用户名: 密码: 验证码:
基于新型进化算法和微机集群的电力系统并行无功优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电力系统无功电压自动控制的发展大致可以分为四个阶段,即设备级就地分散控制阶段、厂站级就地协调控制阶段、区域级协调控制阶段和全局协调控制阶段。其中尤以基于无功优化、集安全性和经济性于一体的全局协调优化控制为最高追求目标,其条件随着SCADA数据准确率和EMS实用化水平的不断提高正日渐成熟,相应的需求也日益迫切。因此,无功优化问题是目前电力系统领域中的研究热点之一,研究内容主要包括两个方面,即考虑更多实际需求的详细建模和快速准确的求解。本文着重研究无功优化问题的求解方法。
     在数学上,无功优化是一种同时具有连续变量和离散变量、具有非线性的目标函数、非线性的等式和不等式约束的复杂优化问题,具有非凸性和多极值性,其快速准确求解相当困难。目前主要有基于导数的数学规划方法和智能优化算法等两类求解方法,前者以内点法为最新发展,后者以进化算法为典型代表。两者各有优缺点,前者计算速度快,但理论上容易陷入局部极小点,在处理离散控制变量和不可行问题方面存在困难;后者能以较大概率找到全局最优解,便于处理离散控制变量和不可行问题,但容易陷入早熟,计算速度慢。
     为解决基于进化算法的无功优化的早熟和计算速度慢的缺点,前人做了大量工作。归纳起来,主要有三个努力方向:(1)利用进化算法与其它智能优化算法或内点法的互补性来构造混合算法;(2)运用与无功优化相关的电力系统计算和运行方面的经验和知识来简化计算模型、减小问题规模;(3)运用并行计算来加速计算。本文的研究也大致按照这三个方向展开:
     第2章从全局搜索能力较强的进化规划(EP)入手,首先比较了四种EP方案用于求解无功优化问题时的性能;然后研究了所谓的自适应快速EP方案用于求解无功优化问题时的有效性;最后根据比较分析中总结出来的规律,对两种EP方案进行了成功的改进。研究总体表明,EP用于求解无功优化问题时速度太慢。
     第3章将差异进化算法(DE)首次用于求解无功优化问题,研究了其寻优机理和参数设置的问题,并通过与其它进化算法和粒子群算法的比较分析了它的性能。结果表明,对求解无功优化问题而言,DE总体上是一种比较优秀的新型进化算法,值得进一步研究和应用。但同时也发现,DE需要相对较大的群体规模才能避免早熟收敛。当系统规模较大时,这将导致计算时间很长,在单机计算的条件下难以满足在线无功优化的需要。
     第4章研究运用并行计算技术来加快DE用于求解无功优化问题时的计算速度,并以微机集群为平台加以实现。算例分析表明,并行化的确可以大大提高DE求解无功优化问题的速度,采用并行DE和适当规模的集群可以较好地实现电力系统的在线无功优化。但同时也发现,并行计算的加速效果随集群规模的扩大而迅速饱和,有必要通过算法本身的改进来降低所需的群体规模,从而进一步加快计算或使用更小规模的集群以降低成本。
     第5章首先分析了DE和EP的互补性,然后利用这种互补性设计了名为DEEP的混合算法。它以DE为主体,并通过EP的随机变异操作引入新的遗传信息以缓解早熟压力。算例分析表明DEEP具有如下优点:(1)可以有效克服DE需要相对较大的群体规模才能避免早熟的缺点,从而可以大大节省计算时间。主从并行化时,DEEP还可将繁衍操作分散到从进程进行而不致使优化结果明显变差,从而可以进一步节省计算时间。(2)是一种通用的算法,且性能对参数不敏感,唯一的参数设为固定值即可。(3)由于采用了合理的主辅群体机制,对辅助群体不做适应度评估,故新增的计算时间几乎可以忽略不计,十分适于求解无功优化这种适应度评估非常耗时的优化问题。
     第6章运用协同进化技术提供的系统框架,将分解协调技术引入了DE,并利用电力系统无功电压之间的关系具有局部性的特点将电网分成若干个尽可能独立的区域以减少协调工作量,由此构造了一种协同DE与电网分区相结合的无功优化方法CCDE-PSD;针对其特点,还设计了一种三层主从并行结构来实现其并行化。算例分析表明,CCDE-PSD及其并行化的方案设计都是合理有效的。无论从解的质量还是计算时间来看,CCDE-PSD都明显优于普通DE,可以在使用更小的群体规模和更少的进化代数的情况下获得更好的解。
     第7章总结全文,并展望了值得进一步开展的工作。
The development of automatic reactive power and voltage control in power systems can be roughly divided into four phases, namely the apparatus level local dispersed control, the power plant and substation level local coordinated control, the regional coordinated control and the global coordinated control. And the highest objective is the reactive power optimization (RPO) based global coordinated optimal control that addresses both the security and the economic issues. Its precondition is maturating with the improvement of the data accuracy of SCADA and the practicability of EMS, and the demand for it is becoming more and more urgent. Therefore, RPO is one of the hotspots in the power engineering research field. The contents of research mainly consist of two aspects: the detailed modelization considering more practical requirements and the fast as well as accurate solution. This thesis concentrates on studying the solution methods of RPO.
     Mathematically, RPO is a non-convex and multimodal complex optimization problem involving nonlinear objective function, nonlinear equality and inequality constraints and both continuous and discrete variables. It is quite difficult to be solved quickly and accurately. Currently, mainly two classes of methods are used to solve RPO, namely the gradient-based mathematical programming methods and the intelligent optimization methods. The new development of the former class is the interior point methods (IPM) and the typical representatives of the latter class are evolutionary algorithms (EAs). Each class of methods have its own advantages and disadvantages: the former is fast, but is theoretically easy to converge to local minima and has difficulties in handling discrete variables and infeasibility problems; the latter can find global solutions in high probability and is good at handling discrete variables and infeasibility problems, but is slow and suffers from the problem of premature convergence.
     In order to overcome the disadvantages of EA-based RPO, many researches have been conducted, from which three directions can be summarized: (1) constructing hybrid algorithms using the complementary features between EAs and other intelligent optimization methods or IPMs; (2) simplifying the model and reducing the problem size using RPO-related experiences and knowledge in the field of power system calculation and operation; (3) accelerating the computation using parallel computing technologies. The work of this thesis roughly follows these three directions.
     Chapter 2 starts from evolutionary programming (EP) that has good global search ability. The performances of four EP schemes on solving RPO problems are first compared. The effectiveness of the so called adaptive fast EP on solving RPO problems is then studied. Finally, according to the principles summarized from the comparison study, successful improvements on two of the four EP schemes are made. As a whole, the researches in this chapter show that EP is generally too slow for solving RPO problems.
     Chapter 3 applies differential evolution (DE) to solve RPO problems for the first time. The mechanism and parameter setting of DE are first analyzed. Performance of DE on RPO problems is then studied with comparison to other EAs and the particle swarm optimization algorithm. The study shows that generally, DE is an excellent new EA for solving RPO problems, it is worthy of further studies and applications. However, it is also found that DE requires relatively large population size to avoid premature convergence. When the target power system is large, this will make the computational time too long to be acceptable for online RPO.
     Chapter 4 manages to improve the speed of DE for solving RPO problems by using parallel computing technologies, and parallel computing is implemented on a PC-cluster. Case study shows that parallelization does significantly improve the speed of DE for solving RPO problems; it is possible to realize online RPO with clusters of moderate size. However, it is also found that the efficiency of parallelization saturates quickly with the increase of the cluster size. Therefore, it is necessary to improve the algorithm itself to reduce the required population size and hence to further accelerate the computation or enable the use of clusters of smaller sizes for economic consideration.
     Chapter 5 first analyzes the complementary feature of DE and EP. This feature is then utilized to design a hybrid algorithm named DEEP. DEEP maintains the main body of DE, while uses the EP-style random mutation to introduce new genetic information to mitigate the pressure of premature convergence. Case studies show that DEEP has three advantages. First, it can effectively overcome the disadvantage of DE that requires relatively large population size to avoid premature convergence, which can greatly save the computational time. When extended to master-slave parallel computing, the reproduction step of DEEP can also be carried out dispersedly by slave processes without significant deterioration of solution quality, which can further save computational time. Second, DEEP is a universal algorithm. Its performance is not parametrically sensitive. Its only parameter can just be set to a fixed value. Third, due to the adoption of a novel scheme of primary population plus auxiliary population, and fitness evaluation is not arranged for the auxiliary populations, the additional time consumption of DEEP is negligible. So it is very suitable to use DEEP to solve optimization problems like RPO that consume most of the computational time on fitness evaluation.
     Chapter 6 utilizes the architecture provided by cooperative co-evolution to introduce the decomposition and coordination technique into DE. The local property of the relationship between reactive power and voltage is also utilized to decompose a power system into several sub-systems that are as independent as possible to reduce the work of coordination. Based on these techniques, a method combining cooperative co-evolutionary DE and power system decomposition (CCDE-PSD) is proposed for solving RPO problems. According to the characteristic of the CCDE-PSD, a three-leveled master slave parallel computing topology is also designed to improve the computational speed. Case study shows that the design of both the CCDE-PSD and its parallelization scheme are effective. The CCDE-PSD is superior to basic DE with respect to both solution quality and computational speed. It can reach better solutions with smaller population size and fewer generations.
     Chapter 7 concludes the thesis and points out some directions for future research.
引文
[1] J. Peschon, D. S. Piercy, W. F. Tinney, et al. Optimum control of reactive power flow. IEEE Transactions on Power Apparatus and Systems, 1968, PAS-87(1): 40-48
    [2] S. Narita, M. S. A. A. Hammam. A computational algorithm for real-time control of system voltage and reactive power. IEEE Transactions on Power Apparatus and Systems, 1971, PAS-90(3): 859-869
    [3] R. E. Palmer, R. C. Burchett, H. H. Happ, et al. Reactive power dispatching for power system voltage security. IEEE Transactions on Power Apparatus and Systems, 1983, PAS-102(12): 3905-3909
    [4] M. A. El-Kady, B. D. Bell, V. F. Carvalho, et al. Assessment of real-time optimal voltage control. IEEE Transactions on Power Systems, 1986, 1(2): 98-105
    [5] M. A. H. El-Sayed, T. M. Abdel-Rahman, M. O. Mansour. Reactive power control for real power-loss minimization. IEEE Computer Applications in Power, 1988, 1(3): 16-21.
    [6] 孙淑信, 游志成, 李小平等. 大型变电站微机自动调压系统的研究. 电力系统自动化, 1995, 19(7): 50-54
    [7] A.Murdoch, J.J. Sanchez-Gasca, R.A. Lawson. Excitation control for high side voltage control. IEEE/PES Summer Meeting, Seattle, USA, July 2000
    [8] 周邺飞, 赵金荣. 电压无功自动控制软件及其应用. 电力系统自动化, 2000, 24(9): 54-59
    [9] 王梅义, 吴竞昌, 蒙定中. 大电网系统技术. 北京: 中国电力出版社, 1991
    [10] 王志芳. 二级电压控制的研究[硕士学位论文]. 清华大学, 1998
    [11] 盛戈皞. 电力系统二级电压控制的新理论和新方法研究[博士学位论文]. 华中科技大学, 2003
    [12] T. B. Girotti, N. B. Tweed, N. R. Houser. Real-time VAR control by SCADA. IEEE Transactions on Power Systems, 1990, 5(1): 61-64
    [13] L. M. F. Barruncho, J. P. S. Paiva, C. C. Liu, et al. Reactive management and voltage monitoring and control. International Journal of Electric Power & Energy Systems, 1992, 14(2/3): 144-157
    [14] 丁晓群, 陈晟, 许杏桃等. 全网无功电压优化集中控制系统在泰州电网的应用.电网技术, 2000, 24(12): 21-23, 44
    [15] M. Khiat, A. Chaker, A. G. Expósito, et al. Reactive power optimization and voltage control in the Western Algerian transmission system: a hybrid approach. Electric Power Systems Research, 2003, 64(1): 3-10
    [16] 姜新凡, 严庆伟, 周帆等. 基于实时灵敏度分析的湖南电网无功电压优化控制系统. 电网技术, 2004, 28(16): 82-85
    [17] D. I. Sun, T. I. Hu, G. S. Lin, et al. Experiences with implementing optimal power flow for reactive scheduling in the Taiwan power system. IEEE Transactions on Power Systems, 1988, 3(3): 1193-1200
    [18] S. K. Chang, G. E. Marks, K. Kato. Optimal real-time voltage control. IEEE Transactions on Power Systems, 1990, 5(3): 750-758
    [19] F. R. Graf. Real time application of an optimal flow algorithm for reactive allocation of the RWE energy control center. IEE Colloquium on International Practices in Reactive Power Control, London, UK, April 1993
    [20] 文劲宇, 江振华, 姜霞等. 基于遗传算法的无功优化在鄂州电网中的实现. 电力系统自动化, 2000, 24(2): 45-47, 60
    [21] 郭庆来, 吴越, 张伯明. 地区电网无功优化实时控制系统的研究与开发. 电力系统自动化, 2002, 26(13): 66-69
    [22] 舒隽, 张粒子, 刘易等. 电力市场下日无功计划优化模型和算法的研究. 中国电机工程学报, 2005, 25(13): 80-85
    [23] L. Franchi, M. Innorta, P. Marannino, et al. Evaluation of economy and\or security oriented objective functions for reactive power scheduling in large scale systems. IEEE Transactions on Power Apparatus and Systems, 1983, PAS-102(10): 3481-3488
    [24] M. R. Bjelogrli?, M. S. ?alovi?, B. S. Babi?, et al. Application of Newton's optimal power flow in voltage/reactive power control. IEEE Transactions on Power Systems, 1990, 5(4): 1447-1454
    [25] M. R. Bjelogrli?, M. S. ?alovi?, P. M. Ristanovi?, et al. System voltage and reactive power control: a computer-assisted mannual/automatic concept. IEE Proceedings-Generation, Transmission and Distribution, 1992, 139(6): 491-498
    [26] 潘哲龙, 张伯明, 孙宏斌等. 分布计算的遗传算法在无功优化中的应用. 电力系统自动化, 2001, 25(12): 37-41
    [27] A. M. Chebbo, M. R. Irving, M. J. H. Sterling. Reactive power dispatchincorporating voltage stability. IEE Proceedings-Generation, Transmission and Distribution, 1992, 139(3): 253-260
    [28] B. D. Thukaram, K. Parthasarathy. Optimal reactive power dispatch algorithm for voltage stability improvement. International Journal of Electrical Power & Energy Systems, 1996, 18(7): 461-468
    [29] B. Venkatesh, G. Sadasivam, M. A. Khan. A new optimal reactive power scheduling method for loss minimization and voltage stability margin maximization using successive multi-objective fuzzy LP technique. IEEE Transactions on Power Systems, 2000, 15(2): 844-851
    [30] L. D. Arya, S. C. Choube, D. P. Kothari. Reactive power optimization using static voltage stability index. Electric Power Components and Systems, 2001, 29(7): 615-628
    [31] K. Kumai, K Ode. Power system voltage control by using a process control computer. IEEE Transactions on Power Apparatus and Systems, 1968, PAS-87(12): 1985-1990
    [32] I. Hano, Y. Tamura, S. Narita, et al. Real time control of system voltage and reactive power. IEEE Transactions on Power Apparatus and Systems, 1969, PAS-88(10): 1544-1559
    [33] S. A. Soman, K. Parthasarathy, D. Thukaram. Curtailed number and reduced controller movement optimization algorithms for real time voltage/reactive power control. IEEE Transactions on Power Systems, 1994, 9(4): 2035-2041
    [34] 孙宏斌, 吴文传, 张伯明等. 安全约束下的全局无功最优控制仿真研究. 电力系统自动化, 1999, 23(5): 4-7
    [35] 顾丹珍, 徐瑞德. 一种地区电网多目标无功优化的新方法——改进模拟退火算法. 电网技术, 1998, 22(1): 71-74
    [36] 张武军, 叶剑峰, 梁伟杰等. 基于改进遗传算法的多目标无功优化. 电网技术, 2004, 28(11): 67-71
    [37] G. G. Xu, X. Wang, E. K. Yu. A fuzzy multi-objective approach to optimal voltage/reactive power control. In: Proceedings of International Conference on Power System Technology, POWERCON’ 98, 1998: 1443-1447
    [38] 宋军英, 刘涤尘, 陈允平. 电力系统模糊无功优化的建模及算法. 电网技术, 2001, 25(3): 22-25
    [39] K. Deb. Multi-objective optimization using evolutionary algorithms. New York: John Wiley & Sons, LTD, 2001
    [40] C. A. C. Coello, D. A. V. Veldhuizen, G. B. Lamont. Evolutionary algorithms for solving multi-objective problems. New York: Kluwer Academic/Plenum Publishers, 2002
    [41] C. Jiang, C. Wang. Improved evolutionary programming with dynamic mutation and metropolis criteria for multi-objective reactive power optimization. IEE Proceedings-Generation, Transmission and Distribution, 2005, 152(2): 291-294
    [42] M. A. Abido, J. M. Bakhashwain. Optimal VAR dispatch using a multiobjective evolutionary algorithm. International Journal of Electrical Power & Energy Systems, 2005, 27(1): 13-20
    [43] K. Tomsovic. A fuzzy linear programming approach to the reactive power/voltage control problem. IEEE Transactions on Power Systems, 1992, 7(1): 287-293
    [44] K. H. Abdul-Rahman, S. M. Shahidehpour. A fuzzy-based optimal reactive power control. IEEE Transactions on Power Systems, 1993, 10(2): 662-670
    [45] B. Venkatesh, G. Sadasivam, M. A. Khan. Fuzzy logic based successive LP method for reactive power optimization. Electric Machines and Power Systems, 1999, 27(10): 1141-1160
    [46] 陈星莺, 钱锋, 杨素琴. 模糊动态规划法在配电网无功优化控制中的应用, 电网技术, 2003, 27(2): 68-71
    [47] 袁辉, 徐贵光, 周京阳. 基于模糊线性规划的无功电压优化. 电网技术, 2003, 27(12): 42-45, 57
    [48] S. S. Sharif, J. H. Taylor, E. F. Hill. Dynamic online energy loss minimization. IEE Proceedings-Generation, Transmission and Distribution, 2001, 148(2): 172-176
    [49] Y. M. Deng, X. J. Ren, C. C. Zhao, et al. A heuristic and algorithmic combined approach for reactive power optimization with time-varying load demand in distribution systems. IEEE Transactions on Power Systems, 2002, 17(4): 1068-1072
    [50] 任晓娟, 邓佑满, 赵长城等. 高中压配电网动态无功优化算法的研究. 中国电机工程学报, 2003, 23(1): 31-36
    [51] 刘明波, 朱春明, 钱康龄等. 计及控制设备动作次数约束的动态无功优化算法. 中国电机工程学报, 2004, 24(3): 34-40
    [52] 张勇军, 任震. 无功电压动态控制的分布式协同优化. 中国电机工程学报, 2004, 24(4): 34-38
    [53] 张勇军, 俞悦, 任震等. 实时环境下动态无功优化建模研究. 电网技术, 2004, 28(12): 12-15
    [54] 张勇军, 任震. 电力系统动态无功优化调度的调节代价. 电力系统自动化, 2005, 29(2):34-38, 60
    [55] 周任军, 段献忠, 周晖. 计及调控成本和次数的配电网无功优化策略. 中国电机工程学报, 2005, 25(9): 23-28, 157
    [56] 周任军, 任铁平, 彭高辉等. 配电网运行及设备控制综合经济性的无功电压优化. 电力系统自动化, 2005, 29(7): 70-74
    [57] 丁晓群, 邓勇, 黄伟等. 基于遗传算法的无功优化在福建电网的实用化改进. 电网技术, 2004, 28(16): 44-47
    [58] Eric Hobson. Network constrained reactive power control using linear programming. IEEE Transactions on Power Apparatus and Systems, 1980, PAS-99(3): 868-877
    [59] K. R. C. Mamandur, R. D. Chenoweth. Optimal control of reactive power flow for improvements in voltage profiles and for real power loss minimization. IEEE Transactions on Power Apparatus and Systems, 1981, PAS-100(7): 3185-3194
    [60] N. I. Deeb, S. M. Shahidehpour. Linear reactive power optimization in a large power network using the decomposition approach. IEEE Transactions on Power Systems, 1990, 5(2): 428-438
    [61] 李劲波, 周理, 陈允平. 基于仿射变换内点法的大电网无功优化. 电网技术, 1997, 21(3): 22-24
    [62] 刘明波, 陈学军. 电力系统无功优化的改进内点算法. 电力系统自动化, 1998, 22(5): 33-36
    [63] 刘明波, 陈学军. 基于原对偶仿射尺度内点法的电力系统无功优化算法. 电网技术, 1998, 22(3): 24-28
    [64] E. Rezania, S.M. Shahidehpour. Real power loss minimization using interior point method. International Journal of Electrical Power & Energy Systems, 2001, 23(1): 45-56
    [65] V. H. Quintana, M. Santos-Nieto. Reactive-power dispatch by successive quadratic programming. IEEE Transactions on Energy Conversion, 1989, 4(3): 425-435
    [66] N. Grudinin. Reactive power optimization using successive quadratic programming method. IEEE Transactions on Power Systems, 1998, 13 (4): 1219-1225
    [67] M. A. H. El-Sayed, T. M. Abdel-Rahman. A fast quadratic programming approach for large-scale reactive power optimization. Electric Machines and Power Systems, 1992, 20(1): 17-23
    [68] 徐建亭, 王秀英, 李兴源. 电力系统电压无功的序列二次规划算法. 电力系统自动化, 2001, 25(23): 4-8
    [69] 李亚男, 张粒子, 杨以涵. 考虑电压约束裕度的无功优化及其内点解法. 中国电机工程学报, 2001,25(9): 1-4
    [70] 李乃湖, 丁恰, 王晓东. 基于原—对偶内点法的电压无功实时优化控制算法. 电力系统自动化, 2000, 24(9): 20-23, 60
    [71] 张元明, 王晓东, 李乃湖. 基于原对偶内点法的电压无功功率优化. 电网技术, 1998, 22(6): 42-45
    [72] 李亚男. 电力系统智能无功优化及准实时无功电压控制的研究[博士学位论文]. 华北电力大学, 2001
    [73] 程莹, 刘明波. 求解离散无功优化的非线性原对偶内点算法. 电力系统自动化, 2001, 25(9): 23-27, 60
    [74] 刘明波, 李健, 吴捷. 求解无功优化的非线性同伦内点法. 中国电机工程学报, 2002, 22(1): 1-7
    [75] 徐进东, 丁晓群, 覃振成等. 基于非线性预报-校正内点法的电力系统无功优化研究. 电网技术, 2005, 29(9): 36-40
    [76] 方述诚, S. Puthenpura. 线性优化及扩展: 理论与算法. 汪定伟, 王梦光译. 北京: 科学出版社, 1994
    [77] 刘明波, 王晓村. 内点法在求解电力系统优化问题中的应用综述. 电网技术, 1999, 23(8): 61-64, 68
    [78] V. H. Quintana, G. L. Torres, J. M. Palomo. Interior-point methods and their applications to power systems-a classification of publications and software codes. IEEE Transactions on Power Systems, 2000, 15(1): 170-176
    [79] J. L. M. Ramos, A. G. Expósito, V. H. Quintana. Transmission power loss reduction by interior-point methods: implementation issues and practical experience. IEE Proceedings-Generation, Transmission and Distribution, 2005, 152(1): 90-98
    [80] 王晓东, 李乃湖, 丁恰. 基于稀疏技术的原对偶内点法电压无功功率优化. 电网技术, 1999, 23(3): 23-26, 30
    [81] 丁恰, 李乃湖, 武寒. 电压无功功率优化控制中不可行问题的研究. 电网技术, 1999, 23(9): 19-22
    [82] M. J. Rider, C. A. Castro, M. F. Bedrinana, et al. Towards a fast and robust interiorpoint method for power system applications. IEE Proceedings-Generation, Transmission and Distribution, 2004, 151(5): 575-581
    [83] 程莹, 刘明波. 含离散控制变量的大规模电力系统无功优化. 中国电机工程学报, 2002, 22(5): 54-60
    [84] M. B. Liu, S. K. Tso, Y. Cheng. An extended nonlinear primal-dual interior-point algorithm for reactive-power optimization of large-scale power systems with discrete control variables. IEEE Transactions on Power Systems, 2002,17(4): 982-991
    [85] 刘明波, 程莹, 林声宏. 求解无功优化的内点线性和内点非线性规划方法比较. 电力系统自动化, 2002, 26(1): 22-26
    [86] 李亚男, 张粒子, 杨以涵. 基于内点算法的电压校正控制. 电力系统自动化, 2002, 26(3): 28-31
    [87] 朱剑英. 智能系统非经典数学方法. 武汉: 华中科技大学出版社, 2001
    [88] 王凌. 智能优化算法及其应用. 北京: 清华大学出版社, 2001
    [89] T. B?ck. Evolutionary algorithms in theory and practice: evolution strategies, evolutionary programming, genetic algorithms. New York: Oxford University Press, 1995
    [90] D. Dumitrescu, B. Lazzerini, L. C. Jain, et al. Evolutionary Computation. New York: CRC Press, 2000
    [91] D. B. Fogel. Evolutionary computation: toward a new philosophy of machine intelligence. 2nd edition. New York: IEEE Press, 2000
    [92] 云庆夏. 进化算法. 北京: 冶金工业出版社, 2000
    [93] T. B?ck, U. Hammel, H. P. Schwefel. Evolutionary computation: comments on the history and current state. IEEE Transactions on Evolutionary Computation, 1997, 1(1): 3-17
    [94] V. Miranda, D. Srinivasan, L. M. Proenca. Evolutionary computation in power systems. International Journal of Electrical Power & Energy Systems, 1998, 20(2): 89-98
    [95] 熊信银, 吴耀武. 遗传算法及其在电力系统中的应用. 武汉: 华中科技大学出版社, 2002
    [96] 马晋弢, L. L. Lai, 杨以涵. 遗传算法在电力系统无功优化中的应用. 中国电机工程学报, 1995, 15(5): 347-353
    [97] Q. H. Wu, Y. J. Cao, J. Y. Wen. Optimal reactive power dispatch using an adaptivegenetic algorithm. International Journal of Electric Power & Energy Systems, 1998, 20(8): 563-569
    [98] 赵登福, 周文华, 夏道止. 遗传算法在无功优化应用中的改进. 电网技术, 1998, 22(10): 34-36, 43
    [99] 倪炜, 单渊达. 具有优化路径的遗传算法应用于电力系统无功优化. 电力系统自动化, 2000, 24(21): 40-44
    [100] 张勇军, 任震, 钟红梅等. 实时无功优化调度中的邻域搜索改进遗传算法. 电网技术, 2003, 27(1): 22-25
    [101] 钟红梅, 任震, 张勇军等. 免疫算法及其在电力系统无功优化中的应用. 电网技术, 2004, 28(3): 16-19
    [102] Q. H. Wu, J. T. Ma. Power system optimal reactive power dispatch using evolutionary programming. IEEE Transactions on Power Systems, 1995, 10(3): 1234-1249
    [103] L. B. Shi, G. Y. Xu. Self-adaptive evolutionary programming and its application to multi-objective optimal operation of power systems. Electric Power Systems Research, 2001, 57(3): 181-187
    [104] 颜伟, 熊小伏, 徐国禹. 基于进化方法的新型电压无功优化模型和算法. 电网技术, 2002, 26(6): 14-17
    [105] 颜伟, 孙渝江, 罗春雷等. 基于专家经验的进化规划方法及其在无功优化中的应用. 中国电机工程学报, 2003, 23(7): 76-80
    [106] W. Yan, S. Lu, David C. Yu. A novel optimal reactive power dispatch method based on an improved hybrid evolutionary programming technique. IEEE Transactions on Power Systems, 2004, 19(2): 913-918
    [107] J. R. Gomes, O. R. Saavedra. Optimal reactive power dispatch using evolutionary computation: extended algorithms. IEE Proceedings-Generation, Transmission and Distribution, 1999, 146(6): 586-592
    [108] J. R. Gomes, O. R. Saavedra. A Cauchy-based evolution strategy for solving the reactive power dispatch problem. International Journal of Electrical Power & Energy System, 2002, 24(4): 277-283
    [109] D. B. Das, C. Patvardhan. A new hybrid evolutionary strategy for reactive power dispatch. Electric Power Systems Research, 2003, 65(2): 83-90
    [110] 刘玉田, 马莉. 基于Tabu搜索方法的电力系统无功优化. 电力系统自动化, 2000,24(2): 61-64
    [111] 王洪章, 熊信艮, 吴耀武. 基于改进Tabu搜索算法的电力系统无功优化. 电网技术, 2002, 26(1): 15-18
    [112] 杨银国, 张伏生, 贺春光等. 配电网无功电压优化控制求解的一种新方法. 电力系统自动化, 2005, 29(9): 45-49
    [113] 郭创新, 朱承治, 赵波等. 基于改进免疫算法的电力系统无功优化. 电力系统自动化, 2005, 29(15): 23-29
    [114] 娄素华, 吴耀武, 熊信艮. 电力系统无功优化的变尺度混沌优化算法. 电网技术, 2005, 29(11): 20-24, 29
    [115] J. Kennedy, R. Eberhart. Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, Perth, Australia, 1995, 4: 1942-1948
    [116] R. Eberhart , J. Kennedy. A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, 1995: 39-43
    [117] J. Kennedy, R. Eberhart, Y. H. Shi. Swarm Intelligence. San Francisco: Morgan Kaufmann Publishers, 2001
    [118] H. Yoshida, K. Kawata, Y. Fukuyama, et al. A particle swarm optimization for reactive power and voltage control considering voltage security assessment. IEEE Transactions on Power Systems, 2000, 15(4): 1232-1239
    [119] 周晖, 周任军, 谈顺涛等. 用于无功电压综合控制的改进粒子群优化算法. 电网技术, 2004, 28(13): 45-49
    [120] B. Zhao, C. X. Guo, Y. J. Cao. A multiagent-based particle swarm optimization approach for optimal reactive power dispatch. IEEE Transactions on Power Systems, 2005, 20(2): 1070-1078
    [121] 赵波, 曹一家. 电力系统无功优化的多智能体粒子群优化算法. 中国电机工程学报, 2005, 25(5): 1-7
    [122] 赵波, 郭创新, 张鹏翔. 基于分布式协同粒子群优化算法的电力系统无功优化. 中国电机工程学报, 2005, 25(21): 1-7
    [123] 刘自发, 葛少云, 余贻鑫. 基于混沌粒子群优化方法的电力系统无功最优潮流. 电力系统自动化, 2005, 29(7): 53-57
    [124] 范明天. 电力系统离散无功优化[博士学位论文]. 清华大学, 1995
    [125] J. V. Hecke, N. Janssens, J. Deuse, et al. Coordinated voltage control experience inBelgium. CIGRE Session 2000, Paris, Report 38-111
    [126] A. Papalexopoulos. Challenges to on-line OPF implementation. IEEE Transactions on Power Systems, 1997, 12(1): 449-451
    [127] 李乃湖. 计及整型控制变量的电压—无功功率优化. 电力系统自动化, 1994, 18(12): 5-11
    [128] 邓佑满, 张伯明, 相年德. 配电网络电容器实时优化投切的逐次线性整数规划法. 中国电机工程学报, 1995, 15(6): 375-382
    [129] 王建学, 王锡凡, 陈皓勇等. 基于协同进化法的电力系统无功优化. 中国电机工程学报, 2004, 24(9): 124-129
    [130] D. B. Das, C. Patvardhan. Reactive power dispatch with a hybrid stochastic search technique. International Journal of Electrical Power & Energy Systems, 2002, 24(9): 731-736
    [131] Y. T. Liu, L. Ma, J. J. Zhang. Reactive power optimization by GA/SA/TS combined algorithms. International Journal of Electrical Power & Energy Systems, 2002, 24(9): 765-769
    [132] 谭涛亮, 张尧. 基于遗传禁忌混合算法的电力系统无功优化. 电网技术, 2004, 28(11): 57-61
    [133] 刘方, 颜伟, D. C. Yu. 基于遗传算法和内点法的无功优化混合策略. 中国电机工程学报, 2005, 25(15): 67-72
    [134] 程新功, 厉吉文, 曹立霞等. 基于电网分区的多目标分布式并行无功优化研究. 中国电机工程学报, 2003, 23(10): 109-113
    [135] 王志华, 尹项根, 李光熹. 伪并行遗传算法在无功优化中的应用. 电网技术, 2003, 27(8): 33-35, 41
    [136] W. M. Spears. Evolutionary algorithms: the role of mutation and recombination. Berlin: Springer-Verlag Press, 2000
    [137] K. Y. Lee, F. F. Yang. Optimal reactive power planning using evolutionary algorithms: a comparison study of evolutionary programming, evolutionary strategy, genetic algorithm, and linear programming. IEEE Transactions on Power Systems, 1998, 13(1): 101-108
    [138] X. Yao, Y. Liu, G. M. Lin. Evolutionary programming made faster. IEEE Transactions on Evolutionary Computation, 1999, 3(2): 82-102
    [139] C. Y. Lee, X. Yao. Evolutionary programming using mutations based on the Lévyprobability distribution. IEEE Transactions on Evolutionary Computation, 2004, 8(1): 1-13
    [140] C. A. C. Coello. Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art. Computer Methods in Applied Mechanics and Engineering, 2002, 191(11-12): 1245-1287
    [141] N. Sinha, R. Chakrabarti, P.K. Chattopadhyay. Evolutionary programming techniques for economic load dispatch. IEEE Transactions on Evolutionary Computation, 2003, 7(1): 83-94
    [142] J. T. Ma, L. L. Lai. Evolutionary programming approach to reactive power planning. IEE Proceedings-Generation, Transmission & Distribution, 1996, 143(4): 365-370
    [143] L. L. Lai, J. T. Ma. Application of evolutionary programming to reactive power planning-comparison with nonlinear programming approach. IEEE Transactions on Power Systems, 1997, 12(1): 198-206
    [144] K. P. Wong, J. Yuryevich. Evolutionary programming based algorithm for environmentally constrained economic dispatch. IEEE Transactions on Power Systems, 1998, 13(2): 301-306
    [145] J. Yuryevich, K. P. Wong. Evolutionary Programming Based Optimal Power Flow Algorithm. IEEE Transactions on Power Systems, 1999, 14(4): 1245-1250
    [146] Power system test case archive. http://www.ee.washington.edu/research/pstca/
    [147] R. Storn, K. Price. Differential evolution-a simple and efficient adaptive scheme for global optimization over continuous spaces. Technical report TR-95-012, International Computational Science Institute, Berkley, 1995
    [148] J. Vesterstrom, R. Thomsen. A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems. In: Proceedings of Congress on Evolutionary Computation, Portland, Oregon, USA, 2004, 2: 1980-1987
    [149] K. V. Price. An introduction to differential evolution. Book chapter in New ideas in optimization, D. Corne, M. Dorigo and F. Glover (Eds), London: McGraw-Hill Education, 1999, 79-108
    [150] J. Lampinen, R. Storn. Differential evolution. Book chapter in New optimization techniques in Engineering, G. C. Onwubolu and B. V. Babu (Eds), Berlin: Springer, 2004, 123-166
    [151] K. P. Wong, A. Li. Virtual population and acceleration techniques for evolutionary power flow calculation in power systems. Invited paper in Evolutionary Optimization,R. Sarker, M. Mohammadian and X. Yao (Eds), Boston: Kluwer Academic Publishers, 2002, 329-345
    [152] 范文涛, 薛禹胜. 并行处理在电力系统分析中的应用. 电力系统自动化, 1998, 22(2): 64-67, 72
    [153] 吉兴全, 王成山. 电力系统并行计算方法比较研究. 电网技术, 2003, 27(4): 22-26
    [154] 曹一家. 并行遗传算法在电力系统经济调度中的应用——迁移策略对算法性能的影响. 电力系统自动化, 2002, 26(13): 20-24
    [155] J. A. Hollman, J. R. Marti. Real time network simulation with PC-cluster. IEEE Transactions on Power Systems, 2003, 18(2): 563-569
    [156] 薛巍, 舒继武, 严剑峰等. 基于集群及的大规模电力系统暂态过程并行仿真. 中国电机工程学报, 2003, 23(8): 38-43
    [157] 黄瀛, 姜恺, 何奔腾. 基于 Linux 集群的电力系统并行仿真系统. 电网技术, 2004, 28(20): 38-42
    [158] E. Alba, M. Tomassini. Parallelism and evolutionary algorithms. IEEE Transactions on evolutionary computation, 2002, 6(5): 443-462
    [159] P. S. Pacheco. Parallel programming with MPI. San Francisco: Morgan Kaufmann Publishers, 1997
    [160] T. Sterling. Beowulf cluster computing with Linux. Cambridge, Massachusetts: The MIT Press, 2001
    [161] R. Buyya. 高性能集群计算: 结构与系统 (第一卷). 郑纬民, 石威, 汪东升等译. 北京: 电子工业出版社, 2001
    [162] 陈琼. 跳上超级计算机这辆战车. 互联网周刊, 2005(44): 42-43
    [163] R. Buyya. 高性能集群计算: 编程与应用 (第二卷).郑纬民, 石威, 汪东升等译. 北京: 电子工业出版社, 2001
    [164] Message Passing Interface Forum home page. http:// www.mpi-forum.org/index.htm
    [165] G. William. MPI-the complete reference, vol. 1, the MPI core. Cambridge, Massachusetts: MIT Press, 1998, 2nd edition
    [166] G. William. MPI-the complete reference, vol. 2, the MPI-2 extensions. Cambridge, Massachusetts: MIT Press, 1998
    [167] MPICH home page. http://www-unix.mcs.anl.gov/mpi/mpich/
    [168] LAM/MPI parallel computing home page. http://www.lam-mpi.org/
    [169] 张勇军, 任震, 钟红梅等. 基于改进 GA 的海南电网实时无功优化调度系统. 见: 全国高等学校电力系统及其自动化专业第十八届学术年会论文集, 武汉, 2002, 1422-1426
    [170] J. P. Chiou, C. F. Chang, C. T. Su. Ant direction hybrid differential evolution for solving large capacitor placement problems. IEEE Transactions on Power Systems, 2004, 19(4): 1794-1800
    [171] D. Petcu,D. Zaharie. Parallel implementation of multi-population differential evolution. In: Concurrent Information Processing and Computing, D. Grigoras and A. Nicolau (Eds), IOS Press, vol. 195 NATO Science Series: Computer & Systems Series, May 2005, pp. 223-232
    [172] M. A. Potter, K. A. De Jong. Cooperative coevolution: an architecture for evolving coadapted subcomponents. Evolutionary Computation, 2000, 8(1): 1-29
    [173] H. Y. Chen, X. F. Wang. Cooperative coevolutionary algorithm for unit commitment. IEEE Transactions on Power Systems, 2002, 17(1): 128-133
    [174] J. P. Paul, J.Y. Leost, M. Tesseron. Survey of the secondary voltage control in France: present realization and investigation. IEEE Transactions on Power Systems, 1987, 2(2): 505-511
    [175] J. W. Han, M. Kamber. Data mining: concepts and techniques. San Francisco: Morgan Kaufmann Publishers, 2001
    [176] Liang Cai-hao, Duan Xian-zhong. A clustering validation based method for zone number determination in network partitioning for voltage control. 39th Universities Power Engineering Conference (UPEC 2004), Bristol, UK, 2004
    [177] H. Maria, B. Yannis, V. Michalis. On clustering validation techniques. Journal of Intelligent Information Systems, 2001, 17(2/3): 107-145
    [178] N. Bolshakova, F. Azuaje. Cluster validation techniques for genome expression data. Signal Processing, 2003, 83(4): 825-833
    [179] S. Günter, H. Bunke. Validation indices for graph clustering. Pattern Recognition Letters, 2003, 24(8): 1107-1113
    [180] A. Chipperfield, P. Fleming. The MATLAB genetic algorithm toolbox v1.2: user's guide. pp. 26-29. http://www.shef.ac.uk/content/1/c6/03/35/06/manual.pdf

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700