10~16
    [136]Musameh M, Wanga J, Merkoci A, et al. Low-potential stable NADH detection at carbonnanotube-modified glassy carbon electrodes. Electrochemistry Communications,2002,4:743~746
    [137]Safavi A, Maleki N, Tajabadi F, et al. High electrocatalytic effect of Palladium nanoparticle arrays electrodeposited on carbon ionic liquid electrode. Electrochem. Commun.,2007,9(8):1963~1968
    [138]Sun W, Yang M X, Jiao K. Electrocatalytic oxidation of dopamine at an ionic liquid modified carbon paste electrode and its analytical application. Anal. Bioanal. Chem.,2007,389(4):1283~1291
    [139]Zheng J B, Zhang Y, Yang P P. An ionic liquid-type carbon paste electrode for electrochemical investigation and determination of calcium dobesilate. Talanta, 2007,73(5):920~925
    [140]孙伟,高瑞芳,毕瑞锋,等.室温离子液体六氟磷酸正丁基吡啶修饰碳糊电极的制备与表征'分析化学,2007,35(4):567~570
    [141]Zhai X R, Wei W Z, Zeng J X, et al. Layer-by-layer assembled film based on chitosan/carbon nanotubes and its application to electrocatalytic oxidation of NADH. Microchim Acta,2006,154:315~320
    [142]Newman J D, Turner A P F. Home blood glucose biosensors:a commercial perspective. Biosens. Bioelectron.,2005,20:2435~2453
    [143]Wilson G S, Gifford R, Biosensors for real-time in vivo measurements. Biosens. Bioelectron.,2005,20:2388~2403
    [144]Karyakin A A, Karyakina E E, Gorton L. Prussian-Blue-based amperometric biosensors in flow-injection analysis. Talanta,1996,43:1597~1606
    [145]Chen T, Friedman K A, Lei I, et al. In situ assembled mass-transport controll micromembranes and their application in implanted amperometric glucose sensors. Anal. Chem.,2000,72:3757~3763
    [146]Balasubramanian K, Burghard M. Biosensers based on carbon nanotubes. Anal Bioanal Chem.,2006,385(3):452~468
    [147]Zhang M, Gorski W. Electrochemical sensing platform based on the carbon banotubes/redox mediators-biopolymer system. J. Am. Chem. Soc.,2005, 127(7):2058~2059
    [148]Jiang L Y, Wang R X, Li X M, et al. Electrochemical oxidation behavior of nitrite on a chitosan-carboxylated multiwall carbon nanotube modified electrode. Electrochem. Commun.,2005,7(6):597~601
    [149]Tsai Y C, Li S C, Chen J M. Cast thin film biosensor design based on a nafion backbone, a multiwalled carbon nanotube conduit, and a glucose oxidase function. Langmuir,2005,21(8):3653~3658
    [150]Huang K X, Bin M Z,Yong Z X, et al. A sensitive nonenzymatic glucose sensor in alkaline media with a copper nanocluster/multiwall carbon nanotube-modified glassy carbon electrode. Analytical Biochemistry,2007,363:143~150
    [151]Rubianes M D, Rivas G A. Carbon nanotubes paste electrode. Electrochemistry Communications,2003,5:689~694
    [152]Kachoosangi R T, Musameh M M, Abu-Yousef I, Yousef J M, et al. Carbon nanotube-ionic liquid composite sensors and biosensors. Anal. Chem.,2009,81: 435~442
    [153]Zhou Q M, Xie Q J, Fu Y C, et al. Electrodeposition of carbon nanotubes-chitosan-glucose oxidase biosensing composite films triggered by reduction of p-benzoquinone or H2O2. J. Phys. Chem. B,2007, 111:11276~11284
    [154]Ye J S, Wen Y, Zhang W D, et al. Nonenzymatic glucose detection using multi-walled carbon nanotube electrodes. Electrochem. Commun.,2004,6: 66~70
    [155]Tan C K, Loh K P, John T T L. Direct amperometric detection of glucose on a multiple-branching carbon nanotube forest. Analyst,2008,133:448~451
    [156]Li Y H, Liu X Y, Zeng X D,et al. Nonenzymatic hydrogen peroxide sensor based on a Prussian Blue-modified carbon ionic liquid electrode. Microchimica Acta, 2009,165(3-4):393~398

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700