孤独症模型大鼠经典Wnt信号通路与氧化应激变化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
孤独症(autism)又称自闭症,是一种广泛的神经发育障碍性疾病,一般于3岁前发病,严重影响儿童的语言形成、情绪认知与社会行为。多数患儿有明显的语言交流艰难、社交行为障碍、重复刻板行为三大核心临床表现。这些患儿不能正常入托、上学,甚至将来也无法工作。近年来的统计数据资料表明,autism的发病率逐年增多。Autism的病因不明,目前普遍认为是遗传和环境因素在脑发育关键时期共同作用的结果。如,妊娠早期有丙戊酸盐(Valproic acid, VPA)用药史的产妇,其子代发生autism风险大大增加。非遗传因素可能与干扰胚胎脑发育的正常的信号通路传导有关,而遗传因素可能是信号通路传导异常导致的基因突变所致。
     Wnt/β-catenin信号通路对个体发育,尤其是神经系统发育有重要的调控作用。在个体发育早期,它调控神经细胞的增殖、分化、凋亡与迁移以及突触的形成与联系,调控细胞、组织及器官正常有序的分化和生长发育。然而Wnt通路犹如双刃剑,既是调控神经细胞正常分化发育的重要通路,又是神经发育疾病发生的成因之一,通路中任何蛋白分子的异常,都将引起信号传递错误,导致细胞命运的改变,进而引发神经发育障碍疾病的发生,如autism。许多autism患者存在Wnt2编码序列基因突变,故Wnt2基因是autism易感基因。敲除通路中散乱蛋白(Dishevelled, Dvl)-1基因的小鼠,表现出社交行为和感觉运动障碍,说明Dvl-1基因可能参与动物社会行为的形成,这可能与Dvl-1调节神经发育有关,因为从Dvl-1敲除鼠组织培养的海马神经元树突发育异常。Dvl-1和Dvl-2缺失的小鼠,神经管闭合不全。β-catenin转基因小鼠,则能使神经前体细胞增殖,导致巨大脑、脑皮质容量增加,这可能与autism脑早期的过度增生有关。这些研究强烈提示Wnt通路与autism的发病密切相关。
     近年来,大量临床资料报道表明autism患者存在氧化应激的失调,如氧化应激生物标记物分泌增加,体内内源性抗氧化能力减少,能量代谢失调,线粒体功能障碍。Dickkopfl (Dkkl)是一种分泌性的Wnt抑制剂。研究显示,Dkk1转染能显著增加氧化应激产生的活性氧(Reactive oxygen species, ROS)水平。Nucleoredoxin (NRX)作为一种氧化还原剂,通过与Dvl作用,对Wnt信号通路进行负调节。H202作用于细胞减少了NRX和Dvl的相互作用,导致T细胞因子(T cell factor, TCF)暂时激活。而与这些结果截然相反的许多研究显示,H202诱导ROS依赖性的信号转导抑制了β-catenin/TCF转录活性。ROS能抑制许多磷酸酶,而H202处理后GSK3怎么去磷酸化并不清楚。有趣的是,有研究显示,Dv1高表达能改善H202诱导的β-catenin/TCF转录活性抑制。因此,这些研究提示ROS依赖于Dvl在调节Wnt信号通路中起双重作用。这也说明氧化应激与Wnt信号通路之间存在关联。
     那么,autism动物模型是否存在氧化应激异常?在autism产生过程中氧化应激与Wnt信号通路是否存在关联?用Wnt信号通路特异性抑制剂是否能改善autism行为学异常?目前尚不清楚。针对这些问题,本课题集中研究autism动物模型及培养神经元中氧化应激与Wnt/β-catenin通路相关分子的关系,以探讨autism发病的相关分子机制。我们主要进行了以下三方面的工作:
     一、建立并检测了autism动物模型。采用Wistar大鼠,在妊娠第12.5天时,腹腔注射(Intraperitoneal injecting, ip) VPA制作子代autism大鼠模型,并运用热板致痛法、倾斜板实验、Morris水迷宫等方法对模型大鼠进行发育与行为学检测。结果显示,与正常对照组比较,autism模型组大鼠脑发育异常、睁眼时间推迟、方向趋向性机能及伤害性知觉下降、游泳能力差、重复刻板动作增加、学习记忆和空间探索能力差。这些表现与人类autism患者的某些特征极为相似,表明用VPA注射法较成功地制作出了autism大鼠模型。
     二、研究了Wnt/β-catenin信号通路及氧化应激水平。运用Real-time PCR和Western blot技术检测autism模型大鼠前额叶皮层(Prefrontal cortex, PFC)和海马(Hippocampus, HC)两脑区Wnt通路信号蛋白GSK-3p,磷酸化GSK-3β(Phosphorylated GSK-3β, P-GSK-3β), β-catenin,磷酸化β-catenin (Phosphorylated β-catenin, P-β-catenin)及氧化应激标记物4-羟壬烯醛(4-Hydroxynonenal,4-HNE),硫氧还原蛋白(Thioredoxin, Trx)等相关分子的表达。进而我们检测了Wnt信号通路的特异性抑制剂Sulindac对氧化应激的影响。Western Blot结果显示,在autism模型大鼠PFC和HC脑区,Wnt通路关键信号蛋白失活的P-GSK-3β上调,抑制性的P-β-catenin下调,差异显著高于对照组(P<0.001)。同时,氧化应激标记物4-HNE表达增加(P<0.01),Trx表达减少(P<0.05)。Real-time PCR结果显示,autism模型组大鼠PFC和HC脑组织GSK-3βmRNA水平显著低于对照组(P<0.05),而β-catenin mRNA水平显著高于对照组(P<0.01)。同时,抗氧化基因trx1,trx2mRNA表达下调(P<0.05)。Wnt信号通路的特异性抑制剂Sulindac作用以后,与autism模型大鼠相比,VPA+Sulindac处理组失活的P-GSK-3p下调(P<0.05),抑制性的P-β-catenin上调(P<0.05),而氧化应激标记物4-HNE减少(P<0.05)。行为学研究结果显示,与autism模型大鼠相比,Sulindac预处理,大鼠的痛闽相对正常;重复刻板动作减少;学习和记忆能力有所提高。以上结果表明,Wnt信号通路抑制剂Sulindac预处理,能削弱Wnt信号通路的亢进机能,从而减少氧化应激的发生,最终使autism模型鼠的异常行为获得不同程度的改善。
     三、采用细胞培养技术探讨了Wnt/β-catenin通路与氧化应激在autism发生过程中的作用。应用Real-time PCR, Western blot及流式细胞分析(Flow analytical cytometry system, FACS)技术深入研究VPA处理的原代培养神经元Wnt/β-catenin与氧化应激的关系。Real-time PCR及Western blot结果显示,在VPA处理培养神经元中,GSK-3βmRNA及蛋白表达显著低于对照组,失活的P-GSK-3p显著高于对照组;而P-catenin mRNA及蛋白表达显著高于对照组,抑制性的P-β-catenin显著低于对照组。同时,在VPA处理培养神经元中,4-HNE表达显著高于对照组。FACS研究结果显示,VPA处理组ROS表达水平显著高于对照组。Sulindac处理以后,与VPA处理组相比,β-catenin蛋白表达下调,P-β-catenin表达上调,GSK-3p表达上调,P-GSK-3p表达下调,4-HNE下调。Real-time PCR结果显示,抗氧化剂N-乙酰半胱氨酸(N-acetylcysteine, NAC)处理虽然减少了ROS的产生,但是并没有改变GSK-3β mRNA和P-catenin mRNA的表达。以上结果揭示,Wnt/β-catenin通路活性增强导致氧化应激的产生,VPA促进神经元氧化应激的产生由于该通路上调所致。
     综上所述,我们的工作提示:环境因素(如VPA暴露)通过诱导脑组织Wnt/β-catenin通路活性改变,使脑内经典Wnt信号通路活性增强,进而增加氧化应激的产生、氧化稳态的异常,有可能进一步影响神经元的正常发育和联系,阻碍了正常的神经网络形成,从而引起社会交往、情绪和语言等行为方面的异常,最终导致autism的发病。
Autism is a complex, pervasive developmental disorder that typically appears during the3years of life, which exerts a serious influence on children's language formation, emotion cognition and social behaviors. Symptoms of autism include impaired linguistic communication, deficits in social interaction and aberrant ritualistic-repetitive behaviors. Such patients are unable to go to school, even unable to work in the future. Recently, statistical data demonstrate that there is an increasing incidence rate of autism. The etiology of autism remains unclear, but it very likely includes genetic and environmental factors that play a role during the critical period of brain development, for example, the prenatal exposure of valproic acid greatly increases the susceptibility to autism in the offspring. Non-genetic factors may interfere with the normal signaling pathways involved in prenatal brain development, whereas genetic agents may arise due to the mutation of certain genes participating in these signaling pathways.
     It is believed that the Wnt/β-catenin pathway plays a critical role in the proliferation, differentiation, apoptosis and process outgrowth of cells of the central nervous system during embryonic development. However, the Wnt/β-catenin pathway has two sides:one hand, it regulates the normal development and difference of the central nervous system, on the other hand, dysregulation of the Wnt signaling pathway could have any number of deleterious effects on neural development and thereby contribute to the pathogenesis of neurodevelopmental disorders, such as autism, in many different ways. The notion of Wnt2as an autism susceptibility gene was supported by screening Wnt2coding sequence for mutations in a large number of autistic probands. The dvl-1knockout mouse displayed social interaction and sensorimotor gating abnormalities, demonstrating that dvl-1may be involved in the social behavior of animals based on the findings that hippocampus dendritic growth was unusual in cultured hippocampal neurons from the dvl-1knockout mouse. The dvl-1and dvl-2deletion mouse performed neural tube closure defects. Transgenic mice expressing active stabilized forms of β-catenin in neuronal precursor cells develop grossly enlarged brains with an increased cerebral cortical volume, which may be relevant with the early excessive proliferation of the brain in autism. Therefore, these studies strongly suggest the Wnt pathway is closely related with the pathogenisis of autism.
     Recent research has focused in particular on the role of oxidative stress in autism patients, for example, increased biomarkers of oxidative stress, reduced resistance to endogenous oxidation, energy metabolism and mitochondria dysfunction. Dickkopfl (Dkk1) is a kind of secretory Wnt inhibitors. Existing research shows that, Dkkl transfection can significantly increase the levels of reactive oxygen species, the key source of oxidative stress. Nucleoredoxin (NRX), a kind of oxidizer reducer, negatively regulates the Wnt signaling pathway through Dvl. H2O2reduces the interaction between NRX and Dvl, and activates TCF temporarily. Contrary with these results, many studies show that H2O2induced ROS-dependent signal transduction inhibits the β-catenin/TCF transcriptional activity. ROS inhibits many phosphatases, however, how it works about phosphorylation on GSK3following H2O2treatment is not clear. Interestingly, studies have shown that dvl overexpression can improve inhibition of H2O2induced β-catenin/TCF transcriptional activity. Thus, these data suggest ROS has two roles in regulating the Wnt pathway, which is dependent on Dvl. This also has shown that there is a correlation between oxidative stress and the Wnt signaling pathway.
     However, whether oxidative stress occurs in rats exhibiting autism-like symptoms caused by prenatal VPA exposure? What is the relationship between oxidative stress and the Wnt/β-catenin signaling pathway? If oxidative stress does occur in these animals, may sulindac, a small molecule inhibitor of the canonical Wnt/β-catenin pathway ameliorate the autism-like behavioral abnormalities that develop in these rats? These problems still remain unknown. In this study, we focused on the relationship between the Wnt/p-catenin pathway related genes and oxidative stress in the autistic animal model and primary cultured neurons, exploring the possible pathomechanism of autism. The work had been done as follows:
     Part one:We established an autistic rat model successfully. This autistic animal model was obtained in the offspring of the female Wistar rat that received a single intraperitoneal injection of VPA on the12.5th pregnancy day, and then the behavioral and developent index tests were performed using the hot plate, inclined board, Morris Water Maze. The results demonstrated that, compared to the control rats, the autistic ones had abnormal developmental brain, delayed timing of eye opening, lower geotaxis function, attenuated pain threshold, lower swimming performance, enhanced ritualistic-repetitive behaviors, poor learn and memory abilities and lower spatial exploratory ability, which were similar to the symptoms in autistic patients.
     Part two:We did research on the Wnt/β-catenin pathway and oxidative stress in VPA autism models. Real-time PCR and Western blot were used to investigate the levels of GSK-3β, Phosphorylated GSK-3β (P-GSK-3β), β-catenin, Phosphorylated β-catenin (P-β-catenin),4-hydroxynonenal (4-HNE) and thioredoxin (Trx) in the prefrontal cortexes (PFC) and hippocampi (HC) of autistic rats. Then, we detected the effects of sulindac, a specific Wnt/β-catenin pathway inhibitor, on oxidative stress. The results of Western Blot showed that P-GSK-3β was upregulated, and P-β-catenin was downregulated in PFC and HC of VPA-exposed rats compared with the control group (P<0.001). Concomitantly,4-HNE was enhanced (P<0.01), while Trx was attenuated (P<0.05). Real-time PCR showed that the mRNA of GSK-3β, trx1and trx2were lower, while β-catenin was higher in the PFC and HC of VPA autism models. VPA and Sulindac treatment decreased P-GSK-3β and4-HNE, whereas increased P-β-catenin (P<0.05). A battery of behavioral tests showed that Sulindac treatment ameliorated the pain threshold, repetitive/stereotypic activity, learning and memory abilities of rats in our autism model. From the above results, it is demonstrated that Sulindac downregulates the Wnt/β-catenin pathway, thus decreases oxidative stress, which finally ameliorates the autism-like behavioral abnormalities.
     Part three:We further revealed the roles of the Wnt/β-catenin pathway and oxidative stress in autism using cell culture technology. Real-time RT-PCR, western blot and flow analytical cytometry methods were used to further investigate the relationship between the Wnt/β-catenin pathway and oxidative stress in primary cultured neurons. The results from Real-time RT-PCR and western blot showed that P-β-catenin and the mRNA and protein expressions of GSK-3β were significantly decreased in the VPA-exposed cultured neurons, while P-GSK-3β,4-HNE and the mRNA and protein expressions of β-catenin were increased compared to the controls. Furthermore, FACS showed that ROS was enhanced in the VPA-exposed cultured neurons. Compared with the VPA treatment alone, the protein expression levels of both GSK-3β and P-β-catenin were increased in the VPA and sulindac-exposed neurons, whereas P-GSK-3β, β-catenin and4-HNE were decreased. The results from Real-time RT-PCR showed that both NAC and VPA did not change the expression levels of GSK-3β mRNA和β-catenin mRNA compared with VPA-exposed group. These results demonstrated that VPA induced the upregulation of the Wnt/β-catenin signaling pathway by increasing oxidative stress.
     In conclusion, our results demonstrated that enviromental factors such as VPA exposure induced the increased activity of the Wnt/β-catenin pathway, thus resulting in the upregulation of Wnt/β-catenin pathway. The upregulation of Wnt/β-catenin pathway produces an imbalance of oxidative homeostasis, which affects the neuronal development and synaptic junctions, resulting in behavioral, emotional and linguistical abnormality, and finally leading to autism.
引文
[1]Lemjabbar-Alaoui H, Dasari V, Sidhu SS, et al. Wnt and Hedgehog are critical mediators of cigarette smoke-induced lung cancer[J]. PLoS One,2006,1:e93.
    [2]Huang Y, Chang X, Lee J, et al. Cigarette smoke induces promoter methylation of single-stranded DNA-binding protein 2 in human esophageal squamous cell carcinoma[J]. Int J Cancer,2011,128(10):2261-2273.
    [3]Stokstad E. Development. New hints into the biological basis of autism[J]. Science,2001,294(5540):34-37.
    [4]Kogan MD, Blumberg SJ, Schieve LA, et al. Prevalence of parent-reported diagnosis of autism spectrum disorder among children in the US,2007[J]. Pediatrics,2009,124(5):1395-1403.
    [5]张建娜.儿童孤独症的诊断与治疗现状[J].中国医刊,2005,40(4):5-7.
    [6]Shattuck PT. The contribution of diagnostic substitution to the growing administrative prevalence of autism in US special education[J]. Pediatrics, 2006,117(4):1028-1037.
    [7]Croen LA, Grether JK, Hoogstrate J, et al. The changing prevalence of autism in California[J]. J Autism Dev Disord,2002,32(3):207-215.
    [8]Blaxill MF, Baskin DS, Spitzer WO. Commentary:Blaxill, Baskin, and Spitzer on Croen et al. (2002), the changing prevalence of autism in California [J]. J Autism Dev Disord,2003,33(2):223-6; discussion 227-229.
    [9]DiCicco-Bloom E, Lord C, Zwaigenbaum L, et al. The developmental neurobiology of autism spectrum disorder[J]. J Neurosci, 2006,26(26):6897-6906.
    [10]Miller MT, Stromland K, Ventura L, et al. Autism associated with conditions characterized by developmental errors in early embryogenesis:a mini review[J]. Int J Dev Neurosci,2005,23(2-3):201-219.
    [11]Landrigan PJ. What causes autism? Exploring the environmental contribution[J]. Curr Opin Pediatr,2010,22(2):219-225.
    [12]Miller MT, Stromland KK. What can we learn from the thalidomide experience: an ophthalmologic perspective[J]. Curr Opin Ophthalmol,2011,22(5):356-364.
    [13]Dufour-Rainfray D, Vourc'h P, Tourlet S, et al. Fetal exposure to teratogens: evidence of genes involved in autism [J]. Neurosci Biobehav Rev, 2011,35(5):1254-1265.
    [14]Stanfield AC, McIntosh AM, Spencer MD, et al. Towards a neuroanatomy of autism:a systematic review and meta-analysis ofstructural magnetic resonance imaging studies[J]. Eur Psychiatry,2008,23(4):289-299.
    [15]Minshew NJ, Williams DL. The new neurobiology of autism:cortex, connectivity, and neuronal organization[J]. Arch Neurol,2007,64(7):945-950.
    [16]Nelson WJ, Nusse R. Convergence of Wnt, beta-catenin, and cadherin pathways[J]. Science,2004,303(5663):1483-1487.
    [17]Nusse R, Fuerer C, Ching W, et al. Wnt signaling and stem cell control[J]. Cold Spring Harb Symp Quant Biol,2008,73:59-66,
    [18]Polleux F, Lauder JM. Toward a developmental neurobiology of autism[J]. Ment Retard Dev Disabil Res Rev,2004,10(4):303-317.
    [19]Brault V, Moore R, Kutsch S, et al. Inactivation of the beta-catenin gene by Wntl-Cre-mediated deletion results in dramatic brain malformation and failure of craniofacial development[J]. Development,2001,128(8):1253-1264.
    [20]Wassink TH, Piven J, Vieland VJ, et al. Evidence supporting WNT2 as an autism susceptibility gene[J]. Am J Med Genet,2001,105(5):406-413.
    [21]Wang Z, Xu L, Zhu X, et al. Demethylation of specific Wnt/beta-catenin pathway genes and its upregulation in rat brain induced by prenatal valproate exposure[J]. Anat Rec (Hoboken),2010,293(11):1947-1953.
    [22]陈明军,于剑锋,柴继侠,等.Wnt通路信号蛋白β-catenin和GSK-3p在孤独症模型大鼠脑中表达的变化[J].神经解剖学杂志,2009,25(4):361-368.
    [23]Zhang Y, Sun Y, Wang F, et al. Downregulating the Canonical Wnt/beta-catenin Signaling Pathway Attenuates the Susceptibility to Autism-like Phenotypes by Decreasing Oxidative Stress[J]. Neurochem Res,2012.
    [24]王月华,姚君茹,陈明军,等.BDNF免疫反应阳性神经元在大鼠孤独症动 物模型大脑顶叶感觉皮层中的表达[J].神经解剖学杂志,2008,(03):219-225.
    [25]王维霞,王月华,陈明军,等.PV阳性神经元在孤独症模型大鼠情绪与认知相关脑区内的表达[J].神经解剖学杂志,2008,(02):131-140.
    [26]徐理,王中平,孙燕,等.小清蛋白在孤独症模型大鼠上丘中表达的年龄变化(英文)[J].神经解剖学杂志,2010,(05):491-496.
    [27]Chauhan A, Gu F, Essa MM, et al. Brain region-specific deficit in mitochondrial electron transport chain complexes in children with autism[J]. J Neurochem, 2011,117(2):209-220.
    [28]Meguid NA, Dardir AA, Abdel-Raouf ER, et al. Evaluation of oxidative stress in autism:defective antioxidant enzymes and increased lipid peroxidation[J]. Biol Trace Elem Res,2011,143(1):58-65.
    [29]Atkin TA, MacAskill AF, Brandon NJ, et al. Disrupted in Schizophrenia-1 regulates intracellular trafficking of mitochondria in neurons[J]. Mol Psychiatry, 2011,16(2):122-4,121.
    [30]Clay HB, Sillivan S, Konradi C. Mitochondrial dysfunction and pathology in bipolar disorder and schizophrenia[J]. Int J Dev Neurosci,2011,29(3):311-324.
    [31]Yao JK, Reddy RD, van KDP. Oxidative damage and schizophrenia:an overview of the evidence and its therapeutic implications [J]. CNS Drugs, 2001,15(4):287-310.
    [32]Crespi B, Stead P, Elliot M. Evolution in health and medicine Sackler colloquium:Comparative genomics of autism and schizophrenia[J]. Proc Natl Acad Sci U S A,2010,107 Suppl 1:1736-1741.
    [33]McGinnis WR. Oxidative stress in autism[J]. Altern Ther Health Med, 2004,10(6):22-36;quiz 37,92.
    [34]Chauhan A, Chauhan V, Brown WT, et al. Oxidative stress in autism:increased lipid peroxidation and reduced serum levels of ceruloplasmin and transferrin--the antioxidant proteins [J]. Life Sci,2004,75(21):2539-2549.
    [35]James SJ, Cutler P, Melnyk S, et al. Metabolic biomarkers of increased oxidative stress and impaired methylation capacity in children with autism[J]. Am J Clin Nutr,2004,80(6):1611-1617.
    [36]Sajdel-Sulkowska EM, Xu M, McGinnis W, et al. Brain region-specific changes in oxidative stress and neurotrophin levels in autism spectrum disorders (ASD)[J]. Cerebellum,2011,10(1):43-48.
    [37]Park JW, Kuehn HS, Kim SY, et al. Downregulation of Wnt-mediated ROS generation is causally implicated in leprechaunism[J]. Mol Cells, 2010,29(1):63-69.
    [38]Strakovsky RS, Pan YX. A Decrease in DKK1, a WNT Inhibitor, Contributes to Placental Lipid Accumulation in an Obesity-Prone Rat Model[J]. Biol Reprod, 2012,86(3):81.
    [39]Funato Y, Michiue T, Asashima M, et al. The thioredoxin-related redox-regulating protein nucleoredoxin inhibits Wnt-beta-catenin signalling through dishevelled[J]. Nat Cell Biol,2006,8(5):501-508.
    [40]Shin SY, Chin BR, Lee YH, et al. Involvement of glycogen synthase kinase-3beta in hydrogen peroxide-induced suppression of Tcf/Lef-dependent transcriptional activity[J]. Cell Signal,2006,18(5):601-607.
    [41]Almeida M, Han L, Martin-Millan M, et al. Oxidative stress antagonizes Wnt signaling in osteoblast precursors by diverting beta-catenin from T cell factor-to forkhead box O-mediated transcription[J]. J Biol Chem, 2007,282(37):27298-27305.
    [42]Hoogeboom D, Essers MA, Polderman PE, et al. Interaction of FOXO with beta-catenin inhibits beta-catenin/T cell factor activity [J]. J Biol Chem, 2008,283(14):9224-9230.
    [43]Hoogeboom D, Burgering BM. Should I stay or should I go:beta-catenin decides under stress [J]. Biochim Biophys Acta,2009,1796(2):63-74.
    [44]Lee HJ, Wang NX, Shi DL, et al. Sulindac inhibits canonical Wnt signaling by blocking the PDZ domain of the protein Dishevelled[J]. Angew Chem Int Ed Engl,2009,48(35):6448-6452.
    [45]Bambini-Junior V, Rodrigues L, Behr GA, et al. Animal model of autism induced by prenatal exposure to valproate:Behavioral changes and liver parameters [J]. Brain Res,2011,1408:8-16.
    [46]Markram K, Rinaldi T, La Mendola D, et al. Abnormal fear conditioning and amygdala processing in an animal model of autism[J]. Neuropsychopharmacology,2008,33(4):901-912.
    [47]Schneider T, Turczak J, Przewlocki R. Environmental enrichment reverses behavioral alterations in rats prenatally exposed to valproic acid:issues for a therapeutic approach in autism[J]. Neuropsychopharmacology, 2006,31(1):36-46.
    [48]Schneider T, Przewlocki R. Behavioral alterations in rats prenatally exposed to valproic acid:animal model of autism[J]. Neuropsychopharmacology, 2005,30(1):80-89.
    [49]Sandhya T, Sowjanya J, Veeresh B. Bacopa monniera (L.) Wettst Ameliorates Behavioral Alterations and Oxidative Markers in Sodium Valproate Induced Autism in Rats[J]. Neurochem Res,2012.
    [50]Palmen SJ, van EH, Hof PR, et al. Neuropathological findings in autism[J]. Brain,2004,127(Pt 12):2572-2583.
    [51]Rice D, Barone S Jr. Critical periods of vulnerability for the developing nervous system:evidence from humans and animal models [J]. Environ Health Perspect, 2000,108 Suppl 3:511-533.
    [52]Wagner GC, Reuhl KR, Cheh M., et al. A new neurobehavioral model of autism in mice:pre- and postnatal exposure to sodium valproate[J]. J Autism Dev Disord,2006,36(6):779-793.
    [53]Stromland K, Nordin V, Miller M, et al. Autism in thalidomide embryopathy:a population study [J]. Dev Med Child Neurol,1994,36(4):351-356.
    [54]Narita M, Oyabu A, Imura Y, et al. Nonexploratory movement and behavioral alterations in a thalidomide or valproic acid-induced autism model rat[J]. Neurosci Res,2010,66(1):2-6.
    [55]Tsujino N, Nakatani Y, Seki Y, et al. Abnormality of circadian rhythm accompanied by an increase in frontal cortex serotonin in animal model of autism[J]. Neurosci Res,2007,57(2):289-295.
    [56]Miyazaki K, Narita N, Narita M. Maternal administration of thalidomide or valproic acid causes abnormal serotonergic neurons in the offspring:implication for pathogenesis of autism[J]. Int J Dev Neurosci,2005,23(2-3):287-297.
    [57]Nanson JL. Autism in fetal alcohol syndrome:a report of six cases[J]. Alcohol Clin Exp Res,1992,16(3):558-565.
    [58]Nelson KB, Bauman ML. Thimerosal and autism?[J]. Pediatrics, 2003,111(3):674-679.
    [59]Madsen KM, Lauritsen MB, Pedersen CB, et al. Thimerosal and the occurrence of autism:negative ecological evidence from Danish population-based data[J]. Pediatrics,2003,112(3 Pt 1):604-606.
    [60]Price CS, Thompson WW, Goodson B, et al. Prenatal and infant exposure to thimerosal from vaccines and immunoglobulins and risk of autism[J]. Pediatrics,2010,126(4):656-664.
    [61]Courchesne E, Carper R, Akshoomoff N. Evidence of brain overgrowth in the first year of life in autism[J]. JAMA,2003,290(3):337-344.
    [62]Carper RA, Moses P, Tigue ZD, et al. Cerebral lobes in autism:early hyperplasia and abnormal age effects[J]. Neuroimage,2002,16(4):1038-1051.
    [63]Courchesne E, Karns CM, Davis HR, et al. Unusual brain growth patterns in early life in patients with autistic disorder:an MRI study[J]. Neurology, 2001,57(2):245-254.
    [64]Lee M, Martin-Ruiz C, Graham A, et al. Nicotinic receptor abnormalities in the cerebellar cortex in autism[J]. Brain,2002,125(Pt 7):1483-1495.
    [65]Allen G, Courchesne E. Differential effects of developmental cerebellar abnormality on cognitive and motor functions in the cerebellum:an fMRI study of autism[J]. Am J Psychiatry,2003,160(2):262-273.
    [66]Kates WR, Burnette CP, Eliez S, et al. Neuroanatomic variation in monozygotic twin pairs discordant for the narrow phenotype for autism[J].Am J Psychiatry, 2004,161(3):539-546.
    [67]Nordahl CW, Scholz R, Yang X, et al. Increased rate of amygdala growth in children aged 2 to 4 years with autism spectrum disorders:a longitudinal study[J]. Arch Gen Psychiatry,2012,69(1):53-61.
    [68]Courchesne E. Brain development in autism:early overgrowth followed by premature arrest of growth[J]. Ment Retard Dev Disabil Res Rev, 2004,10(2):106-111.
    [69]Tordjman S, Anderson GM, Botbol M, et al. Pain reactivity and plasma beta-endorphin in children and adolescents with autistic disorder[J]. PLoS One, 2009,4(8):e5289.
    [70]Wassink TH, Piven J, Vieland VJ, et al. Evidence supporting WNT2 as an autism susceptibility gene[J]. Am J Med Genet,2001,105(5):406-413.
    [71]De Ferrari GV, Moon RT. The ups and downs of Wnt signaling in prevalent neurological disorders[J]. Oncogene,2006,25(57):7545-7553.
    [72]Lijam N, Paylor R, McDonald MP, et al. Social interaction and sensorimotor gating abnormalities in mice lacking Dv11[J]. Cell,1997,90(5):895-905.
    [73]Pillon NJ, Croze ML, Vella RE, et al. The Lipid Peroxidation By-Product 4-Hydroxy-2-Nonenal (4-HNE) Induces Insulin Resistance in Skeletal Muscle through Both Carbonyl and Oxidative Stress[J]. Endocrinology,2012.
    [74]Ibrahim OM, Kojima T, Wakamatsu TH, et al Corneal and Retinal Effects of Ultraviolet-B Exposure in a Soft Contact Lens Mouse Model [J]. Invest Ophthalmol Vis Sci,2012.
    [75]Valle A, Catalan V, Rodriguez A, et al. Identification of liver proteins altered by type 2 diabetes mellitus in obese subjects.LID-10.1111/j.1478-3231.2012.02765.x [doi][J]. Liver Int,2012.
    [76]Yoshida T, Oka S, Masutani H, et al. The role of thioredoxin in the aging process:involvement of oxidative stress[J]. Antioxid Redox Signal, 2003,5(5):563-570.
    [77]Nosaki T, Uto H, Takami Y, et al. High serum thioredoxin levels are reduced after tonsillectomy in patients with IgA nephropathy[J]. Intern Med, 2012,51(6):559-565.
    [78]Guo Q, Wang Y, Li QY, et al. Levels of thioredoxin are related to the severity of obstructive sleep apnea:based on oxidative stress concept [J]. Sleep Breath, 2012.
    [79]Sogut S, Zoroglu SS, Ozyurt H, et al. Changes in nitric oxide levels and antioxidant enzyme activities may have a role in the pathophysiological mechanisms involved in autism[J]. Clin Chim Acta,2003,331 (1-2):111-117.
    [80]Zoroglu SS, Yurekli M, Meram I, et al. Pathophysiological role of nitric oxide and adrenomedullin in autism[J]. Cell Biochem Funct,2003,21 (1):55-60.
    [81]Yorbik O, Sayal A, Akay C, et al. Investigation of antioxidant enzymes in children with autistic disorder[J]. Prostaglandins Leukot Essent Fatty Acids, 2002,67(5):341-343.
    [82]Graf WD, Marin-Garcia J, Gao HG, et al. Autism associated with the mitochondrial DNA G8363A transfer RNA(Lys) mutation[J]. J Child Neurol, 2000,15(6):357-361.
    [83]Hardan AY, Fung LK, Libove RA, et al. A Randomized Controlled Pilot Trial of Oral N-Acetylcysteine in Children withAutism[J]. Biol Psychiatry,2012.
    [84]James SJ, Melnyk S, Fuchs G, et al. Efficacy of methylcobalamin and folinic acid treatment on glutathione redoxstatus in children with autism[J]. Am J Clin Nutr,2009,89(1):425-430.
    [85]Chen JR, Lazarenko OP, Shankar K, et al. A role for ethanol-induced oxidative stress in controlling lineage commitment of mesenchymal stromal cells through inhibition of Wnt/beta-catenin signaling [J]. J Bone Miner Res, 2010,25(5):1117-1127.
    [86]Panhuysen M, Vogt WDM, Blanquet V, et al. Effects of Wntl signaling on proliferation in the developing mid-/hindbrain region[J]. Mol Cell Neurosci, 2004,26(1):101-111.
    [87]El-Ansary AK, Bacha AG, Al-Ayahdi LY. Plasma fatty acids as diagnostic markers in autistic patients from Saudi Arabia[J]. Lipids Health Dis, 2011,10:62.
    [88]Villagonzalo KA, Dodd S, Dean O, et al. Oxidative pathways as a drug target for the treatment of autism[J]. Expert Opin Ther Targets, 2010,14(12):1301-1310.
    [89]Sajdel-Sulkowska EM, Xu M, Koibuchi N. Increase in cerebellar neurotrophin-3 and oxidative stress markers in autism[J]. Cerebellum, 2009,8(3):366-372.
    [90]Zhang A, Shen CH, Ma SY, et al. Altered expression of Autism-associated genes in the brain of Fragile X mouse model [J]. Biochem Biophys Res Commun,2009,379(4):920-923.
    [91]Mines MA, Yuskaitis CJ, King MK, et al. GSK3 influences social preference and anxiety-related behaviors during social interaction in a mouse model of fragile X syndrome and autism[J]. PLoS One,2010,5(3):e9706.
    [92]Takahashi-Yanaga F, Shiraishi F, Hirata M, et al. Glycogen synthase kinase-3beta is tyrosine-phosphorylated by MEK1 in human skin fibroblasts[J]. Biochem Biophys Res Commun,2004,316(2):411-415.
    [93]Chenn A, Walsh CA. Increased neuronal production, enlarged forebrains and cytoarchitectural distortions in beta-catenin overexpressing transgenic mice[J]. Cereb Cortex,2003,13(6):599-606.
    [94]Tung EW, Winn L. Valproic Acid Increases Formation of Reactive Oxygen Species and Induces Apoptosis in Postimplantation Embryos:A Role for Oxidative Stress in Valproic Acid-Induced Neural Tube Defects[J]. Mol Pharmacol,2011,80(6):979-987.
    [95]Villagonzalo KA, Dodd S, Dean O, et al. Oxidative pathways as a drug target for the treatment of autism[J]. Expert Opin Ther Targets, 2010,14(12):1301-1310.
    [96]Lemjabbar-Alaoui H, Dasari V, Sidhu SS, et al. Wnt and Hedgehog are critical mediators of cigarette smoke-induced lung cancer[J]. PLoS One,2006,1:e93.
    [97]Chauhan A, Chauhan V. Oxidative stress in autism[J]. Pathophysiology, 2006,13(3):171-181.
    [98]Bass SE, Sienkiewicz P, Macdonald CJ, et al. Novel dithiolethione-modified nonsteroidal anti-inflammatory drugs in human hepatoma HepG2 and colon LS180 cells[J]. Clin Cancer Res,2009,15(6):1964-1972.
    [99]Schneider T, Labuz D, Przewlocki R. Nociceptive changes in rats after prenatal exposure to valproic acid[J]. Pol J Pharmacol,2001,53(5):531-534.
    [100]Schneider T, Ziolkowska B, Gieryk A, et al. Prenatal exposure to valproic acid disturbs the enkephalinergic system functioning, basal hedonic tone, and emotional responses in an animal model of autism[J]. Psychopharmacology (Berl),2007,193(4):547-555.
    [101]Rinaldi T, Silberberg G, Markram H. Hyperconnectivity of local neocortical microcircuitry induced by prenatal exposure to valproic acid[J]. Cereb Cortex, 2008,18(4):763-770.
    [102]Bordonaro M, Lazarova DL, Sartorelli AC. The activation of beta-catenin by Wnt signaling mediates the effects of histone deacetylase inhibitors[J]. Exp Cell Res,2007,313(8):1652-1666.
    [103]Lazarova DL, Bordonaro M, Carbone R, et al. Linear relationship between Wnt activity levels and apoptosis in colorectal carcinoma cells exposed to butyrate[J]. Int J Cancer,2004,110(4):523-531.
    [104]Shao N, Zou J, Li J, et al. Hyper-activation of WNT/beta-catenin signaling pathway mediates anti-tumor effects of histone deacetylase inhibitors in acute T lymphoblastic leukemia[J]. Leuk Lymphoma,2012.
    [105]Song IS, Tatebe S, Dai W, et al. Delayed mechanism for induction of gamma-glutamylcysteine synthetase heavy subunit mRNA stability by oxidative stress involving p38 mitogen-activated protein kinase signaling[J]. J Biol Chem, 2005,280(31):28230-28240.
    [1]DiCicco-Bloom E, Lord C, Zwaigenbaum L, et al. The developmental neurobiology of autism spectrum disorder[J]. J Neurosci, 2006,26(26):6897-6906.
    [2]Cuccaro ML, Tuchman RF, Hamilton KL, et al. Exploring the Relationship Between Autism Spectrum Disorder and Epilepsy UsingLatent Class Cluster Analysis[J]. J Autism Dev Disord,2011.
    [3]王月华,姚君茹,陈明军,等.BDNF免疫反应阳性神经元在大鼠孤独症动物模型大脑顶叶感觉皮层中的表达[J].神经解剖学杂志,2008,(03):219-225.
    [4]王维霞,王月华,陈明军,等.PV阳性神经元在孤独症模型大鼠情绪与认知相关脑区内的表达[J].神经解剖学杂志,2008,(02):131-140.
    [5]徐理,王中平,孙燕,等.小清蛋白在孤独症模型大鼠上丘中表达的年龄变化(英文)[J].神经解剖学杂志,2010,(05):491-496.
    [6]陈明军,于剑锋,柴继侠,等.Wnt通路信号蛋白β-catenin和GSK-3p在孤独症模型大鼠脑中表达的变化[J].神经解剖学杂志,2009,25(4):361-368.
    [7]Wang Z, Xu L, Zhu X, et al. Demethylation of specific Wnt/beta-catenin pathway genes and its upregulation in rat brain induced by prenatal valproate exposure[J]. Anat Rec (Hoboken),2010,293(11):1947-1953.
    [8]Chauhan A, Gu F, Essa MM, et al. Brain region-specific deficit in mitochondrial electron transport chain complexes in children with autism[J]. J Neurochem, 2011,117(2):209-220.
    [9]Meguid NA, Dardir AA, Abdel-Raouf ER, et al. Evaluation of oxidative stress in autism:defective antioxidant enzymes and increased lipid peroxidation[J]. Biol Trace Elem Res,2011,143(1):58-65.
    [10]Zhang Y, Sun Y, Wang F, et al. Downregulating the Canonical Wnt/beta-catenin Signaling Pathway Attenuates the Susceptibility to Autism-like Phenotypes by Decreasing Oxidative Stress [J]. Neurochem Res,2012.
    [11]Valko M, Leibfritz D, Moncol J, et al. Free radicals and antioxidants in normal physiological functions and human disease[J]. Int J Biochem Cell Biol, 2007,39(1):44-84.
    [12]Sandhya T, Sowjanya J, Veeresh B. Bacopa monniera (L.) Wettst Ameliorates Behavioral Alterations and OxidativeMarkers in Sodium Valproate Induced Autism in Rats[J]. Neurochem Res,2012.
    [13]Sajdel-Sulkowska EM, Xu M, McGinnis W, et al. Brain region-specific changes in oxidative stress and neurotrophin levels in autism spectrum disorders (ASD)[J]. Cerebellum,2011,10(1):43-48.
    [14]Al-Yafee YA, Al-Ayadhi LY, Haq SH, et al. Novel metabolic biomarkers related to sulfur-dependent detoxification pathways inautistic patients of Saudi Arabia[J]. BMC Neurol,2011,11:139.
    [15]Al-Gadani Y, El-Ansary A, Attas O, et al. Metabolic biomarkers related to oxidative stress and antioxidant status in Saudi autistic children[J]. Clin Biochem,2009,42(10-11):1032-1040.
    [16]James SJ, Cutler P, Melnyk S, et al. Metabolic biomarkers of increased oxidative stress and impaired methylation capacity in children with autism [J]. Am J Clin Nutr,2004,80(6):1611-1617.
    [17]Hardan AY, Fung LK, Libove RA, et al. A Randomized Controlled Pilot Trial of Oral N-Acetylcysteine in Children withAutism[J]. Biol Psychiatry,2012.
    [18]James SJ, Melnyk S, Fuchs G, et al. Efficacy of methylcobalamin and folinic acid treatment on glutathione redoxstatus in children with autism[J]. Am J Clin Nutr,2009,89(1):425-430.
    [19]Malow B, Adkins KW, McGrew SG, et al. Melatonin for Sleep in Children with Autism:A Controlled Trial Examining Dose,Tolerability, and Outcomes[J]. J Autism Dev Disord,2011.
    [20]Sajdel-Sulkowska EM, Xu M, Koibuchi N. Increase in cerebellar neurotrophin-3 and oxidative stress markers in autism [J]. Cerebellum, 2009,8(3):366-372.
    [21]Ming X, Stein TP, Brimacombe M, et al. Increased excretion of a lipid peroxidation biomarker in autism[J]. Prostaglandins Leukot Essent Fatty Acids, 2005,73(5):379-384.
    [22]Bokara KK, Brown E, McCormick R, et al. Lead-induced increase in antioxidant enzymes and lipid peroxidation products indeveloping rat brain[J]. Biometals,2008,21(1):9-16.
    [23]Kogan MD, Blumberg SJ, Schieve LA, et al. Prevalence of parent-reported diagnosis of autism spectrum disorder among children in the US,2007[J]. Pediatrics,2009,124(5):1395-1403.
    [24]Ben-Shachar D, Karry R. Neuroanatomical pattern of mitochondrial complex I pathology varies between schizophrenia, bipolar disorder and major depression[J]. PLoS One,2008,3(11):e3676.
    [25]Yap IK, Angley M, Veselkov KA, et al. Urinary metabolic phenotyping differentiates children with autism from their unaffected siblings and age-matched controls[J]. J Proteome Res,2010,9(6):2996-3004.
    [26]Carayol J, Sacco R, Tores F, et al. Converging Evidence for an Association of ATP2B2 Allelic Variants with Autism in Male Subjects[J]. Biol Psychiatry, 2011,70(9):880-887.
    [27]Anney R, Klei L, Pinto D, et al. A genome-wide scan for common alleles affecting risk for autism[J]. Hum Mol Genet,2010,19(20):4072-4082.
    [28]Indo HP, Davidson M, Yen HC, et al. Evidence of ROS generation by mitochondria in cells with impaired electrontransport chain and mitochondrial DNA damage[J]. Mitochondrion,2007,7(1-2):106-118.
    [29]Frahm T, Mohamed SA, Bruse P, et al. Lack of age-related increase of mitochondrial DNA amount in brain, skeletal muscle and human heart [J]. Mech Ageing Dev,2005,126(11):1192-1200.
    [30]Tanwar M, Dada T, Sihota R, et al. Mitochondrial DNA analysis in primary congenital glaucoma[J]. Mol Vis,2010,16:518-533.
    [31]He Y, Cui J, Lee JC, et al. Prolonged exposure of cortical neurons to oligomeric amyloid-beta impairs NMDAreceptor function via NADPH oxidase-mediated ROS production:protective effect ofgreen tea (-)-epigallocatechin-3-gallate[J]. ASN Neuro,2011,3(1):e00050.
    [32]Yu X, Guo J, Fang H, et al. Basal metallothionein-Ⅰ/Ⅱ protects against NMDA-mediated oxidative injury incortical neuron/astrocyte cultures[J]. Toxicology,2011,282(1-2):16-22.
    [33]Tobaben S, Grohm J, Seiler A, et al. Bid-mediated mitochondrial damage is a key mechanism in glutamate-inducedoxidative stress and AIF-dependent cell death in immortalized HT-22 hippocampalneurons[J]. Cell Death Differ, 2011,18(2):282-292.
    [34]Clay HB, Sillivan S, Konradi C. Mitochondrial dysfunction and pathology in bipolar disorder and schizophrenia[J]. Int J Dev Neurosci,2011,29(3):311-324.
    [35]Oliveira G, Diogo L, Grazina M, et al. Mitochondrial dysfunction in autism spectrum disorders:a population-based study[J]. Dev Med Child Neurol, 2005,47(3):185-189.
    [36]Guevara-Campos J, Gonzalez-Guevara L, Briones P, et al. Autism associated to a deficiency of complexes III and IV of the mitochondrial respiratory chain[J]. Invest Clin,2010,51(3):423-431.
    [37]Taurines R, Thome J, Duvigneau JC, et al. Expression analyses of the mitochondrial complex I 75-kDa subunit in early onset schizophrenia and autism spectrum disorder:increased levels as a potential biomarker for early onset schizophrenia[J]. Eur Child Adolesc Psychiatry,2010,19(5):441-448.
    [38]Rossignol DA, Frye RE. Substantial problems with measuring brain mitochondrial dysfunction in autism spectrum disorder using magnetic resonance spectroscopy[J]. J Autism Dev Disord,2012,42(4):640-642.
    [39]Corrigan NM, Shaw DW, Richards TL, et al. Proton magnetic resonance spectroscopy and MRI reveal no evidence for brain mitochondrial dysfunction in children with autism spectrum disorder[J]. J Autism Dev Disord, 2012,42(1):105-115.
    [40]Rossignol DA, Frye RE. Mitochondrial dysfunction in autism spectrum disorders:a systematic review and meta-analysis[J]. Mol Psychiatry, 2012,17(3):290-314.
    [41]Pons R, Andreu AL, Checcarelli N, et al. Mitochondrial DNA abnormalities and autistic spectrum disorders[J]. J Pediatr,2004,144(1):81-85.
    [42]Ezugha H, Goldenthal M, Valencia I, et al.5q14.3 deletion manifesting as mitochondrial disease and autism:case report[J]. J Child Neurol, 2010,25(10):1232-1235.
    [43]Giulivi C, Zhang YF, Omanska-Klusek A, et al. Mitochondrial dysfunction in autism[J]. JAMA,2010,304(21):2389-2396.
    [44]Pastural E, Ritchie S, Lu Y, et al. Novel plasma phospholipid biomarkers of autism:mitochondrial dysfunction as a putative causative mechanism[J]. Prostaglandins Leukot Essent Fatty Acids,2009,81(4):253-264.
    [45]Tsao CY, Mendell JR. Autistic disorder in 2 children with mitochondrial disorders[J]. J Child Neurol,2007,22(9):1121-1123.
    [46]Poling JS, Frye RE, Shoffner J, et al. Developmental regression and mitochondrial dysfunction in a child with autism [J]. J Child Neurol, 2006,21(2):170-172.
    [47]Moretti P, Sahoo T, Hyland K, et al. Cerebral folate deficiency with developmental delay, autism, and response to folinic acid[J]. Neurology, 2005,64(6):1088-1090.
    [48]Ramaekers VT, Sequeira JM, Blau N, et al. A milk-free diet downregulates folate receptor autoimmunity in cerebral folate deficiency syndrome[J]. Dev Med Child Neurol,2008,50(5):346-352.
    [49]Sajdel-Sulkowska EM, Xu M, McGinnis W, et al. Brain Region-Specific Changes in Oxidative Stress and Neurotrophin Levels in Autism Spectrum Disorders (ASD)[J]. Cerebellum,2011,10(1):43-48.
    [50]Geier DA, Kern JK, Garver CR, et al. Biomarkers of environmental toxicity and susceptibility in autism[J]. J Neurol Sci,2009,280(1-2):101-108.
    [51]James SJ, Rose S, Melnyk S, et al. Cellular and mitochondrial glutathione redox imbalance in lymphoblastoid cells derived from children with autism[J]. FASEB J,2009,23(8):2374-2383.
    [52]James SJ, Melnyk S, Jernigan S, et al. Metabolic endophenotype and related genotypes are associated with oxidative stress in children with autism[J]. Am J Med Genet B Neuropsychiatr Genet,2006,141B(8):947-956.
    [53]Yao Y, Walsh WJ, McGinnis WR, et al. Altered vascular phenotype in autism: correlation with oxidative stress[J]. Arch Neurol,2006,63(8):1161-1164.
    [54]Gaita L, Manzi B, Sacco R, et al. Decreased serum arylesterase activity in autism spectrum disorders[J]. Psychiatry Res,2010,180(2-3):105-113.
    [55]Pasca SP, Dronca E, Nemes B, et al. Paraoxonase 1 activities and polymorphisms in autism spectrum disorders[J]. J Cell Mol Med, 2010,14(3):600-607.
    [1]Virginia CN, Wong, Stella L, et al. Epidemiological study of autism spectrum disorder in China[J]. J Child Neurol,2008,23:67-72.
    [2]King M and Bearman P. Diagnostic change and the increased prevalence of autism[J].Int. J. Epidemiol,2009,38:1224-1234.
    [3]Buie T, Campbell DB, Fuchs GJ, et al. Evaluation, diagnosis, and treatment of gastrointestinal disorders in individuals with ASDs:A Consensus Report [J]. Pediatrics,2010,25:1-18.
    [4]Ashwood P, Wills S, Water JV. The immune response in autism:a new frontier for autism research[J]. J Leukoc Biol,2006,80:1-15.
    [5]Mraz KD, Dixon J, Dumont-Mathieu T, et al. Accelerated head and body growth in infants later giagnosed with autism spectrum disorders:A comparative study of optimal outcome children[J]. J Child Neurol,2009,24:833-845.
    [6]Hardan AY, Muddasani S, Vemulapalli M, et al. An MRI study of increased cortical thickness in Autism[J]. Am J Psychiatry,2006,163:1290-1292.
    [7]Harden AY, Minshew NJ, et al. An MRI and proton spectroscopy study of the thalamus in children with autism[J]. Psychiatry Res:neuroimaging, 2008,63:97-105.
    [8]Page LA, Daly E, et al. In vivo 1H-Magnetic resonance spectroscopy study of amygdale-hippocampal and parietal regons in autism[J]. Am J Psychiatry, 2006,63:2189-2192.
    [9]Allen G, Courchesne E. Differential effects of developmental cerebellar abnormality on cognitive and motor functions in the cerebellum:an fMRI study of autism[J]. Am J Psychiatry,2003,160:262-273.
    [10]Takeuchi M, Harada M, et al. Difference of signal change by a language task on autistic patients[J]. J Med Invest,2004,51:59-62.
    [11]Ogai M, Matsumoto H, et al. fMRI study of recognition of facial expressions in high-functioning autistic patients[J]. Neuroreport,2003,14:559-563.
    [12]Zilbovicius M, Garreau B, et al. Delayed maturation of the frontal cortex in childhood autism[J]. Am J Psychiatry,1995,152:248-52.
    [13]Hashimoto T, Sasaki M, et al. Single-photon emission computed tomography of the brain in autism:effect of the developmental level[J]. Pediator Neurol, 2000,23:416-420.
    [14]Sugihara G, Ouchi Y, et al. Advances in neuroimaging research on Asperger syndrome[J]. Nippon Rinsho,2007,65:449-452.
    [15]Imke AJ van K, Saskia JMC Palmen, Patricia von Cappeln. Neurons in the fusiform gyrus are fewer and smaller in autism[J]. Brain,2008,131:987-999.
    [16]Kemper TL, Bauman M. Neuropathology of infantile autism[J]. J Neuropathol Exp Neurol,1998,57:645-652.
    [17]Fatemi SH, Halt AR, Realmuto G, et al. Purkinje cell size is reduced in cerebellum of patients with autism[J]. Cell Mol Neurobiol,2002,22(2):171-175.
    [18]王月华,李瑞锡,彭裕文.BDNF免疫反应阳性神经元在大鼠孤独症动物模型大脑顶叶感觉皮质中的表达[J].神经解剖学杂志,2008,24(3):219-225.
    [19]王维霞,李瑞锡,彭裕文.PV阳性神经元在孤独症模型大鼠情绪与认知脑区内的表达[J].神经解剖学杂志,2008,24(2):131-140.
    [20]陈明军,李瑞锡,彭裕文.Wnt通路信号蛋白p-catenin和GSK-3β在孤独症模型大鼠脑中表达的变化[J].神经解剖学杂志,2009,25(4):361-368.
    [21]李瑞锡,江开达,彭裕文.孤独症研究新进展[J].复旦学报(医学版),2010,37(1):110-115.
    [22]Atladottir HO, Pedersen MG, Scientb C, et al. Association of Family History of Autoimmune Diseases and Autism Spectrum Disorders[J]. Pediatrics,2009, 124(2):687-694.
    [23]Croen LA, Grether JK, Yoshida CK, et al. Maternal autoimmune diseases, asthma and allergies, and childhood autism spectrum disorders:A case-control study[J]. Archives in Pediatric & Adolescent Medicine,2005,159:151-157.
    [24]Mostafa GA, El-Sayed ZA, Abd El-Aziz MM, et al. Serum Anti-myelin-associated glycoprotein antibodies in Egyptian autistic children[J]. J Child Neurol,2008,23:1413-1418.
    [25]Zimmerman AW, Connors SL, Matteson KJ, et al. Maternal antibrain antibodies in autism[J]. Brain Behav Immun,2007,21(3):351-357.
    [26]Silva SC, Correia C, Fesel C, et al. Autoantibody repertoires to brain tissue in autism nuclear families[J]. J Neuroimmunol,2004,152:176-182.
    [27]Weizmann A, Weizmann R, Szekely GA, et al. Abnormal immune response to brain tissue antigen in the syndrome of autism[J]. Am J Psychiatry,1982, 139:1462-1465.
    [28]Ahlsen G, Rosengren L, Belfrage M, et al. Glial fibrillary acidic protein in the cerebrospinal fluid of children with autism and other neuropsychiatric disorders[J]. Biol. Psychiatry,1993,33:734-743.
    [29]Gimpl G, Fahrenholz F. The oxytocin receptor system:Structure, function, and regulation[J]. Physiol Rev,2001,81:629-683.
    [30]Gregg JP, Lit L, Baron CA, et al. Gene expression changes in children with autism[J]. Genomics,2008,91(1):22-29.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700