基于C形臂手术导航关键技术研究及系统实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
图像引导的手术技术是目前计算机辅助手术领域研究热点之一。基于C形臂的手术导航技术是一类典型的图像引导手术技术。该类技术已成为当前手术导航技术领域的一个重要发展分支,它采用移动式C形臂获取的X线图像进行手术导向。为了实现导航功能需要对X线图像进行处理,识别出其中的标志物投影并提取相关数据;需要对图像本身固有的几何变形进行校正;需要对C形臂成像系统进行标定以求取X线光锥投影成像参数。目前对这些关键技术的研究尚不能够令人满意,主要表现标志物投影识别及数据提取算法精度及鲁棒性不足;图像变形校正算法精度低,对单元变形敏感度高,且没有考虑设备硬件误差所引入的图像局部变形;C形臂成像系统标定算法过于复杂,过渡环节繁多,影响最终的校准精度及效率。另外,基于C形臂手术导航技术的研究目前主要集中在计算机软件方面,对其中的关键部件——校准靶及相关导航手术工具的研究不多。提高这些机械部件的性能对手术导航系统整体性能的改善具有重要意义。针对这些问题,本文对上述关键技术进行了深入研究,主要包括如下几个方面:
     1.提出采用CHT(Circle Hough Transform)法与CC(Connected Components)处理相结合的方法,对C形臂X线图像中的标志物投影进行自动识别并提取数据。将CHT生成的2D积累空间作为一种特殊的图像进行取阈操作,并对生成的二值化图像进行CC处理。该方法与单纯的CHT法相比具有更高的检测精度;与单纯的取阈二值化方法相比具有更高的抗复杂背景及抗噪声鲁棒性。
     2.提出一种MLS(Moving Least Squares)法与MBA(Multilevel B-spline Approximation)法集成的曲面拟合方法,并将其应用于C形臂X线图像变形校正。该方法兼具传统的全局及局部校正算法在精度方面的优势;该方法还考虑了现有算法中极少考虑的,由C形臂影像增强器制造安装误差所引入的图像“局部”变形问题。
     3.对现有的典型相机校准算法进行了综合分析评价,初步选定O.Faugeras算法用于手术导航这一特定场合。在此基础上,进一步将改进简化的O.Faugeras算法用于C形臂成像系统标定。该改进算法中间过渡环节更少,结构更简洁,效率更高。O.Faugeras算法的改进与校准靶的设计改进相结合,可最终提高C形臂成像系统标定质量。
     4.对比研究了市场上现有的C形臂校准靶,分析了其设计不足及对导航系统整体性能造成的不良影响。在此基础上,提出一种校准靶改进设计方案。该设计采用改进的校准靶基体加工工艺及新的校准模板制作方法。改进设计后的C形臂校准靶加工精度更易保证,造价更低,并有助于导航系统整体性能的提高。
     本文对基于C形臂手术导航的关键技术进行了系统深入的理论研究,并设计了相关软件算法。在此基础上,初步开发了面向脊柱椎弓根钉植入手术的应用系统SpiNav-I(Spine Navigation-I)。计算机辅助手术导航技术正逐渐为国内医学界所关注、认可与推广应用。本研究工作将对我国计算机辅助手术导航技术的知识产权自主化起到一定的推动作用。
Image-guided surgical (IGS)technology is a major research field of the computer assisted surgery navigation. C-arm based surgical navigation technology is a typical branch of IGS technology. A C-arm based surgical navigation system use C-arm acquired fluoroscopic images for surgical process guiding. In order to fulfill the surgical navigation functions, the fluoroscopic images must be processed to identify certain objects and extract relevant data; the distortions of the fluoroscopic images must be corrected; the C-arm system must be calibrated to get relevant imaging parameters. Nevertheless, at present, there are still many disadvantages on the research of these key techniques. The disadvantages mainly focus on the follows aspects: the object identification and relevant data extraction algorithms are not robust and accurate enough; the image distortion correction accuracy is too low, the distortion correction algorithms are too sensitive to certain element distortions, the existing algorithms don`t count for correction of local image distortions; the existing C-arm calibration algorithms are too complicated, there are too much transition links in the existing algorithms, the ultimate calibration accuracy is low. In addition, current research of C-arm based surgical navigation techniques mainly focus on software, few attention was paid on the design of C-arm calibration target and surgical tools. In fact, optimization design of these mechanical parts are of great importance for the enhancement of overall surgical navigation performance. In this paper, we focus on the research of the above mentioned key techniques. The main contents are as follows.
     1. A CHT(Circle Hough Transform) and CC(Connected Components) processing combined method was brought forward for object identification and data extraction. Take the CHT output accumulative space as a special image and process it to get a binary image, in the following, the binary image is processed with a special CC analysis method to get the ultimate data. Compared with the existing methods, the new one is more robust and accurate.
     2. An MLS(Moving Least Squares) and MBA(Multilevel B-spline Approximation) integrated method was brought forward for fluoroscopic images distortion correction. The method possesses advantages of the existing global correction methods and local correction methods simultaneously. In addition, the new method possesses excellent local image distortion correction performance.
     3. Evaluated the existing camera calibration method. On this basis, decided on Faugeras`s calibration method for C-arm imaging system calibration. The calibration method was further simplified. The simplified method is more easy for execution and possesses higher efficiency. Combined with improved C-arm calibration target, the C-arm calibration quality can be enhanced by using Faugeras`s calibration method.
     4. Evaluated the existing C-arm calibration targets, analyzed their shortcomings. On this basis, proposed design of an improved C-arm calibration target. Different fabricating techniques are to be used for the improved calibration target. The improved calibration target is to be more accurate and cheap, it is also favorable to enhance the overall surgical navigation performance.
     In this paper we put emphasis on researching key technology of C-arm surgical navigation system. We designed relevant computerized algorithms. On this basis, we developed a tentative navigation system, SpiNav-I(Spine Navigation-I), to assist inserting screws in the pedicles of vertebral arches. Since computer assisted surgical navigation technologies are attracting more and more attention. I think my research work will benefit Intellectual property rights autonomy of our country in the field of computer assisted surgical navigation.
引文
[1]. Taylor RH, Lavallée S, Burdea GC, M?sges R. Computer-Integrated Surgery: Technology and Clinical Applications. Cambridge, The MIT Press 1996.
    [2]. DiGioia AM: Symposium. Computer assisted orthopaedic surgery: Medical robotics and image guided surgery: Editorial comment. Clin Orthop, 1998;354:2-4.
    [3]. 骆文博,王广志,丁海曙. 计算机辅助手术系统. 国外医学 生物医学工程分册. 2001; 24(6):241-246.
    [4]. 费保蔚,庄天戈. 计算机辅助外科手术(CAS)的方法和进展. 生物医学工程学杂志. 1998;15(2):195-202
    [5]. David T. Gering, Arya Nabavi, Ron Kikinis, W. Eric L. Grimson, Noby Hata, Peter Everett, Ferenc Jolesz and William M. Wells, ‘An Integrated Visualization System for System for Surgical Planning and Guidance Using Image Fusion and an Open MR.’ Journal of Magn Reson Imaging, Vol. 13, pp.967-975, Jun 2001.
    [6]. Taylor RH, Lavallée S, Burdea GC, M?sges R. Computer-Integrated Surgery: Technology and Clinical Applications. Cambridge, The MIT Press 1996.
    [7]. C Paggetti, P Dario, T Ciucci, B Allotta, M Marcacci. A computer-Based System for Assistance to Surgery. Computer Assisted Orthopaedic Surgery (CAOS), L.-P. Nolte, R. Ganz (Editors), pp. 69-80, 1999.
    [8]. M. Arand, E. Hartwig, L. Kinzl, F. Gebhard. Spinal Navigation in Cervical Fractures – A Preliminary Clinical Study on Judet-Osteosynthesis of the Axis, Computer Aided Surgery, Vol. 6, pp. 170-175, 2001.
    [9]. L.-P. Nolte , MA Slomczykowski, U. Berlemann, MJ. Strauss, R. Hofstetter, D. Schlenzka,. A new Approach to Computer-Aided Spine Surgery: fluoroscopy-based surgical navigation, EuroSpine Journal, Vol. 9, pp. S78-S88, 2000.
    [10]. H. Visarius, U. Berlemann, O. Schwarzenbach. Concept and Clinical Aspects of Computer Assisted Spine Surgery, Computer Assisted Orthopaedic Surgery (CAOS), L.-P. Nolte, R. Ganz (Editors), pp. 81 – 88, 1999.
    [11]. F. Langlotz, L.-P. Nolte. Image-Guided Spine Surgery, Min Invas Ther and Allied Technol, Vol. 9, No. 5, pp. 291-296, 1999.
    [12]. M. Caversaccio, L.-P. Nolte, R. H?usler. Present state and future perspectives of computer aided surgery in the field of ENT and skull base, Acta oto.rhino-laryngologica belg, Vol. 56, 51-59, 2002
    [13]. U. Langlotz, J. Lawrence, Q. Hu, F. Langlotz, L.-P. Nolte. Image Guided Cup Placement, CARS’99, pp. 717-721, 1999.
    [14]. Yongmin k, Steven CH. Handbook of medical imaging, vol.3: Display and PACS. Bellingham, WA: SPIE Press, 2000.
    [15]. King A P, Edwards P, Maurer C R, et al. Stereo augment reality in the surgical microscope, presence-teleoperators and virtual environment, 2000, 9(4): 360-368.
    [16]. European Markets for IGS Systems 2001. Millennium Research Group, September 2001.
    [17]. US Markets for IGS Systems 2001. Millennium Research Group, September 2001.
    [18]. http://scitech.people.com.cn/GB/1057/4201999.html
    [19]. Jensen RL, Stone JL, and Hayne RA.Introduction of the Human Horsley- Clarke Stereotactic Frame. Presented at the Quadrennial Meeting of The American Society For Stereotactic and Functional Neurosurgery, Marina del Rey, California, March 8-11, 1995.
    [20]. V. Horsley and R.H. Clarke. The structure and functions of the cerebellum examined by a new method. Brain, 1908;31:45-124
    [21]. E.A. Spiegel, H.T. Wycis, and M. Marks. Stereotaxic apparatus for operations on the human brain. Science, 1947;106:349-350
    [22]. http://www.radiosurgeryconnect.com/Dr.%20Lars%20Leksell.htm
    [23]. L. Leksell. A stereotaxic apparatus for intracerebral surgery. Acta Chir Scand, 1949; (99):229-233.
    [24]. J. Talairach, M. David, P. Tournoux, H. Corredor, and T. Kvasina. Atlas d'Anatomie Stéréotaxique. Masson et Cie, Paris, 1957.
    [25]. Watanabe E T, Watanabe S, Manaka S, et al. New equipment for CT guided stereotaxic surgery. Surg Neurol, 1987; 27:543
    [26]. Roberts DW, Steohbehn JW, Hatch JF, et al. A frameless stereotaxic integration of computerized tomographic imaging and the operating microscope. J Neurosurg, 1986;65: 545-549
    [27]. Watanabe E T, Watanabe S, Manaka S, et al. New equipment for CT guided stereotaxic surgery, Surg Neurol, 1987, 27 : 543
    [28]. Pell MF, Computer-assisted and frameless stereotaxy in Australia, The operating arm system In: tamaki N, Ehara K, Computer-assisted Neurosurgery. Tokyo Springer-Verlag, 1997, 11~22
    [29]. Heilbrun MP, MC Donald P, Wiker C, et al. Stereotactic localization and guidance using a machine vision technique. Stereotact Funct Neurosurgery, 1992, 58 : 94~98
    [30]. Kato A, Yoshimine T, et al. Computer-assisted neurosurgery development of a frameless and armless navigation system (CNS navigator), No Shinei Geka, 1991,19(2),137
    [31]. C Paggetti, P Dario, T Ciucci, B Allotta, M Marcacci. A computer-Based System for Assistance to Surgery. Computer Assisted Orthopaedic Surgery (CAOS), L.-P. Nolte, R. Ganz (Editors), pp. 69-80, 1999.
    [32]. M. Arand, E. Hartwig, L. Kinzl, F. Gebhard. Spinal Navigation in Cervical Fractures – A Preliminary Clinical Study on Judet-Osteosynthesis of the Axis, Computer Aided Surgery, Vol. 6, pp. 170-175, 2001.
    [33]. L.-P. Nolte , MA Slomczykowski, U. Berlemann, MJ. Strauss, R. Hofstetter, D. Schlenzka,. A new Approach to Computer-Aided Spine Surgery: fluoroscopy-based surgical navigation, EuroSpine Journal, Vol. 9, pp. S78-S88, 2000.
    [34]. H. Visarius, U. Berlemann, O. Schwarzenbach. Concept and Clinical Aspects of Computer Assisted Spine Surgery, Computer Assisted Orthopaedic Surgery (CAOS), L.-P. Nolte, R. Ganz (Editors), pp. 81 – 88, 1999.
    [35]. M. Caversaccio, L.-P. Nolte, R. H?usler. Present state and future perspectives of computer aided surgery in the field of ENT and skull base, Acta oto.rhino-laryngologica belg, Vol. 56, 51-59, 2002
    [36]. Lueth TC, et al. A surgical robot system for maxillofacial surgery. Proceedings of the 24th Annual Conference of the IEEE , Aug.- Sept. 1998. Volume: 4. pp: 2470 –2475.
    [37]. Nolte, L.-P., Zamorano, L., Visarius, H., Berlemann, et al.Clinical evaluation of a system forprecision enhancement in spine surgery. Clinical Biomechanics, 1995;10 (6): 293-303.
    [38]. Nolte, L.P., Visarius, H., Arm, E. Computer-aided fixation of spinal implants. Journal of image guided surgery, 1995;1 (2),:88-93.
    [39]. Nolte, L.-P., Zamorano, L.J., Jiang, Z., Wang, Q. Image-guided insertion of transpedicular screws: A laboratory set-up. Spine, 1995;20 (4): 497-500.
    [40]. Merloz, P., Tonetti, J., Eid, A. Computer assisted spine surgery. Clinical Orthopaedics and Related Research, 1997 ;337: 86-96.
    [41]. Merloz, P., Tonetti, J., Pittet, L. Pedicle screw placement using image guided techniques. Clinical Orthopaedics and Related Research, 1998; 354:39-48.
    [42]. Merloz, P., Lavallee, S., Tonetti, J. Image-guided spinal surgery: Technology, operative technique, and clinical practice. Operative Techniques in Orthopaedics, 2000 ;10 (1):56-63.
    [43]. http://asisz.com/chinese/Product/Chirurgery/ASA-610V1.asp
    [44]. 陈梦东,王田苗,刘达等. 机器人辅助微损伤神经外科手术系统的研究及其临床应用. 中国生物医学工程学报,2000,19(2):145-151.
    [45]. 王子罡,唐泽圣,王田苗等. 基于虚拟现实的计算机辅助立体定向神经外科手术系统. 计算机学报,2000,23(9):931-937.
    [46]. http://www.eastimage.com.cn/index.asp
    [47]. http://www.digi-medical.com.cn/
    [48]. 田增民 , 王田苗 , 刘宗惠等 . 机器人系统辅助脑立体定向手术 . 军医进修学院学报,1998;19(1):4-6
    [49]. 费保蔚,庄天戈.计算机辅助外科手术(CAS)及其立体定位方法.国外医学生物医学工程分册,1997;20(4):199-201
    [50]. 秦斌杰.计算机辅助手术中三维多模医学图像配准及实时体视化的研究.上海交通大学博士学位论文,2002
    [51]. 孙九爱.计算机辅助外科手术中被动式多眼定位器的研究,上海交通大学博士学位论文,2001
    [52]. Digioia AM, Simon D, Jaramaz B, et al. HipNav: a system for preoperative planning and intraoperative navigational guidance of acetabular implant placement in total hip replacement surgery. Proceedings of the 1st annual North American Symposium on Computer Assisted Orthopedic Surgery (CAOS/USA). 1997:147-150
    [53]. Langlotz U, Lawrence J, Hu Q, et al. Image guided cup placement, Computer Assisted Radiology and Surgery (CAR’99), Paris, 1999:717–721.
    [54]. Dessenne V, Lavallee S, Julliard R, et al. Computer–assisted knee anterior cruciate ligament reconstruction: first clinical tests. Journal of Image Guided Surgery, 1995; 1: 59-64.
    [55]. Joskowicz L. Fluoroscopy-based navigation in computer-aided orthopaedic surgery. Proc. of the IFAC Conference on Mechatronic Systems, Darmstadt, Germany, 2000.
    [56]. Marwan S, Hans U, Staubli M D, et al. Clinical integration of computer-assisted technology for arthroscopic anterior cruciate ligament reconstruction. Operative techniques in orthopaedics, 2000; 10(1): 40-49.
    [57]. http://www.medivision.ch/products/chirurg_nav-en.asp
    [58]. http://www.orthopilot.de/
    [59]. Sati M, St?ubli H U, Bouquin Y, et al. Real-time computerized in situ guidance system for ACL graft placement. Computer Assisted Surgery, 2002; 7: 25-40.
    [60]. Klos T V, Habets R J, Banks A Z, et al. Computer assistance inarthroscopic anterior cruciateligament reconstruction. Clin Orthop, 1998: 65-69.
    [61]. http://www.stealthstation.com/physician/spine/library/siremobil.jsp
    [62]. http://www.hoise.com/vmw/02/articles/vmw/LV-VM-08-02-33.html
    [63]. http://www.z-kat.com/news/2001.shtml
    [64]. Dimitrios I,Walter H,Andrew F L. Circle recognition through a 2D Hough Transform and radius histogramming. Image and Vision Computing,1999;17(1): 15-26.
    [65]. Atherton TJ,Kerbyson DJ. Size invariant circle detection. Image and Vision Computing,1999;17(1): 795-803.
    [66]. Guil, N., Zapata, E.L. Lower order circle and ellipse Hough transform. Pattern Recognition,1997; 30 (10):1729-1744.
    [67]. Goneid A. A method for the hough transform detection of circles and ellipse using a 1-dimension array. In: Proceedings of the IEEE International Conference on Systems,Man and Cybernetics. Piscataway,NJ,USA: IEEE. 1997,4: 3154-3157.
    [68]. Orazio TD,Guaragnella C,Leoa M. ,Distante A. A new algorithm for ball recognition using circle Hough transform and neural classifier. Pattern Recognition,2004;37(3): 393-408.
    [69]. Yuen HK. Comparative study of Hough transform methods for circle finding. Proc. Alvey Vision Conference. Newton,MA,USA: Butterworth-Heinemann 1990: 71-77
    [70]. L.G. Minor, J. Sklansky. Detection and segmentation of blobs in infrared images. IEEE Trans. SMC, 1981;11:194–201.
    [71]. T.J. Atherton, D.J. Kerbyson. Using phase to represent radius in the coherent circle Hough transform. in: Proc, IEE Colloquium on the Hough Transform, IEE, London, 1993.
    [72]. T.J. Atherton, D.J. Kerbyson. The coherent circle Hough transform, in: British Machine Vision Conference, BMVA Press, 1993.
    [73]. W.C. Hoffman. The Lie algebra of visual perception. Mathematical Psychology, 1966;3 : 65–98.
    [74]. J. Wood. Invariant pattern recognition: a review. Pattern Recognition, 1996;29 (1): 1–17.
    [75]. J. Rubinstein, J. Segman, Y. Zeevi. Recognition of distorted patterns by invariance kernels. Pattern Recognition, 1991; 24:959–967.
    [76]. D. Forsyth, J.I. Mundy, A. Zisserman. Transformational invariance—a primer. Image and Vision Computing, 1992;10: 39–45.
    [77]. C. Kimme, D. Ballard, J. Sklansky. Finding circles by an array of accumulators. Proc. ACM, 1975;18: 120–122.
    [78]. H. Jahn, in: Proc. ISPRS Commission III Symposium on Spatial Information from Digital Photogrammetry and Computer Vision Crater Detection by Linear Filters Representing the Hough Transform, vol. 2357, SPIE, Munich, 1994, pp. 427–431.
    [79]. D.J. Kerbyson, T.J. Atherson. Circle detection using Hough transform filters. in: 5th Int. Conf. On Image Processing and its Applications, Edinburgh, 1995.
    [80]. J. Sauvola, M. Pietikainen. Adaptive document image binarization. Pattern Recognition, 2000;33: 225–236.
    [81]. Francis, H.Y., Chan, F.K., Hui, Z.. Adaptive Thresholding by Variational Method. IEEE TRANSACTIONS ON IMAGE PROCESSING, 1998;7(3):468-473.
    [82]. Hui, F.N. Automatic Thresholding for Defect Detection, Proceedings of the Third International Conference on Image and Graphics (ICIG’04), IEEE. (2004)532-535.
    [83]. K. Ramar et al. Quantitative fuzzy measures for threshold selection.Pattern Recognition Letters, 2000;21:1-7
    [84]. Mansuo Zhao et al. An adaptive thresholding method for binarization of blueprint images.Pattern Recognition Letters, 2000;21:927-943
    [85]. M.Fathy,M.Y.Siyal. an image detection technique based on morphological edge detection and background differencing for real-time traffic analysis. Pattern recognition letters, 1995;16:1321-1330
    [86]. N. Otsu. A threshold selection method from gray-level histograms. IEEE Trans. Systems Man Cybernet, 1979;9 (1): 62–66.
    [87]. J. Kittler, J. Illingworth. On threshold selection using clustering criteria. IEEE Trans. Systems Man Cybernet, 1985;15: 652–655.
    [88]. A.D. Brink. Thresholding of digital images using two-dimensional entropies. Pattern Recognition, 1992;25 (8) :803–808.
    [89]. H. Yan. Unified formulation of a class of image thresholding techniques. Pattern Recognition, 1996;29 (12) :2025–2032.
    [90]. W. Niblack. An Introduction to Digital Image Processing. Prentice- Hall, Englewood Cliffs, NJ, 1986 pp. 115–116.
    [91]. B. Gatos, I. Pratikakis, S.J. Perantonis. Adaptive degraded document image binarization. Pattern Recognition, 2006;39 :317–327
    [92]. Quanfa Zhang, Goran Pavlic, Wenjun Chen. A semi-automatic segmentation procedure for feature extraction in remotely sensed imagery. Computers & Geosciences, 2005;31: 289–296.
    [93]. Torbj?rn Sund, Karsten Eilertsen. An Algorithm for Fast Adaptive Image Binarization With Applications in Radiotherapy Imaging. EEE TRANSACTIONS ON MEDICAL IMAGING, 2003;22(1):22-28.
    [94]. A. Pikaz, A. Averbuch. Digital image thresholding, based on topological stable-state. Pattern Recognition, 1996; 29 (5): 829-843.
    [95]. P.V. Henstock, D.M. Chelberg. Automatic gradient threshold determination for edge detection. IEEE Trans.Image Processing, 1996;5 (5) :784-787.
    [96]. Yang Wang, Praibir. On parameter-dependent connected components of gray images. Pattern rocagnition,1996;29(8):1359-1368.
    [97]. Vikrant K,Phalguni G,Hwang CJ. Finding connected components in digital images by aggressive reuse of labels. Image and Vision Computing,2002;20: 557-568.
    [98]. Fu Chang, Chun-Jen Chen, and Chi-Jen Lu. A linear-time component-labeling algorithm using contour tracing. Computer Vision and Image Understanding, 2004;93:206–220.
    [99]. C. J. Nicol. A Systolic Approach for Real Time Connected Component Labeling. Computer vision and image understanding,1995;61(1):17-31.
    [100]. Kenji Suzuki, Isao Horiba, and Noboru Sugie. Linear-time connected-component labeling based on sequential local operations. Computer Vision and Image Understanding, 2003 ;89:1–23.
    [101]. Yang Y,Zhang D. A novel line scan clustering algorithm for identifying connected components in digital images. Image and Vision Computing,2003;21(5): 459-472.
    [102]. Qingmao Hu , Guoyu Qian, Wieslaw L. Nowinski. Fast connected-component labelling in three-dimensional binary images based on iterative recursion. Computer Vision and Image Understanding, 2005;99: 414–434.
    [103]. Fu C,Chun JC,Chi JL,. A linear-time component-labeling algorithm using contour tracing technique. Computer Vision and Image Understanding,2004;93(2): 206-220.
    [104]. Sudheer KP,Panda RK. Digital image processing for determining drop sizes from irrigation spray nozzles. Agricultural Water Management,2000;45(2): 159-167.
    [105]. Xia Nianjiong, Cao Qixin, Fu Zhuang and Jey Lee. A Machine Vision System of Ball Grid Array Inspection on RT-Linux OS. 2004 International Conference on the Business of Electronic Product Reliability and Liability, 0-7803-8362-1/04/$20.00 ?2004IEEE.
    [106]. E.N. Codaro a, R.Z. Nakazato a, A.L. Horovistiz etal. An image processing method for morphology characterization and pitting corrosion evaluation. Materials Science and Engineering, 2002;A334: 298–306.
    [107]. Pascual J. Figueroa, Neucimar J. Leite, Ricardo M.L. Barros. A flexible software for tracking of markers used in human motion analysis. Computer Methods and Programs in Biomedicine, 2003; 72:155-165.
    [108]. Foley, K.T., Gupta, S.K. Percutaneous pedicle screw fixation of the lumbar spine: Preliminary clinical results. Journal of Neurosurgery, 97 (1 SUPPL.), pp. 7-12.
    [109]. Keith D. Grembant, Charles E. Thorpe, Takeo Kanade. Geometric Camera Calibration using Systems of Linear Equations. CH2.555-1/88/0000/0562$01.00 0 1988 IEEE
    [110]. O. Faugeras. Three-Dimensional Computer Vision: A Geometric Viewpoint. MIT Press, 1993
    [111]. D. P. Chakraborty. Image intensifier distortion correction. Med. Phys, 1987;14: 249–252 .
    [112]. S. Rudin, D. R. Bednarek, and R. Wong. Accurate characterization of image intensifier distortion. Med. Phys, 1991; 18: 1145–1151.
    [113]. S. Fantozzi, A. Cappello, and A. Leardini. A global method based on thin-plate splines for correction of geometric distortion: An application to fluoroscopic images. Med. Phys, 2003; 30:124–131.
    [114]. Delia Soimu, Cristian Badea, Nicolas Pallikarakis. A novel approach for distortion correction for X-ray image intensifiers. Computerized Medical Imaging and Graphics, 2003; 27:79–85.
    [115]. Klaus D. Toennies, Satoru Oishi, David Koster, Gerhard Schroth. Accuracy of distance measurements in biplane angiography. Proceedings of SPIE - The International Society for Optical Engineering 3031, pp. 19-30.
    [116]. N Scott Cosby and Konrad W Leszczynski. Computer-aided radiation therapy simulation: image intensifier spatial distortion correction for large field of view digital fluoroscopy. Phys. Med. Biol, 1998; 43:2265–2278.
    [117]. Lee W Casperson, Peter Spiegler, J H Grollman. Characterization of aberrations in image-intensified fluoroscopy. Med. Phys, 1976;3(2): 103-106.
    [118]. P. Cerveri, C. Forlani, and N. A. Borghese. Distortion correction for x-ray image intensifiers: Local unwarping polynomials and RBF neural networks. Med. Phys, 2002; 29:1759–1771.
    [119]. Christian Forlani and Giancarlo Ferrigno. Automatic Real-Time XRII Local Distortion Correction Method for Digital Linear Tomography. V.N. Alexandrov et al. (Eds.): ICCS 2001, LNCS 2074, pp. 23–26, 2001.? Springer-Verlag Berlin Heidelberg 2001.
    [120]. Ed Gronenschild. The accuracy and reproducibility of a global method to correct for geometric image distortion in the x-ray imaging chain. Med. Phys, 1997; 24(12):1875-1888.
    [121]. 王雪晶,彩色线阵 CCD 遥感图像的校正,中国科学院长春光学精密机械与物理研究所,博士论文,2002.
    [122]. 常红,王序铨,贺振华. 运用微机对卫星遥感图像进行几何精校正,西北师范大学学报,1996,32(4):66-70.
    [123]. 张永生. 遥感图像信息系统,科学出版社,2000 年第一版.
    [124]. Colchester ACF, Hawkes D J (Eds.). Information processing in medical imaging. Proceeding of the 12th international conference on information processing in medical imaging, 1991, Springer-Verlag, Berlin.
    [125]. Hurn MA, Mardia KV, Hainsworth TJ, et al. Bayesian fused classification of medical images. IEEE Transactions on Medical Imaging, 1996, 15: 850-858.
    [126]. Mardia KV, Little JK. Image warping using derivative information. In Bookstein FL, Duncan JS, Lange N, Wilson DC (Eds.), Mathematical methods in medical imaging III, 16-31. SPIE Proceedings V2299.
    [127]. Lizhong Liu, Daniel A. Bassano, Satish C. Prasad, etal. On the use of C-arm fluoroscopy for treatment planning in high dose rate brachytherapy. Med. Phys, 2003;30(9):2297-2302.
    [128]. Weng J, Cohen P, Herniou M. Camera calibration with distortion models and accuracy evaluation. IEEE Trans Pattern Anal Mach Intel, 1992;14(10):965–80.
    [129]. Tsai RY. A versatile camera calibration technique for high-accuracy 3D machine vision metrology using o?-the-shelf TV cameras and lenses. IEEE J Robotics Automation, 1987;RA-3(4):323–44.
    [130]. Guangjun Zhang, Junji He, Xianming Yang. Calibrating camera radial distortion with cross-ratio invariability. Optics & Laser Technology,2003;35: 457 – 461.
    [131]. Ed Gronenschild. Correction for geometric image distortion in the x-ray imaging chain:Local technique versus global technique. Med. Phys, 1999;26(12):2602-2610.
    [132]. 张文强. 基于 X 线透视的手术导航关键技术的研究.博士论文,上海:上海交通大学,2004.
    [133]. Ruijie Rachel Liu, Stephen Rudin and Daniel R. Bednarek. Super-global distortion correction for a rotational C-arm x-ray image intensifier. Med. Phys, 1999;26(9):1802-1810.
    [134]. R. Fahrig, M. Moreau, and D. W. Holdsworth. Three-dimensional computed tomographic reconstruction using a C-arm mounted XRII: correction of image intensifier distortion. Med. Phys, 1997;24: 1097–1106.
    [135]. S. Schreiner, Funda J., Barnes A. C., and Anderson J. H. Accuracy assessment of a clinical biplane fluoroscope for three-dimensional measurements and targeting. Proceedings of SPIE 3031, 160 (1997).
    [136]. C. Brack, S. Winter, A. Czpof, et al. Accurate X-ray navigation in computer assisted surgery. In lemke H. U. et al., editor, Proc. Of the 12th int. symp. On computer assisted radiology and surgery. Springer, 1998.
    [137]. T.S.Y Tang. Calibration and point based registration of fluoroscopic images. Master`s thesis, Department of computing and information science, Queen`s University, Kingston, Ontario, Canada, 1999.
    [138]. P.M. Tate, V. Lachine, L. Fu, et al. Performance and robustness of automatic fluoroscopic image calibration in a new computer assisted surgery system. Medical Image Computing and Computer-Assisted Intervention. MICCAI 2001: 4th International Conference Utrecht, The Netherlands, October 14-17, 2001, Proceedings
    [139]. Z. Yaniv. Fluoroscopic x-ray image processing and registration for computer aided orthopedic surgery. Master`s thesis, Institute of Computer Science, the Hebrew University ofJerusalem, 1998]
    [140]. S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen. The lumigraph. In Computer Graphics Processings, Annual Conference Series, pp 43-54. ACM SIGRAPH, August 1996
    [141]. Y. Yakimovsky and R. Cunningham. A system for extracting three dimensional measurements from a stereo pair of tv cameras. Computer Graphics and Image Processing, 1978
    [142]. M. Slomczykowski, R. Hofstetter, M. Strauss. Fluoroscopy-based surgical navigation-concept and possible clinical application. In L. P. Nolte and R. Ganz, editors, Computer Assisted Orthopedic Surgery. Hogrefe & Huber Publishers, 1999
    [143]. Ofri Sadowsky. Contact and image-based rigid registration in computer-assisted surgery: materials, methods, and experimental results. Master thesis, Israel: the Hebrew University of Jerusalem, 2001.
    [144]. Potaminos P, Davies BL, Hibberd RD. A robotic system for minimal access surgery. Proc Inst Mech Eng., 1994,208: 119-126.
    [145]. Joskowica L, Taylor RH, Williamson B, et al. Computer integrated revision total hip replacement surgery: preliminary report. In: Proceedings of the 2nd MRCAS Symposium, 1995: 193-202.
    [146]. Hamadeh A, Sautot P, Lavallee S, et al. Towards automatic registration between CT and X-ray images: cooperation between 3D/2D registration and 2D edge detection. In: Proceedings 2nd MRCAS Symposium, 1995: 39-46.
    [147]. Weese J, Buzug TM, Lorenz C, et al. An approach to 2D/3D registration of a vertebra in 2D X-ray fluoroscopies with 3D CT images. In: Troccaz J, Grimson E, Mosges R, eds. Proceedings of the 1st Joint Conference on Computer Vision, Virtual Reality and Robotics in Medicine and Medical Robotics and Computer-assisted Surgery (CVRMed-MRCAS’97), Grenoble, France, March 1997. Berlin: Springer-Verlag, 1997: 119-128.
    [148]. Brack C, Gotte H, Gosse F, et al. Towards accurate X-ray camera calibration in computer assisted robotic surgery. In: Lemk HU, Vannier MW, Inamura K, Farman AG, Eds. Proceedings of the International Symposium on Computer and Communication Systems for Image Guided Diagnosis and Therapy (CAR’96), Paris. Amsterdam: Elsevier, 1996: 721-728.
    [149]. Viant WJ, Phillips R, Griffiths JG, et al. A computer assisted orthopaedic surgical system for distal locking of intrameduallary nails. Pro Inst Mech Eng., 1997, 211: 293-299.
    [150]. Hofstter R, Slomczykowski M, Bourquin I, et al. Fluoroscopy based surgical navigation: concept and clinical applications. In: Lemke HU, Vannier MW, Inamura K, Eds. Proceedings of the 11th international symposium and exhibition on computer assisted radiology and surgery (CAR’97), Berlin. Amsterdam: Elsevier, 1997: 956-960.
    [151]. 高上凯. 医学成像系统. 北京. 清华大学出版社. 2000.
    [152]. 徐之海,李齐. 现代成像系统,国防工业出版社,2001.
    [153]. 佩里.斯普罗斯. 医学成像的物理原理,高等教育出版社,1993.
    [154]. (The Image Intensifier: An Example for Innovations with Advanced Products )http://www.healthcare.siemens.com/medroot/en/news/electro/issues/pdf/heft_1_02_e/16_Behrens.pdf
    [155]. Van B, Eijk D, Kuhl W. An x-ray image intensifier with large input format. Philips Tech. Rev., 1983, 41(5): 137-148.
    [156]. 牛憨笨. 图像信息获取技术研究进展. 深圳大学学报(理工版), 2000;17(4):1-10.
    [157]. Giakoumalis GE. Matching factors for various light-source-photo detector combinations. Appl. Phys., 1991, 52: 7-9.
    [158]. 牛憨笨.图像信息获取中的光电子技术. 深圳大学学报(理工版), 2001;18(3):75-87.
    [159]. Theuwissen AJP. CCD imaging, Philips J. Res., 1994, 48(3): 147-158.
    [160]. Snoeren R. A CCD-based video camera for medical x-ray imaging. Proc. SPIE, 1989, 1090: 401-408.
    [161]. Cheng CW, Taylor KW, Holloway AF. The spectrum and angular distribution of x’rays scattered from a water phantom. Med. Phys., 1995, 22(8): 1235-1245.
    [162]. U. Solzbach, H. Wollschlager, A. Zeiher, and H. Just. Optical distortion due to geomagnetism in quantitative angiography. in Proceeding of the Conference in Computer in Cardiology 1988 ~IEEE Computer Society Press, Los Alamitos, 1989, pp. 355–357.
    [163]. E. Gronenschild. The accuracy and reproducibility of a global method to correct for geometric distortion in the x-ray chain. Med. Phys, 1997;24:1875–1888.
    [164]. E. Gronenschild. Correction for geometric image distortion in the x-ray imaging chain: local technique versus global technique. Med. Phys, 1999;26: 2602–2616.
    [165]. M. Boone, J. A. Seibert, W. A. Barrett, and E. A. Blood. Analysis and correction of imperfections in the image intensifier-TV-digitizer imaging chain. Med. Phys, 1991; 18: 236–242.
    [166]. Kenneth AF, Nicholas J, Hangiandreou, et al. Measurement of the presampled two-dimensional modulation transfer function of digital imaging systems. Medical Physics, 2002, 29(5): 913-921.
    [167]. D. Reimann and M. J. Flynn. Automated distortion correction of x-ray image intensifier images. IEEE Nuclear Science Symposium and Medical Imaging Conference Record, Orlando, Florida, 1992, pp. 1339–1341.
    [168]. Hoffmann KR, Chen Y, Chen SY, et al. Pincushion Correction Techniques and Their Effects on Calculated 3D Positions and Imaging Geometries, SPIE: Medical Imaging 96, 1996, 2710: 462-467.
    [169]. Davies ER. Truncating the Hough transform parameter space can be beneficial . Pattern Recognition Letters,2003;24 (1-3): 129-135.
    [170]. Kierkegaard P. A method for detection of circular arcs based on the Hough transform. Machine Vision Application,1992;5 (4): 249-263.
    [171]. Jiminez AR,Ceres R,Pons JL. A vision system based on a laser range-finder applied to robotic fruit harvesting. Machine Vision and Applications,2000;11(6): 321-329.
    [172]. Bennet N,Burridge R,Saito N. A method to detect and characterize ellipses using the Hough transform. IEEE Trans. Pattern Anal. Mach. Intell,1999;21 (7): 652-657.
    [173]. Goulermas JK,Liatsis P. Genetically fine-tuning the Hough transform feature space for the detection of circular object. Image Vision Computing,1998;16 (9-10): 615-625.
    [174]. Olson CF. Constrained Hough transform for curve detection. Computer Vision and Image Understanding,1999;73 (3): 329-345.
    [175]. Haralick RM. Some neighborhood operations. Real Time/Parallel Computing Image Analysis. New York: Plenum Press,1981,54-68.
    [176]. Shan ZY,Yue GH,Liu JZ. Automated histogram-based brain segmentation in T1-weighted three-dimensional magnetic resonance head images. Neuroimage ,2002;17(3): 1587-1598.
    [177]. Cheng JD,Da WS. Shape extraction and classification of pizza base using computer vision. Journal of Food Engineering,2004;64 (4): 489-496.
    [178]. Gonzales RC,Woods RE. Digital Image Processing. New Jersey: Prentice-Hall,Inc,2002;16-25.
    [179]. Guerra,C. Vision and Image Processing Algorithms and Theory of Computation Handbook,(edited by J. M. Atallah),Boca Raton: CRC Press,2002,56-78.
    [180]. Verikas A,Malmqvist K,Bergman L,. Detecting and measuring rings in banknote images. Engineering Applications of Artificial Intelligence,2005;18(3): 363-371.
    [181]. Chung KL,Huang HL,Chen IC. New two-phase spatial data structures with applications to binary images. J. Vis. Commun. Image R,2003;14 (2): 97-113.
    [182]. Samet H. Applications of Spatial Data Structures. New York: Addison-Wesley,1990,89-123.
    [183]. Cosby, K. Leszczynski, J. Dennie, and P. Dunscombe. Image intensifier distortion correction for large field of view digital radiation therapy simulation. Med. Phys, 1994; 21-33.
    [184]. 章毓晋. 图象处理和分析 图象工程 上册,清华大学出版社,北京,1999 年第 1版.
    [185]. Zwet PMJ, Meyer DJH, Reiber JHC. Automated and accurate assessment of the distribution, magnitude, and direction of pincushion distortion in angiographic images. Invest. Radiol. 1995, 30: 204-213.
    [186]. Beier J, Oswald H, Fleck E. Computers in Cardiology, IEEE Computer Society Press, Los Alamitos, 1992: 513–516.
    [187]. Goshtasby A. Correction of image deformation from lens distortion using Bezier patches. Comput. Vis. Graph. Image Process, 1989, 47: 385–394.
    [188]. Haaker P, Klotz E, Koppe R, et al. Real-time distortion correction of digital x-ray II/TV-systems: an application example for Digital Flashing Tomosynthesis (DFTS). Int. J. Card. Imaging, 1990: 39-45.
    [189]. P. K. Aravinda, B. N. Rao. Coupled finite element-moving least squares method for stochastic structural response of cracked structures. American Society of Mechanical Engineers, Pressure Vessels and Piping Division , (2006).
    [190]. J. H. Lim, S. Im, Y.-S. Cho. MLS (moving least square)-based finite elements for three-dimensional nonmatching meshes and adaptive mesh refinement. Comput. Methods Appl. Mech. Engrg,2007;. 196:2216-2228 .
    [191]. 邵卫云,毛根海,刘国华. 基于曲面拟合的水泵水轮机全特性曲线的新变换. 浙江大学学报(工学版) , 2004;38 (3) :385-388.
    [192]. 张雄 , 宋康祖 , 陆明万 . 无网格法研究进展及应用 . 计算力学学报 ,2003;20 (6) :730-742.
    [193]. Z. Komargodski and D. Levin. Hermite Type Moving-Least-Squares Approximations. Comput. Math. Appl, 2006;51:1223-1232.
    [194]. Lancaster P ,Salkauskas K. Surface generated by moving least squares method.Math. Comput, 1981;37(155) :141-158.
    [195]. Y. Guo, L. B. Harding, A. F. Wagner, and M. Minkoff. Interpolating moving least-squares methods for fitting potential energy surfaces: An application to the H2CN unimolecular reaction. J. Chem. Phys, 2007 ;126:104-105 .
    [196]. A. Kawano, I. V. Tokmakov, and D. L. Thompson. Interpolating moving least-squares methods for fitting potential-energy surfaces: Further improvement of efficiency via cutoff strategies. J. Chem. Phys, 2006 ;124:054-105.
    [197]. 王杰光.滑动最小二乘法在加权残值法中的应用. 桂林工学院学报,2000;20 (3 ) :249-251.
    [198]. 寿纪麟. 数学建模—方法与范例 .西安:西安交通大学出版社,1996.
    [199]. 庞作会,葛修润,郑宏等.一种新的数值方法—无网格伽辽金法(EFGM).计算力学学报,1999;16 (3 ): 320-329.
    [200]. Lee, S., Wolberg, G., Shin, S.Y. Scattered Data Interpolation with Multilevel B-Splines. IEEE Transactions on Visualization and Computer Graphics,1997; 3 (3): 228-244
    [201]. H Hoppe, T DeRose, T Duchamp, etal. Surface reconstruction from unorganized points. Computer Graphics, 1992; 26(20):71-78.
    [202]. 施法中. 计算机辅助几何设计与非均匀有理 B 样条. 高等教育出版社, 2001
    [203]. 葛金辉, 赵 江, 何甲兴. 基于散乱数据的B 样条曲面重构与优化. 工 程 数 学 学 报, 2003;20(6):140-125.
    [204]. 尹星云. 基于B-spline函数的散乱数据插值技术. 淮南师范学院学报,2005;7(3):1-2.
    [205]. 朱东波, 张舜德, 李涤尘, 卢秉恒. 密集散乱测量数据点的B 样条曲面拟合研究. 计算机辅助设计与图形学学报,2001;13(12):1124-1128.
    [206]. 张伟强, 唐泽圣. 大规模散乱数据的层次B-样条曲面表示. 计算机学报,1999;22(10):1059-1064.
    [207]. 葛金辉, 张风梅, 李蕙芯. 基于散乱数据的自适应B -样条曲面重构与优化. 通化师范学院学报,2004;25(4):16-18.
    [208]. 张寅飞, 安鲁陵, 神会存. 散乱测量数据多层次B样条逼近曲面拟合算法. 机械设计与研究,2005;34 ( 2) : 14-16.
    [209]. 韩旭里, 庄陈坚, 刘新儒. 基于径向基函数与 B 样条的散乱数据拟合方法. 中国科技论文在线, 1-4.
    [210]. Les Piegl, Wayne Tiller. the NURBS book. Berlin ; New York : Springer, 1997.
    [211]. H su W M , Hughes J F, Kaufman H. Direct manipulation of free-form deformations. Computer Graphics, 1992; 26 (2) : 177-184.
    [212]. Forsey D R, Bartels R H. Hierarchical B-spline refinement. Computer Graphics, 1988; 22 (4) : 205- 212
    [213]. E. Cohen, T. Lyche, and R. Riesenfeld. Discrete B-Splines and Subdivision Techniques in Computer Aided Geometric Design and Computer Graphics. Computer Graphics and Image Processing, 1980; 14(2):87-111.
    [214]. W. Bohm and H. Prautzsch. The Insertion Algorithm. Computer Aided Design,1985;17(2): 58-59.
    [215]. T. Lyche. Note on the Oslo Algorithm. Computer Aided Design, 1988; 20(6) :353-355.
    [216]. T. Lyche, E. Cohen, and K. Morken. Knot Line Refinement Algorithms for Tensor Product B-Spline Surfaces. Computer Aided Geometric Design, 1985; 2:133-139.
    [217]. T. Lyche and K. Morken. Making the Oslo Algorithm More Efficient. SIAM J. Numerical Analysis, 1986; 23(3):663-675.
    [218]. I. Sobel. On Calibrating Computer Controlled Cameras for Perceiving 3D Scenes. Artificial Intelligence, 1974;5:185-198.
    [219]. W. Faig. Calibration of close-range photogrammetry systems: Mathematical formulation. Photogrammetric Eng. Remote Sensing, 1975; 41:1479-1486.
    [220]. Y. Yakimovsky, and R. Cunningham. A System for Extracting Three-Dimensional Measurements from a Stereo Pair of TV Cameras. Computer Graphics and Image Processing, 1978; 7: 195-210 .
    [221]. Y.L. Abdel-Aziz and H.M.Karara. Direct linear transformation into object space coordinates in close-range photogrammetry. in Proc. Symp. Close-Range Photogrammetry.Univ. of Illinois at Urbana-Champaign, Urbana, 1971. pp.1-18.
    [222]. H.M. Karara, Ed.. Handbook of Non-Topographic Photogrammetry. Amer. Soc. Of Photogrammetry, 1979.
    [223]. D.B.Gennery. Stereo-camera calibration. in Proc. Image Understanding Workshop, 1979, pp.101-108.
    [224]. H. Itoh, A. Miyauchi, and S. Ozawa. Distance measuring method using only simple vision constructed for moving robots. in Proc. 7th Int. Conf. on Pattern Recognition, Montreal, PQ, Canada. Vol.1, 1984, p.192
    [225]. J.Y. Luh and J.A. Klaasen. A three-dimensional vision by off-shelf system with multi-cameras. IEEE Trans. Pattern Anal. Machine Intell, 1985; PAMI-7:35-45.
    [226]. I.Sutherland. Three-dimensional data input by tablet. Proc. IEEE, 1974; 62:453-461.
    [227]. E.L. Hall, M.B.K. Tio, C.A. McPherson, and F.A. Sadjadi. Curved surface measurement and recognition for robot vision. in Conf. Rec. IEEE Workshop on Industrial Application of Machine Vision, May 1982.
    [228]. S. Ganapaphy. Decomposition of transformation matrices for robot vision. in Proc. Int. Conf. Robotics and Automation, 1984. pp. 130-139
    [229]. T.M.Strat, Recovering the camera parameters from a transformation matrix. In Proc. DARPA Image Understanding Workshop. Oct, 1984, pp. 264-271.
    [230]. H. A. Martins, I. R. Birk, and R. B. KeUey. Camera Models Based on Data from Two Calibration Planes. Computer Graphics and Image Processing, 1981;17:173-180 .
    [231]. A. Isaguirre, P. Pu, and J. Summers. A New Development in Camera Calibration: Calibrating a Pair of Mobile Cameras. Proc. IEEE Conference on Robotics and Automation, pp. 74-79 (1985).
    [232]. M. Fischler and R. Bolles. Random sample consensus: A paradigm for model fitting applications to image analysis and automated cartography. in Proc. Image Understanding Workshop, Apr. 1980. pp. 71-88
    [233]. Manual of Photogrammetry, 4th ed., Amer. Soc. Of Photogrammetry, 1980
    [234]. Ziv R. Yaniv. fluoroscopic X-ray image processing and registration for computer-aided orthopedic surgery. Master thesis, Israel: the Hebrew University of Jerusalem, 1998.
    [235]. Knaan D. Intensity-based 2D/3D rigid registration of fluoroscopic X-ray to CT(master). Jerusalem,Israel:The Hebrew University of Jerusalem,2003: 52:102-110
    [236]. Hofstetter R, Slomczykowski M, Sati M. Fluoroscopy as an Imaging Means for Computer-Assisted Surgical Navigation. Computer Aided Surgery,1999; 4: 65-77
    [237]. KEVIN T F, SANJAY K, GUPTA M.D et al.M.S.Percutaneous pedicle screw fixation of the lumbar spine. Neurosurg Focus,2001; 10 (4):56-63
    [238]. http://www.ndigital.com/polaris.php

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700