基于元胞自动机的南屯矿区土地利用/覆被变化模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土地系统作为人-地作用最紧密的自然资源系统,其发展演化是人-地相互作用、相互影响的时空动态变化过程。矿山作为人类工程活动对地质影响最为强烈的环境之一,其土地利用变化以及扩张异于其他区域,不仅仅表现为人类直接作用于土地系统,影响、改变整个土地生态系统及景观,更交织了土地系统对人类生存环境的反作用影响。
     从地理模拟系统的发展及其应用入手,介绍了现代社会发展对地理学发展的新要求推动了传统描述性地理学发展以地球信息科学为代表的现代地理学定量研究手段,然后介绍了作为新一代地理模拟系统的元胞自动机的基本概念,并介绍了元胞自动机与地理网格系统的相似性,说明了其在地理学中的适用性。
     根据国家顶级驱动力决定根本驱动力推动直接驱动力(人口、经济等)驱动土地利用变化理论,研究时段选择从我国社会主义市场经济体制改革时期附近开始,据此从已有数据中选取连续等间距数据,并根据研究实际情况在前人研究的基础上对其进行重分类;
     运用数学统计方法定量化分析研究区土地利用年际变化的规模、速度以及幅度,并综合运用基于地学信息图谱理论的地球信息科学技术手段分析研究时段内南屯矿区土地利用时空格局演化及其空间圈层结构变化,总结研究区内土地利用扩张的过程、动态、结构及机理;
     采用统计和地统计方法提取规则,同时结合空间分析认识确定限制条件,采用元胞自动机方法对南屯矿区土地利用变化进行模拟,首先根据已有数据对模型进行精度检验,表明模拟结果的数量精度以及空间相似度都能较好的反映实际情况,然后模拟了研究区2017年土地利用状况并对其变化趋势进行分析。
     通过上述静态数学模型定量描述评价与地球信息科学技术时空动态分析相结合的步骤分析了1987~2007年南屯矿区土地利用变化过程,总结了南屯矿区在这20年间土地利用时间、空间变化总体趋势以及空间圈层结构变化,并预测了未来变化趋势。研究区基础设施建设用地增长迅速,尤其是在矿区1997~2007年扩大再生产阶段,其中生产建设用地在各圈层中都在增长,矿区采空塌陷“迫使”生产建设用地逐步向矿区边缘推移,形成新的居民聚集区域,这就使得生产建设用地的距离谱曲线由单峰态逐步转变为双峰态;采煤活动导致的采空塌陷现象严重,20年内塌陷地面积扩大了3.35倍,并“逼迫”其他用地类型向矿区边缘方向发展,使得矿区中心3000米范围内土地利用变化极不稳定;当地生态重建工作初见成效,塌陷地面积扩张呈减小趋势,矿区中心3000~4000米处分界线差距变小,用地类型结构开始趋于合理化与均衡化。
     在系统阐述地理模拟系统、元胞自动机的基础上,详细论述了本次研究所用模型方法。同时采用基于数学统计的马尔可夫预测方法以及元胞自动机预测方法对研究区2007、2017年土地利用情景进行预测,并利用2007年模拟结果与实际情况对比分别进行精度分析。由预测结果与实际值对比(表4-12)可知,马尔可夫定量预测总体精度为84.9292%,元胞自动机模拟的总体精为81.5357%(Overall Accuracy=(10629/13036)),Kappa系数为0.6609。两者基本都能够较好的模拟矿区土地利用变化,但在数量上后者的精度小于前者。
     本研究为南屯煤矿区人类经济社会发展提出预警,并对煤矿区可持续发展提供科学的空间决策依据。最后运用元胞自动机对研究区2017年土地利用进行空间定量模拟可以为该区域未来经济发展及生态环境重建提供参考。?
As one of natural resource systems, land system has the closest man-land relationship, which is changed dynamically by interleaving interactions between man and land. As one of the most strongly influenced environments by human activity, mining area environment differ from all others, especially in land use change, which not only has uniqueness in characteristic, process and mechanism of dynamic change, but also interleaves interactions between man-land relationships.
     Beginning with the developments and applications of Geographical Simulation Systems (GSS), theories of combining descriptive and quantitative (represented by Geo-Information science in modern geography) methods were introduced, then basic concepts of Cellular Automata (CA), which is regarded as the new generation of Geographical Simulation Systems (GSS), and highlighted the similar aspects between Cellular Automata (CA) and Geographical Grid Systems to outstand its applicability in geography.
     Based on the theories, fundamental driving forces depend on national climax driving forces, and effect according to direct forces, which are put forward by Liu Jiyuan on the basis of studies on spatial - temporal dynamic changes of land use and driving forces analyses of China in the 1990s’, data of equal-time interval was picked up from existing data, and reclassified according to actual situation.
     Changing scale, speed, extent quantified by mathematical statistical methods as well as characteristics of spatial-temporal pattern and spatial ring structure of land use were analyzed by geo-information science technology based on Geo-information Photographical Methodology from 1987 to 2007 in Nantun coal mining area separately to summarize process, structure, dynamic and mechanism of land use in study area.
     Using geo-statistical/statistical model and determined rules by spatial analysis, land use change was simulated by Cellular Automata (CA) in Nantun coal mining area. The result of that in 2007 was verified with existing data, and then analyzed the trend of change from 2007 to 2017 according to the prediction of 2017.
     Combing quantitative description from static mathematical statistical methods and spatial-temporal dynamic change from geo-information science technology, process of land use change was analyzed to summarize general trend of spatial-temporal expansion and spatial structure change. Last but no means the least, predicting was made to analyze the trend of future.
     During the study period, infrastructural land increased rapidly, especially in stage of expanded reproduction from 1997 to 2007, in which production and construction land rose in all rings and compelled to move to edge becoming new residential area, whose curve converted from single-peak to double-peak; Trend of extremely unstable in land use change was caused by mining collapse aggravating, which has enlarged 3.35 times during that 20 years, and tressed all others far away from center; Gratifying achievements in ecological reconstruction has success initially, manifested morphologically as: trend of decreasing in mining collapse, stabilizing in land use of all rings and rationalizing and equalizing in structure of land use.
     Based on the description of Geographical Simulation Systems (GSS) and Cellular Automata (CA), model in this paper was described detailedly. Situation of land use in 2007, 2017 was simulated by Markov and Cellular Automata (CA) simultaneously, and the result in 2007 was used to validate the simulations of the two. The validation showed that the accuracy of Markov was 84.9292% while that of Cellular Automata (CA) was 81.5357%, and the Kappa coefficient was 0.6609. Both of these two methods simulated land use change preferably, however, the accuracy of the latter was better than that of the former.
     This paper provided early-warning for production and life in study area and basis of spatial determination. Moreover, the prediction supplied the programming of economic development and ecological reconstruction.
引文
[1]Moran, E.. Global land project: Science plan and implementation strategy[R]. 2005: IGBP Secretariat.
    [2]Foley, J., et al.. Global consequences of land use[J]. science, 2005. 309(5734): p. 570.
    [3]李秀彬.全球环境变化研究的核心领域——土地利用/土地覆被变化的国际研究动向[J].地理学报, 1996. 51(006): p. 553-558.
    [4]史培军,陈晋,潘耀忠等.深圳市土地利用变化机制分析[J].地理学报, 2000. 55(002): p. 151-160.
    [5]于兴修,杨桂山.中国土地利用/覆被变化研究的现状与问题[J].地理科学进展, 2002. 21(001): p. 51-57.
    [6]刘纪远,张增祥.中国近期土地利用变化的空间格局分析[J].中国科学: D辑, 2002. 32(012): p. 1031-1040.
    [7]刘纪远,张增祥,庄大方等. 20世纪90年代中国土地利用变化时空特征及其成因分析[J].地理研究, 2003. 22(001): p. 1-12.
    [8]王民忠.全球土地研究计划:中国应走在前——北京大学土地科学中心主任蔡运龙访谈录[J].中国土地, 2007(004): p. 19-21.
    [9]周成虎,骆剑承,杨晓梅等.遥感影像地学理解与分析[J].中国图像图形学报, 2001. 6(12): p. 208-208.
    [10]Agarwal, C., et al.. A review and assessment of land-use change models: dynamics of space, time, and human choice[R]. USDA Forest Service General Technical Report NE-297. Center for the Study of Institutions, Population, and Environmental Change, Indiana University, Bloomington (IN) and USDA Forest Service, Northeastern Research Station, South Burlington (VT), 2001.
    [11]Herold, M., N. Goldstein, and K. Clarke. The spatiotemporal form of urban growth: measurement, analysis and modeling[J]. Remote Sensing of Environment, 2003. 86(3): p. 286-302.
    [12]陶健,徐跃通,丁娟等.南屯矿区土地利用时空演化分析[J].测绘科学, 2010. 35(1): p. 4.
    [13]Mavroudi, T.. Simulating city growth by using the cellular automata algorithm[D]. 2007.
    [14]Goodchild, M.. The use cases of digital earth[J]. International Journal of Digital Earth, 2008. 1(1): p. 31-42.
    [15]Couclelis, H.. Cellular worlds: a framework for modeling micro-macro dynamics[J]. Environment and Planning A, 1985. 17(5): p. 585–596.
    [16]Couclelis, H.. From cellular automata to urban models: new principles for model development and implementation[J]. Environment and Planning B, 1997. 24: p. 165-174.
    [17]Clarke, K., S. Hoppen, and L. Gaydos. A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay area[J]. Environment and Planning B, 1997. 24: p. 247-262.
    [18]Ward, D., A. Murray, and S. Phinn. A stochastically constrained cellular model of urban growth[J]. Computers, Environment and Urban Systems, 2000. 24(6): p. 539-558.
    [19]Patel, A., et al.. A Cellular Automaton Model of Early Tumor Growth and Invasion: The Effects of Native Tissue Vascularity and Increased Anaerobic Tumor Metabolism[J]. Journal of theoretical biology, 2001. 213(3): p. 315-331.
    [20]Batty, M.. Cities and complexity: understanding cities with cellular automata, agent-based models, and fractals[M]. 2007: The MIT press.
    [21]Pinto, N. and A. ANTUNES. A cellular automata model for the study of small urban areas[R]. 2007.
    [22]Pinto, N. and P. Antunes. Cellular automata and urban studies: a literature survey[A]. ACE: Arquitectura, Ciudad y Entorno, núm. 3, Febrero 2007, 2007.
    [23]孙战利.空间复杂性与地理元胞自动机模拟研究[J].地球信息科学, 1999. 1(2): p. 32-37.
    [24]武晓波,赵健,魏成阶等.细胞自动机模型用于城市发展模拟的方法初探[J].城市规划, 2002. 8: p. 69-73.
    [25]黎夏,叶嘉安.基于神经网络的单元自动机及真实和优化的城市模拟[J].地理学报, 2002. 57(002): p. 159-166.
    [26]黎夏,叶嘉安.知识发现及地理元胞自动机[J].中国科学: D辑, 2004. 34(009): p. 865-872.
    [27]杨青生,黎夏.基于粗集的知识发现与地理模拟——以深圳市土地利用变化为例[J].地理学报, 2006. 61(008): p. 882-894.
    [28]杨青生,黎夏.城市工业空间增长的多智能体模型[J].地理科学, 2009(004): p. 515-522.
    [29]何春阳,陈晋,史培军等.基于CA的城市空间动态模型研究[J].地球科学进展, 2002. 17(002): p. 186-195.
    [30]何春阳,陈晋.大都市区城市扩展模型—以北京城市扩展模拟为例[J].地理学报, 2003. 58(002): p. 294-304.
    [31]何春阳,史培军,李景刚等.中国北方未来土地利用变化情景模拟[J].地理学报, 2004. 59(004): p. 599-607.
    [32]何春阳,史培军,陈晋等.基于系统动力学模型和元胞自动机模型的土地利用情景模型研究[J].中国科学: D辑, 2005. 35(005): p. 464-473.
    [33]李月臣,何春阳.中国北方土地利用/覆盖变化的情景模拟与预测[J].科学通报, 2008. 53(006): p. 713-723.
    [34]匡文慧,张树文.长春市百年城市土地利用空间结构演变的信息熵与分形机制研究[J].中国科学院研究生院学报, 2007. 24(001): p. 73-80.
    [35]陆汝成,黄贤金,左天惠等.基于CLUE—S和Markov复合模型的土地利用情景模拟研究——以江苏省环太湖地区为例[J].地理科学, 2009(004): p. 577-581.
    [36]Wilson, T.. Human information behavior[J]. Informing science, 2000. 3(2): p. 49-56.
    [37]陈述彭,郭华东,童庆禧.遥感信息机理研究[M]. 1998.
    [38]钱学森,于景元,戴汝为.一个新的学科领域——开放的复杂巨系统及其方法论[J].自然杂志, 1990. 1: p. 3-10.
    [39]黎夏,叶嘉安,刘小平等.地理模拟系统:元胞自动机与多智能体[M]. 2007,北京:科学出版社.
    [40]Openshaw, S. and P. Taylor. The modifiable areal unit problem[R]. Quantitative geography: A British view, 1981. 9.
    [41]Torrens, P. and I. Benenson. Geographic automata systems[J]. International Journal of Geographical Information Science, 2005. 19(4): p. 385-412.
    [42]Kari, J.. Theory of cellular automata: A survey[J]. Theoretical Computer Science, 2005. 334(1-3): p. 3-33.
    [43]Batty, M. and Y. Xie. From cells to cities. Environment and Planning B: Planning and Design[M], 1994. 21(7).
    [44]Wolfram, S.. Theory and applications of cellular automata[D]. 1986.
    [45]Wolfram, S.. Random sequence generation by cellular automata[J]. Advances in appliedmathematics, 1986. 7(2): p. 123-169.
    [46]Wolfram, S.. Cryptography with cellular automata[M]. 1986: Springer.
    [47]Wolfram, S.. Cellular automaton fluids 1: Basic theory[J]. Journal of Statistical Physics, 1986. 45(3): p. 471-526.
    [48]Batty, M. and Y. Xie. Possible urban automata[J]. Environment and Planning B, 1997. 24: p. 175-192.
    [49]Batty, M., Y. Xie, and Z. Sun. Modeling urban dynamics through GIS-based cellular automata[J]. Computers, Environment and Urban Systems, 1999. 23(3): p. 205-233.
    [50]史忠植.高级人工智能[M]. 1998:科学出版社.
    [51]丁娟,徐跃通,杨燕杰等.数字煤矿——中国煤矿信息化的必然选择[J].矿山机械, 2007. 35(011): p. 10-13.
    [52]张帅,邵全琴,刘纪远等.黄河源区玛多县土地利用/覆被及景观格局变化的遥感分析[J].地球信息科学, 2007. 9(004): p. 109-115.
    [53]丁娟.地学信息图谱在南屯矿区生态环境研究中的应用[D]. 2008,山东师范大学.
    [54]杨燕杰,徐跃通,丁娟等.基于GIS技术的南屯矿区生态环境建设研究[J].矿业研究与开发, 2007. 27(003): p. 63-65.
    [55]杨燕杰,徐跃通,丁娟等.煤矿区土地利用变化及其对灌溉系统的影响[J].科技导报(北京), 2008. 26(003): p. 60-64.
    [56]刘玉华,徐跃通,丁娟等.基于VB ActiveX方法的土地复垦信息系统设计——以保安煤矿区为例[J].资源开发与市场, 2007. 23(006): p. 490-491.
    [57]李小文,刘素红,王咂.遥感原理与应用[M]. 2008,北京:科学技术出版社.
    [58]王秀兰,包玉海.土地利用动态变化研究方法探讨[J].地理科学进展, 1999. 18(001): p. 81-87.
    [59]赵萍,冯学智.基于遥感与GIS技术的城镇体系空间特征的分形分析——以绍兴市为例[J].地理科学, 2003. 23(006): p. 721-727.
    [60]陈勇,艾南山.城市结构的分形研究[J].地理学与国土研究, 1994. 10(004): p. 35-41.
    [61]吴兵,葛昭攀.分形理论在地理信息科学研究中的应用[J].地理学与国土研究, 2002. 18(003): p. 23-26.
    [62]刘纪远.西藏自治区土地利用[M]. 1992,北京:科学出版社.
    [63]赵晶.上海市土地利用结构和形态演变的信息熵与分维分析[J].地理研究, 2004. 23(002):p. 137-146.
    [64]Myneni, R., et al.. Increased plant growth in the northern high latitudes from 1981 to 1991[J]. Nature, 1997. 386(6626): p. 698-702.
    [65]Carlson, T. and D. Ripley. On the relation between NDVI, fractional vegetation cover, and leaf area index[J]. Remote Sensing of Environment, 1997. 62(3): p. 241-252.
    [66]Zhang, X., et al.. Monitoring vegetation phenology using MODIS[J]. Remote Sensing of Environment, 2003. 84(3): p. 471-475.
    [67]Lanfredi, M., et al.. Multiresolution spatial characterization of land degradation phenomena in southern Italy from 1985 to 1999 using NOAA-AVHRR NDVI data[J]. Geophysical Research Letters, 2003. 30(2): p. 1069-1081.
    [68]Stow, D., et al.. Variability of the seasonally integrated normalized difference vegetation index across the North Slope of Alaska in the 1990s[J]. International Journal of Remote Sensing, 2003. 24(5): p. 1111-1117.
    [69]Stow, D., et al.. Remote sensing of vegetation and land-cover change in Arctic Tundra Ecosystems[J]. Remote Sensing of Environment, 2004. 89(3): p. 281-308.
    [70]徐建华.现代地理中的数学方法[J]. 2002,北京:高等教育出版社.
    [71]陈述彭.地理科学的信息化与现代化[J].地理科学, 2001. 21(003): p. 193-197.
    [72]庄大方,刘纪远.中国土地利用程度的区域分异模型研究[J].自然资源学报, 1997. 12(002): p. 105-111.
    [73]宋开山,刘殿伟,王宗明. 1954年以来三江平原土地利用变化及驱动力[J].地理学报, 2008(001): p. 93-104.
    [74]Zhu, H., et al.. Global analysis of protein activities using proteome chips[J]. science, 2001. 293(5537): p. 2101.
    [75]李新运.城市空间数据挖掘方法与应用研究[D]. 2004,山东科技大学.
    [76]李新运.城市空间数据挖掘方法与应用[M]. 2005,济南:山东大学出版社.
    [77]徐建华.计量地理学[M]. 2006,北京:高等教育出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700