调控文蛤幼虫变态的肾上腺素能受体类型及幼虫发育中神经和肌肉的变化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大部分贝类幼虫在发育过中要经历从浮游生活到底栖生活的变化过程,同时形态结构也要经历巨大的变化,这个过程称为变态。变态是文蛤幼虫发育过程中非常重要的一个阶段。
    药理学和细胞免疫学证据表明β肾上腺素样受体在文蛤幼虫变态过程中有重要作用。药理学实验分别采用了几种儿茶酚胺类受体的激动剂和抑制剂来处理幼虫,检验它们在幼虫变态过程中的作用。结果表明,在10μM和100μM的浓度下,肾上腺素(AD)和去甲肾上腺素(NA)中能够显著提高幼虫的变态率(p<0.05)。10μM和100μM浓度的AD能够提高幼虫变态率30%左右。10μM和100μM浓度的NA能分别提高幼虫变态率35.3%和27.6%。10μM的β受体激动剂-isoproterenol也能够显著的提高幼虫的变态率30%(p<0.05),但是α受体激动剂-phenylephrine在0.1μM到100μM的浓度范围内不能显著提高幼虫的变态率(p>0.05)。而且,1μM的β受体抑制剂-propanolol能显著的抑制AD或NA提高幼虫变态率的作用(p<0.05);但是α受体抑制剂-prazosin对AD或NA提高幼虫变态率没有显著性影响(p>0.05)。
    此外本文还利用整装免疫细胞化学的方法进一步研究了文蛤幼虫不同发育阶段,神经系统和β肾上腺素样受体的发育情况。
    幼虫的神经系统在担轮幼虫时期(受精后18h)开始发育,这时还不能检测到β肾上腺素受体。面盘幼虫时期(受精后1d)具备了顶神经节、脑神经节和脏神经节组成的中枢神经系统,在口附近有一些外周神经。β肾上腺素受体在受精后24h首次出现在面盘幼虫的顶神经节和脑神经节,分别命名为AR(apical receptor)和CR1(cerebral receptor 1)。
    在受精后5d顶神经节已经检测不到。脑神经节和脏神经节由腹部向背部迁移,口的背腹两侧都出现了一些神经元。并且脏神经节周围也出现了一些神经细胞。AR在受精后3d就检测不到了。同时在CR1的后部新出现了一些β肾上腺素受体,命名为CR2。此后CR2发育迅速,在受精后5d就和CR1差不多大小。并且在CR1和CR2之间还出现了很多小的
Metamorphose is an important developmental stage during Meretrix meretix ontogeny.Manypharmacological experiments have been conducted to determine the effects of adrenergic agonistand antagonist of catecholamine receptors on Meretrix meretrix metamorphosis. Results showedthat adrenaline (AD) and noradrenaline (NA) had substantial effects (p<0.05) on larvalmetamorphosis at concentrations ranging from 10μM to 100μM. 10μM β-adrenergic receptor (AR)agonist isoproterenol showed the same inducement effect as that of NA and AD on metamorphosis,whereas the α-AR agonist phenylephrine had no significant effect at concentrations between0.1μM and 100μM concentrations (p>0.05). Furthermore, 1 μM β-AR antagonist propanolol, butnot α-AR antagonist prazosin, depressed the larval metamorphosis induced by NA or AD. Theresults of pharmacology suggest that β-adrenergic-like receptor might play a considerable role inthe larval metamorphosis of M. meretrix by AD or NA.
    Moreover, we investigated the development of beta adrenergic receptor and nervous system bywhole mount immunocytochemistry technique. The results showed larval nervous system firstappeared during late trochophore larva stage (18 hours post fertilization), and beta adrenergicreceptor was not detected. At 1 day post fertilization, there appeared apical ganglion, cerebralganglion, visceral ganglion and some neurons near the mouth. And at the same time, betaadrenergic receptor appeared in the apical ganglion and cerebral ganglion, named AR (apicalreceptor) and CR1 (cerebral receptor 1) respectively.
    At 5dpf, it was difficult to detect the immunoreactive signal of apical ganglion. The cerebralganglion and visceral ganglion leaved from the velum to the dorsal. There appeared twoimmunoreactive cell bodies in ventral and dorsal to the mouth. And there were some
    immunoreactive cells around the visceral ganglion. AR was not detected and CR2 appeared in theposterior of CR1 at 3dpf. And CR2 developed quickly. At 5dpf, the size of CR2 was similar to theCR1. Moreover, many little immunoreative dots were around CR1 and CR2.After metamorphosis (7dpf), the apical ganglion disappeared and there appeared pedalganglion in the foot. Moreover, there appeared some peripheral neurons in the mantle. Exceptjuvenile cerebral ganglion and visceral ganglion, beta adrenergic receptor was detected in thejuvenile pedal, mantle and siphon. The result of western blot showed that beta adrenergic receptorwas detected in the adult gill, pedal, heart, siphon, lip and mantle.After the metamorphosis signal reached the target organs, the larval morphology andbehaviour changed. Whole mount technique using fluorescent-labelled phalloidin for actinstaining was applied to investigate the ontogeny of the various muscular systems during larvaldevelopment in the clam Meretrix meretrix. Larval shell retractor muscles (LR) and anterioradductor (A-AD) were the first detectable muscle structure in the later trochophore larva (18 hourspost fertilization). Soon after, trochophore larva developed into veliger larva. And the larvalmuscular system developed fully at 22 hpf. There were 5 pairs of LR, named LR1-LR5 fromanterior to posterior respectively. The LR1-4 had a dendritic progress the venter, and the dendritesprojected into the velum region, thus formed velum muscle ring (VR). The anterior adductorbecame two muscular fibers, and the ventral part was bigger. The overall morphology of muscularsystems during the whole veliger stage (1-5 dpf) was same, except became stronger day by day.During metamorphosis (6-7 dpf), the VR collapses, and then disappears completely. The LRatrophied and contracted to the ventral gradually and also disappeared. And there appeared threemuscular structures, pedal retractor (PR), posterior adductor (P-AD), and mantle muscle (MM).The PR was composed of two muscular fibers, whose fine dendrites formed reseau muscularstructure in the foot. The P-AD was composed two fibers and similar to the A-AD. The MMextended from the A-AD to the P-AD, which comprised 2 long anterior-posterior muscular fibersand many short left-right muscular fibers.After metamorphosis, the postlarval muscle system was simpler because of thedisappearance of the larval muscle system. There were only adductors, pedal rectractors andmantle muscle, which compose the adult muscle system.
引文
Aizenberg, J., Lambert, G., Weiner, S. and Addadi, L., 2002. Factors involved in the formation of amorphous and crystalline calcium carbonate: a study of an ascidian skeleton. J Am Chem Soc 124:32–39.
    Aizenberg, J., Tkachenko, A., Weiner, S., Addadi, L., Hendler, G., 2001. Calcitic microlenses as part of the photoreceptor system in brittlestars. Nature 412:819–822.
    Amano, S. and Hori, I., 1996. Transdifferentiation of larval flagellated cells to choanocytes in the metamorphosis of the demosponge Haliclona permollis. Biol. Bull. 190: 161-172.
    Ameye, L., Hermann, R., Killian, C., Wilt, F. and Dubois, P., 1999. Ultrastructural localization of proteins involved in sea urchin biomineralization. J Histochem Cytochem 47:1189–1200.
    Angerer, L.M. and Angerer, R.C., 2003. Patterning the sea urchin mbryo: gene regulatory networks, signaling pathways and cellular nteractions. Curr Top Dev Biol 53:159–198.
    Arkett, S.A., Mackie, G.O. and Singla, C.L., 1987. Neuronal control of ciliary locomotion in a gastropod veliger (Calliostoma) Biol. Bull., 173: 513-526.
    Arnold, J. M., Eri, R., Degnan, B. M. and Lavin, M. F., 1997a. A novel gene containing multiple EGF-like motifs transiently expressed in the papillae of the ascidian tadpole larva. Develop. Dyn. 210: 264-273.
    Arnold, J. M., Kennett, C., Degnan, B. M. and Lavin, M. F., 1997b. Transient expression of a novel serine protease in the ectoderm of the ascidian Herdmania momus during development. Dev. Genes Evo. 206: 455-463.
    Arnold, S., Plate, U., Weismann, H.P., Stratman, U., Kohl, H. and H?hling, H.J., 2001. Quantitative analyses of the biomineralization of different hard tissues. J Microsc 202:488–494.
    Awad EW and Anctil M, 1994. Distribution of 2-like adrenergic receptor in the cnidarian Renilla koellikeri as revealed by autoradiography and in situ hybridization, Cell and Tissue Research, 278(2):207-215.
    Bandel K., 1982. Morphologie und Bildung der frühontogenetischen Geh?use bei conchiferen Mollusken. Facies (Erlangen) 7: 1-198, pls. 1-22.
    Barlow, L.A. and Truman, J.W., 1992. Patterns of serotonin and SCP immunoreactivity during metamorphosis of the nervous system of the red abalone, Haliotus rufescens. J. Neurobiol., 23: 829-844.
    Bavestrello, G., Benatti, U., Calcinai, B., Cattaneo-vietti, R., Cerrano, C., Favre, A., Giovine, M., Lanza, S., Pronzato, R. and Sara, M., 1998. Body polarity and mineral selectivity in the demosponge Chondrosia reniformis. Biol. Bull. 195: 120-125.
    Baxter G. T., Morse D. E., 1987. G protein and diacylglycerol regulate metamorphosis of planktonic molluscan larvae. PNAS 84(7):1867-1870.
    Baxter G. T., Morse D. E., 1992. Cilia from abalone larvae contain a receptor-dependent G protein transduction system similar to that in mammals. Biol Bull 183:147–154
    Bayne, B.L., 1983. Physiological ecology of marine molluscan larvae. In;The Mollusca, Vol. 3, N.J. Verdonk (ed.), Academic Press, New York, pp. 299-343.
    Bedouet, L., Schuloer, M.J., Marin, F., Milet, C., Loopez, E. and Giraud, M., 2001. Soluble proteins of the nacre of the giant oyster Pinctada maxima and of the abalone Haliotis tuberculata: extraction and partial analysis of nacre proteins. Comp Biochem
    Beiras, R. and Widdows, J., 1995a. Effect of the neurotransmitters dopamine, serotonin and norepinephrine on the ciliary activity of mussel (Mytilus edulis) larvae. Mar. Biol., 122: 597-603.
    Beiras, R. and Widdows, J., 1995b. Induction of metamorphosis in larvae of the oyster Crassostrea gigas using neuroactive compounds. Mar. Biol., 123: 327-334.
    Belcher, A.M. and Gooch, E.E., 2000. Protein components and inorganic structure in shell nacre. In: Baeuerlein, E. (ed) Biomineralization. Wiley-VCH, Weinheim, pp 221–249.
    Beniash, E., Aizenberg, J., Addadi, L. and Weiner, S., 1997. Amorphous calcium carbonate transforms into calcite during sea urchin larval spicule growth. Proc R Soc Lond [Biol] 264:461–465.
    Benson, S., Sucov, H., Stephens, L., Davidson, E. and Wilt, F. 1987. A lineage-specific gene encoding a major matrix protein of the sea urchin embryo spicule. I. Authentication of the cloned gene and its developmental expression. Dev Biol 120:499–506.
    Benson, S.C., Benson, N.C. and Wilt, F., 1986. The organic matrix of the skeletal spicule of sea urchin embryos. J Cell Biol 102:1878–1886.
    Berman, A., Addadi, L. and Weiner, S., 1988. Interaction of seaurchin skeleton macromolecules with growing calcite crystals –a study of intracrystalline proteins. Nature 331:546–548.
    Berman, A., Addadi, L., Kvick, A., Leiserowitz, L., Nelson, M. and Weiner, S., 1990. Interactions of sea urchin proteins in calcite: Study of a crystalline composite material. Science 250:664–667.
    Berman, A., Hanson, J., Leiserowitz, L., Koetzle, T.F., Weiner, S. and Addadi, L., 1993. Biological control of crystal texture: A widespread strategy for adapting crystal properties to function. Science 259:776–779.
    Beverdam, A., Brouwer, A., Reijnen, M., Korving, J. and Meijlink, F., 2001. Severe nasal clefting and abnormal embryonic apoptosis in Alx3/Alx4 double mutant mice. Development 128:3975–3986.Biol. Bull. 176: 14-24.
    Bisgrove, B.W. and Burke, R.D., 1987. Development of the nervous system of the pluteus larva of Srongylocentrotus droebachiensis. Cell Tiss. Res., 248: 335-343.
    Blake, D.F. and Peacor, D.R., 1981. Biomineralization on crinoid echinoderms. Characterization of crinoid skeletal elements using TEM and STEM microanalysis. Scan Electron Microsc 1:321–328.
    Bolshakov, V.Y., Gapon, S.A. and Magazanik, G.L., 1991. Different types of glutamate receptors in insolated identified neurons of the mollusc, Planorbarius corneus. J. Physiol., 439: 15-35.
    Bonar D.B., Hadfield M.G., 1974. Metamorphosis of the marine gastropod Phestilla sibogae. I. Light and electron microscopic analysis of larval and metamorphic stages. J Exp Mar Biol Ecol 16:1–29
    Bonar, D.B., 1978. Ultrastructure of a cephalic sensory organ in the larvae of the gastropod Phestilla sibogae (Aeolidacea, Nudibranchia). Tiss. Cell, 10: 153-165.
    Bonar, D.B., Coon, S.L., Walch, M., Weiner, R.M., Fitt, W., 1990. Control of oyster settlement and metamorphosis by endogenous and exogenous chemical cues. Bull. Mar. Sci. 46 (2): 484-498.
    Boudko, D.Y., Switzer-Dunlap, M. and Hadfield, M.G., 1999. Cellular and subcellular structure of anterior sensory pathways in Phetilla sibogae (Gastropoda, Nudibranchia). J. Comp. Neurol., 403: 39-52.
    Boury-esnault, N., Efremova, S., Bezac, C. and Vacelet, J., 1999. Reproduction of a hexactinellid sponge: first description of gastrulation by cellular delamination in the Porifera. Invert. Repro. Dev. 35: 187-201
    Brandhorst, B.P. and Klein, W.H., 2002. Molecular patterning along the sea urchin animal-vegetal axis. Int. Rev. Cytol. 213:183–232.
    Brusca, R.C. and Brusca, G.J., 1990. Invertebrates. Sinauer Associates Inc., Sunderland Massachuetts.
    Buckland-Nicks, J., Gibson, G. and Koss, R., 2002a. Phylum Mollusca: Ploypleophora, Aplacophora, Scaphopoda. In: Atlas of Marine Invertebrate Larvae, C.M. Young (ed.), Academic Press, San Diego, pp 245-260.
    Buckland-Nicks, J., Gibson, G. and Koss, R., 2002b. Phylum Mollusca: Gastropoda. In: Atlas of Marin Invertebrate Larvae, C.M. Young (ed.), Academic Press, San Diego, pp 261-288.
    Bullock, A.G.M., 1985. Development and plasticity of the molluscan nervous system. In: The Mollusca: Neurobiology and Behavior. Part 1, A.O.D. Willows (ed.), Academic Press, Toronto.
    Burke R.D., 1983a. The induction of metamorphosis of marine invertebrate larvae: stimulus and response. Can J Zool 61:1701–1719
    Burke, R.D., 1983b. The structure of the larval nervous system of Pisater ochraceus (Echinodemata: Asteroidea). J. Morphol., 178: 23-35.
    Burke, R.D., Brand, D.G. and Bisgrove, B.W., 1986. Structure of the nervous system of auricularia larva of Parasticopus californicus. Biol. Bull., 170: 450-460.
    Buscema, M., De Sutter, D. and Van De Vyver, G., 1980. Ultrastructural study of differentiation processes during aggregation of purified sponge archaeocytes. Roux. Arch. Dev. Biol. 188: 45-53.
    Byrne, M. and Cisternas, P., 2002. Development and distribution of the peptidergic system in larval and adult Patiriella: Comparison of sea star bilateral and radial nervous systems. J. Comp. Neuol., 451: 101-114.
    Carpizo-Ituarte E.J., Hadfield M.G., 1998. Stimulation of metamorphosis in the polychaete Hydroides elegans Haswell (Serpulidae). Biol. Bull. 194:14–24
    Carter, G.S., 1926. On the nervous control of the velar cilia of the nudibranch veliger. J. Exp. Biol., 4: 1-26.
    Carter, G.S., 1928. On the structure of the cells bearing the velar cilia of the nudibranch veliger. J. Exp. Biol., 6: 97-109.
    Cather, J.N., 1967. Cellular interactioins in the development of the shell gland of the gastropod, Ilyanassa. J. Exp. Zool. 166:205–224.
    Chase, R., 2002. Behavior and Its Neural Control in Gastropod Molluscs. Oxford University Press, New York.
    Chee, F. and Byrne, M., 1999. Development of the larval serotonergic nervous system in the sea star Patiriella regularis as revealed by confocal imaging. Biol. Bull., 197: 123-131.
    Chevolot, L., Cochard, Jean-Claude, Yvin, Jean-Claude., 1991. Chemical induction of larval metamophosis of Pecten maximus with a note on the nature of naturally occurring triggering substances. Mar. Ecol. Prog. Ser. 74, 83-89.
    Chia F.S., Rice M.E., 1978 Settlement and Metamorphosis of Marine Invertebrate Larvae, p. 290. Elsevier, New York
    Chia, F. and Bickell, L.R., 1978. Mechanisms of larval attachment and the induction of settlement and metamorphosis in Coelenterates: A review, In: Settlement and Metamorphosis of Marine Invertebrate Larvae, F. Chia and M.E. Rice (eds.), Elservier, New York, pp. 1-12.
    Chia, F. and Koss, R., 1984. Fine structure of the cephalic sensory organ in the larva of the nudibranch Rostanga pulchra (Mollusca, Opisthobranchia, Nudibranchia). Zoomorphology, 104: 131-139.
    Chia, F.S. and Koss, R., 1994. Asteroidea. In: Harrison, F.W. and Chia, F.-S. (eds) Microscopic Anatomy of Invertebrates, vol. 14.
    Chrachri, A. and Williamson, R., 1998. Effects of acetylcholine on 1-type calcium currents in dissociated statoxyst sensory hair cells of octopus Eledone cirrhosa. J. Physiol., 111: 513-518.
    Chrisopher, K.J., Young, K.G., Chang, J.P. and Goldberg, J.I., 1999. Involvement of protein kinase C in 5-HT-stimulated ciliary activity in Helisoma trivolvis embryos. J. Physiol., 515: 511-22.
    Christopher, K., Chang, J. and Goldberg, J., 1996. Stimulation of cilia beat frequency by serotonin is mediated by a Ga2+ influx in ciliated cells of Helisoma trivolvis embryos. J. Exp. Biol., 199: 1105-1113.
    Clare A.S., 1995. Chemical signals in barnacles: old problems, new approaches, in New Frontiers in Barnacle Evolution (Schram FR, Hoeg JT, eds) pp. 49–67. Balkema Rotterdam
    Clare A.S., 1996. Signal transduction in barnacle settlement: calcium re-visited. Biofouling 10:141–159
    Cloney R.A., 1990. Urochordata—Ascidiacea, in Reproductive Biology of Invertebrates, Ch. 14 (Adiyodi KG, Adiyodi RG,
    Cloney, R. A., 1982. Ascidian larvae and events of metamorphosis. Am. Zool. 22: 817-826.
    Conklin, E.G., 1897. The embryology of Crepidula. J. Morphol., 12: 1-230.
    Cooke, I.R. and Gelperin, A., 1988. Distribution of GABA-like immunoreactive neurons in the slug Limax maximus. Cell. Tiss. Res., 253: 77-81.
    Coon, S. and Bonar, D., 1986. Norepinephrine and dopamine content of larvae and spat of the Pacific oyster Crassostrea gigas. Biol. Bull., 171: 212-220.
    Coon, S.L., Bonar, D.B. and Weiner, R.M., 1985. Induction of settlement and metamorphosis of the Pacific oyster, Crassostrea gigas (Thunberg) by L-DOPA and catecholamines. J. Exp. Mar. Biol. Ecol., 94: 211-221.
    Coon, S.L., Bonar, D.B., 1986. Norepinephrine and dopamine content of larvae and spat of the Pacific oyster, Crassostrea gigas. Biol. Bull. 171, 632-639.
    Coon, S.L., Bonar, D.B., 1987. Pharmacological evidence that alpha-1 adrenoreceptors mediate metamorphosis of the pacific oyster Crassostrea gigas. Neurosci. 23, 1169-1174.
    Cooper, K., 1982. A model to explain the induction of settlement and metamorphosis of plankotonic eyed-pediveligers of the blue mussel Mytilus edulis L. by chemical and tactile cues. J. Shellfish Res., 2, p. 117.
    Counihan, R., Mcnamara, D. C., Souter, D. C., Jebreen, E. J., Preston, N. P., Johnson, C. R. and Degnan, B. M., 2001. Pattern, synchrony and predictability of spawning of the tropical abalone Haliotis asinina from Heron Reef, Australia. Mar. Ecol. Prog. Ser. 213: 193-202.
    Couper, J.M. and Leise, E.M., 1996. Serotonin injections induce metamorphosis in larvae of the gastropod mollusc Ilyanassa obsoleta. Biol. Bull., 191: 178-186.
    Cragg S.M., 1985. The adductor and retractor muscles of the veliger of Pecten maximus (L.) (Bivalvia). J. Moll. Stud. 51: 276-283.
    Cragg S.M., 1985. The adductor and retractor muscles of the veliger of Pecten maximus (L.) (Bivalvia). J. Moll. Stud. 51: 276-283.
    Cragg S.M., Crisp D.J., 1991. The biology of scallop larvae. In: Shumway SE., editor. Biology, Ecology and Aquacultur of Scallops. Amsterdam: Elsevier. p. 75-132.
    Crisp D.J., 1974. Factors influencing the settlement of marine invertebrate larvae, in Chemoreception in Marine Organisms (Grant PT, Mackie AM, eds) pp. 177–265. Academic Press, London
    Crofts D.R., 1955. Muscle morphogenesis in primitive gastropods and its relation to torsion. Proc. Zool. Soc. Lond. 125: 711-750.
    Crofts DR. 1937. The development of Haliotis tuberculata, with special reference to the organogenesis during torsion. Phil. Trans. R. Soc. Lond. B 208: 219-268, pls. 21-27.
    Croll, R.P. and Chiasson, B.J., 1989. Post-embryonic development of serotonin-like immunoreactivity in the central nervous system of the snail, Lymnaea stagnalis. J. Comp. Neurol., 280: 122-142.
    Croll, R.P. and Dickinson, A.J.G., 2004. Form and function of the larval nervous system in molluscs. Invert. Reprod. Dev., 46, 173-187.
    Croll, R.P. and Van Minnen, J., 1992. Distribution of the neuropeptide Ala-Pro-Gly-Trp-NH2 (APGWamide) in the nervous system and periphery of the snail Lymnaea stagnalis as revealed by immunocytochemstry and in situ hybridization. J. Comp. Neurol., 323: 1-8.
    Croll, R.P. and Voronezhskaya, E.E., 1996. Early neurodevelopment in Aplysia, Lymnaea and Helisoma. Soc. Neurosci. Abstr., 22: 1948.
    Croll, R.P. Boudko, D.Y., Pires, A. and Hadfield, M.G., 2003. Transmitter contents of cells and fibers in the cephalic sensory structure of the gastropod mollusc, Phestilla sibogae. Cell Tiss., 314: 437-448.
    Croll, R.P., 1983. Gastropod chemoreception. Biol. Rev., 58: 293-319.
    Croll, R.P., 2000. Insights into early molluscan neuronal development through studies of transmitter phenotypes in embryonic pond snails. Microsc. Res. Techniq., 49: 570-578.
    Croll, R.P., 2001. Cathecholamine-containing cells in the central nervous system and periphery of Aplysia californica. J. Comp. Neurol., 441: 91-105.
    Croll, R.P., 2003. Complexities of a simple system: new lessons, old challenges and peripheral questions for the gill withdrawal reflex of Aplysia. Brain. Res. Rev., 43: 266-274.
    Croll, R.P., Jackson, D.L. and Voronezhskaya, E.E., 1997. Catecholamine-containing cells in larval and post-larval bivalve molluscs. Biol. Bull., 193: 116-124.
    Croll, R.P., Voronezhskaya, E.E., Hiripi, L. and Elekes, K., 1999. Development of catecholaminergic neurons in the pond snail, Lymmaea stagnalis: II. Postembryonic development of central and peripheral cells. J. Comp. Neurol., 404: 297-309.
    Dale, N. and Kandel, E.R., 1993. L-glutamate may be the fast excitatory transmitter of Aplysia sensory neurons. Proc. Natl. Acad. Sci. (USA), 90: 7163-7167.
    Davidson, B. and Swalla, B. J., 2001. Isolation of genes involved in ascidian metamorphosis: epidermal growth factor signaling and metamorphic competence. Dev. Genes Evol. 211: 190-194.
    Degnan B.M., Degnan S.M., and Morse D.E., 1997. Muscle specific regulation of tropomyosin gene expression and myofibrillogenesis differs among muscle systems examined at metamorphosis of the gastropod Haliotis rufescens. Dev. Genes Evol. 206: 464-471.
    Degnan, B. M. and Johnson, C. R. 1999. Inhibition of settlement and metamorphosis of the ascidian Herdmania curvata by non-geniculate coralline algae. Biol. Bull. 197: 332-340.
    Degnan, B. M., 2001. Settlement and metamorphosis of the ascidian Herdmania curvata. In Biology of Ascidians (Eds. Lambert, C. C., Yokosawa, H. and Sawada, H.). Springer-Verlag, Tokyo, pp. 258-263.
    Degnan, B. M., Groppe, J. C. and Morse, D. E., 1995. Chymotrypsin mRNA expression in digestive gland amoebocytes: cell specification occurs prior to metamorphosis amd gut morphogenesis in the gastropod, Haliotis rufescens. Roux. Arch. Dev. Biol. 205: 97-101.
    Degnan, B.M., Degnan, S.M. and Morse, D.E., 1997a. Regulation of tropomyosin gene expression and myofibrillogenesis differs among muscle systems examined at metamorphosis of the gastropod Haliotis rufescens. Dev. Genes Evol. 206: 464-471.
    Degnan, B.M., Souter, D., Degnan, S.M. and Long, S.C., 1997b. Induction of metamorphosis in larvae of the ascidian Herdmania momuswith potassium ions requires attainment of competence and an anterior signalling center Dev. Genes Evol. 206: 370-376.
    Dernian, E.S. and Yousif, F., 1975. Embronic development and organogenesis in the snail Marisa cornuarietis (Mesogastropoda: Ampullariidae) V. Development of the nervous system. Malacologia, 15: 29-42.
    Dickinson, A.J.G. and Croll, R.P., 2003. Development of the larval nervous system of the gastropod Ilyanassa obsoleta. J. Comp. Neurol., 466: 197-218.
    Dickinson, A.J.G., 2002. Neural and muscular development in gastropod larvae. PhD Thesis, Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia.
    Dickinson, A.J.G., Croll, R.P. and Voronezhskaya, E.E., 2000. Devlopment of embryonic cells containing serotonin, catecholamines, and FMRFamide-related peptides in Aplysia californica. Biol. Bull., 199: 305-315.
    Dickinson, A.J.G., Nason, J. and Croll, R.P., 1999. Histochemical localization of FMRFamide, serotonin and catecholamine in embryonic Crepidula fornicata (Prosobranchia: Gastropoda). Zoomorphology, 119: 49-62.
    Diefenbach, T.J., Koehncke, N.K. and Goldberg, J.I., 1991. Characterization and development of rotational behavior in Helisoma embryos: Role of endogenous serotonin. J. Neurobiol., 22: 922-934.
    Diefenbach, T.J., Koss, R. and Golgberg, J.I., 1998. Early development of an identified serotonergic neuron in Helisoma trivolvis embryos: Serotonin expression, de-expression, and uptake. J. Neurobiol., 34: 361-376.
    Efremova, S. M., 1997. Once more on the position among Metazoa-astrulation and germinal layers of sponges. Berliner geowiss. Abh. 20: 7-15.
    Elekes, K., Voronezhskaya, E.E., Hiripi, L., Eckert, M. and Rapus, J., 1996. Octopamine in the developing nervous system of the pond snail, Lymnaea stagnalis. Acta Biol. Hung., 47: 73-87.
    Emlet, R., 1982. Echinoderm calcite a mechanical analysis from larval spicules. Biol. Bull. 163:264–275.
    Eri, R., Arnold J. M., Hinman, V. F., Green, K. M., Jonse, M. K., Degnan, B. M. and Lavin, M. F., 1999. Hemps, a novel EGF-like protein, plays a central role in ascidian metamorphosis. Development 126: 5809-5818.
    Ettensohn, C.A. and Sweet, H.C., 2000. Patterning the early sea urchin embryo. Curr Top Dev Biol 50:1–44.
    Ettensohn, C.A., Illies, M.R., Oliveri, P. and De Jong, D., 2003. Alx1, a member of the Cart1/Alx3/Alx4 subfamily of pairedclass homeodomain proteins, is an essential component of the gene network controlling skeletogenic fate specification in the sea urchin embryo. Dev. 130: 2917-2928.
    Eyster, L.D., 1986. Shell inorganic composition and onset of shell mineralization during bivalve and gastropod embryogenesis. Biol Bull 170:211–231.
    Fell, P. E., 1983. Porifera. In “Reproductive Biology of Invertebrates. Oogenesis, Oviposition, and Oosorption” (K. G. ADIYODI and R. G. ADIYODI, Eds.), pp. 1-29.
    Freeman G., Ridgway E.B., 1990. Cellular and intracellular pathways mediating the metamorphic stimulus in hydrozoan planulae. Dev. Genes. Evol., 199 (2): 63-79.
    Fretter, V., 1972. Metamorphic changes in the velar musculature, head and shell of some prosobranch veligers. J. Mar. Biol. Assoc. UK, 52: 161-177.
    Fretter, V., The prosobranch veliger. Proc. Malacol. Soc. London, 37 (1967) 357-366.
    Friedrich, S., Wanninger, A., Bruckner, M. and Haszprunar, G., 2002. Neurogenesis in the mossy chiton, Mopalia muscosa (Gould) (Polyplacophora): Evidence against molluscan metamerism. J. Morphol. 25: 109-117.
    Fritz, M., Belcher, A.M., Radmacher, M., Walters, D.A., Hansma, P.K., Stucky, G.D., Morse, D.E. and Mann, S., 1994 Flat pearls from biofabrication of organized composites on inorganic substgrates. Nature 371:49–512.
    Froggett, S.J. and Leise, E.M., 1999. Metamorphosis in the marine snail Ilyanassa ohsoleta: Yes or No? Biol. Bull., 196: 57-62.
    Geider, S., Baronnet, A., Cerini, C., Nitsche, S., Aster, J.-P., Michel, R., Boistelle, R., Berland, Y., Dagorn, J.-C. and Verdier, J.-M., 1996. Pancreatic lithostathine as a calcite habit modifier. J. Biol. Chem. 271:26302–26306.
    George, N.C., Killian, C.E. and Wilt, F.H., 1991. Characterization and expression of a gene encoding a 30.6-kDa Strongylocentrotus purpuratus spicule matrix protein. Dev. Biol. 147:334–342.
    Gerhart J., 1999. 1998 Warkany Lecture: Signaling pathways in development. Teratology 60:226–239
    Giese A.C., Pearse J.S. (eds) (1974–1987) Reproduction of Marine Invertebrates, volumes I–V, Academic Press, New York;vol VI, IX, Boxwood Press, Pacific Grove, CA
    Gilbert L.I., Rybczynski R., Tobe S.S. 1996. Endocrine cascade in insect metamorphosis, in Metamorphosis, Postembryonic Reprogramming of Gene Expression in Amphibian and Insect Cells (Gilbert LI, Tata JR, Atkinson BG, eds) pp. 59–107. Academic Press, San Diego
    Gilbert, S.F. (1997) Arthropods: the crustaceans, spiders, and myriapods. In: Gilbert, S.F. and Ranunio A.M. (eds) Embryology, constructing the organism. Sinauer, Assoc., Sunderland, pp 237–258.
    Giusti, A.F., Hinman, V.F., Degan, S.M., Degan, B.M. and Morse, D.E., 2000. Expression of a Scr/Hox5 gene in the larval central nervous system of the gastropod Haliotis, a non-segmented spiralian lophotrochozoan. Evol. Dev. 2: 294-302.
    Goldberg, J.I. and Kater, S.B., 1989. Expression and function of the neurotransmitter serotonin during development of the Helisoma nervous system. Dev. Biol. 131: 483-495.
    Goldberg, J.I. Koehncke, N.K., Christopher, K.J., Neumann, C. and Diefenbach, T.J., 1994. Pharmacological characterization of a serotonin receptor involved in an early embryonic behavior of Helisoma trivolvis. J. Nerobiol., 25: 1545-1557.
    Gonzalez, E.L., 2000 The calcifying vesicle membrane of the coccolithophore, Pleurochrysis. In: Baeuerlein, E. (ed) Biomineralization. Wiley-VCH, Weinheim, pp 269–282.
    Green, K. M., Russell, B. D., Clark, R. J., Jones M. K., Garson, M. J., Skilleter, G. A. and Degnan, B. M., 2002. Sponge allelochemical induces ascidian settlement but inhibits metamorphosis. Marine Biology 140:355-363.
    Greenaway, P.G., 1985. Calcium balance and molting in the crustacea. Biol Rev (Cambridge) 60:425–454.
    Guss, K.A. and Ettensohn, C.A., 1997. Skeletal morphogenesis in the sea urchin embryo: regulation of primary mesenchyme gene expression and skeletal rod growth by ectoderm-derived cues. Development 124:1899–1908.
    Hadfield M. G., 2000. Why and how marine-invertebrate larvae metamorphose so fast. Cell Dev. Biol. 11: 437-443.
    Hadfield M.G., Maleshkevitch E.A., Boudko D.Y., 2000. The apical sensory organ of a gastropod veliger is a receptor for settlement cues. Biol. Bull. 198:67–76
    Hadfield M.G., Strathmann M.F., 1996. Variability, Flexibility and Plasticity in Life Histories of Marine Invertebrates. Oceanologica Acta 19:323–334
    Hadfield, M. G. and Pennington, J. T., 1990. Nature of the metamorphic signal and its internal transduction in larvae of the nudibranch Phestilla sibogae. Bull. Mar. Sci. 46: 455-464.
    Hadfield, M. G., 1998. Research on settlement and metamorphosis of marine invertebrate larvae: past present and future. Biofouling 12: 9-29.
    Hadfield, M.G., Meleshkevitch, E.A. and Boudko, D.Y., 2000. The apical sensory organ of a gastropod veliger is a receptor for settlement cues. Biol. Bull., 198: 67-76.
    Hanley, M.R. and Cottrell, G.A., 1974. Acetylcholine activity in an identified 5-hydroxytryptamine containing neuron. J. Pharm. Pharmacol., 26(12): 980.
    Harkey, M.A., Klueg, K., Sheppard, P. and Raff, R.A., 1995. Structure, expression, and extracellular targeting of PM27, a skeletal protein associated specifically with growth of the sea urchin larval spicule. Dev Biol 168:549–566.
    Hartmann, B., Lee, P.N., Kang, Y.Y., Tornarev, S., deCouet, H.G. and Callaerts, P., 2003. Pax6 in the sepiolid squid Euprymna scolopes: evidence for a role in eye, sensory organ and brain development. Mech. Dev., 120: 177-183.
    Haszppunar, G., Von Salvini-Plawen, L. and Rieger, R. M., 1995. Larval planktotrophy-A primitive trait in the Bilateria? Acta Zool. Stockh. 76: 141-154.
    Haszprunar G. 1992. The first molluscs-small animals. Boll. Zool. 59: 1-16.
    Haszprunar G. 2000. Is the Aplacophora monophyletic? A cladistic point of view. Amer. Malac. Bull. 15: 115-130.
    Haszprunar, G., Friedrich, S., Wanninger, A. and Ruthensteiner, B., 2002. Fine structure and immunocytochemistry of a new chemosensory system in the chiton larva (Mollusca: Polyplacophora). J. Morphol., 251: 210-218.
    Hatschek B. 1880. Ueber Entwicklungsgeschichte von Teredo. Arb. Zool. Inst. Wien 3: 1-45, pls. 1-3.
    Hattan, S.J., Laue, T.M. and Chasteen, N.D., 2001. Purification and characterization of a novel calcium binding protein from the extrapallial fluid of the mollusc, Mytilus edulis. J Biol Chem 276:4461–4468.
    Hay, M. E., 1996. Marine chemical ecology: what's known and what's next? J. Exp. Mar. Biol. Ecol. 200: 103-134.
    Hay-Schmidt, A., 1990a. Distribution of catecholamine-containing, serotonin-like and neuropeptide FMRFamide-like immunoreactive cells and processes in the nervous system of the pilidium larva (Nemertini). Zoomorphology, 109: 231-244.
    Hay-Schmidt, A., 1990c. Distribution of catecholamine-containing, serotonin-like and neuropeptide FMRFamide-like immunoreactive neurons and processes in the nervous system of the early actinotroch larva of Phoronis vancouverensis (Phoronida): distribution and development. Can. J. Zool., 68: 1525-1536.
    Hay-Schmidt, A., 1996b. Distribution of catecholamine-containing, serotonin-like and neuropeptide FMRFamide-like immunoreactive neurons and processes in the nervous system of the actinotroch larva of Pharonis muelleri (Phoronida). Cell Tiss Res., 259: 105-118.
    Hay-Schmidt, A., 2000. The evolution of the serotonergic nervous system. Proc. Roy. Soc. Lond. B Biol. Sci., 267: 1071-1079.
    He, C.B., Xu, S.J., Zhang, C., 1997. Study on the growth and ecological characteristics of Meretrix meretrix cultivated on tidal flat. Chin. J. Fish. Sci. 16, 17-20.
    Heinzeller, T. and Welsch, U., 1994. Crinoidea. In: Harrison, F.W. and Chia, F.-S. (eds) Microscopic Anatomy of Invertebrates, vol. 14. Wiley-Liss Inc., New York, pp 1–148.
    Hickmott, P.W. and Carew, T.J., 1991. An autoradiographic analysis of neurogenesis in juvenile Aplysia californica. J. Neurobiol. 22: 313-26.
    Hinman, V. F. and Degnan, B. M., 2000. Retinoic acid perturbs Otx gene expression in the ascidian pharynx. Dev. Genes Evol. 210: 129-139.
    Hinman, V. F. and Degnan, B. M., 2001. Homeobox genes, retinoic acid and the development and evolution of dual body plans in the ascidian Herdmania curvata. Am. Zool. 41: 664-675.
    Hinman, V. F., Becker, E. and Degnan, B. M., 2000. Neuroectodermal and endodermal expression of the ascidian Cdx gene is separated by metamorphosis. Dev. Genes Evol. 210: 212-216.
    Hinman, V.F., O'Brien, E.K., Richards, G.S. and Degnan, B.M., 2003. Expression of anterior Hox genes during larval development of the gastropod Haliotis asinina. Evol. Dev., 5: 508-521.
    Hirano, T. and Nishida, H., 1997. Developmental fates of larval tissues after metamorphosis in ascidian Halocynthia roretzi. Dev. Biol. 192: 199-210.
    Hirano, T., and Nishida, H., 2000. Developmental fates of larval tissues after metamorphosis in the ascidian Halocynthia roretzi.II Origin of endodermal tissues of the juvenile. Dev. Genes Evol. 210: 55-63.
    Hirata, K.Y. and Hadfield, M.G., 1986. The role of choline in metamorphic inducton of Phestilla (Gastropoda, Nudibranchia). Comp. Biochem. Physiol., 84: 15-21.
    Ho, J.S., Kim I.H., 1995. Copepod parasites of a commercial clam (Meretrix meretrix) from Phuket, Thailand. Hydrobiologia. 308: 13-21.
    Ho, J.S., Zheng, G.X., 1994. Ostrincola koe (Copepoda, Myicolidae) and mass mortality of cultured hard clam (Meretrix meretrix) in China. Hydrobiologia. 284: 169-173.
    Hodgkin, A.L. and Huxley, A.F., 1952. Ions through the membrane of the giant axon of Loligo. J. Physiol., 116: 473-496.
    Holland, N.D., 1991. Echinodermata: Crinoidea. In: Giese, A.C., Pearse, J.S., Pearse, V.B. (eds) Reproduction of marine invertebrates. Volume VI Echinoderms and lophophorates. The Boxwood Press, Pacific Grove, pp 247–299.
    Holm, E.R., Nedved, B.T., Carpizo-Huakte, E., Hadfield, H.G., 1998. Metamorphic-signal transduction in Hydroides elegans (Polychaeta: Serpulidae) is not mediated by a G protein. Biol. Bull. 195, 21-29.
    Hyman, L.H. 1955. The Invertebrates: Echinodermata. McGraw-Hill, Inc., New York.
    Illies, M.R., Peeler, M.T., Dechtiaruk, A.M. and Ettensohn, C.A., 2002. Identification and developmental expression of new biomineralization proteins in the sea urchin Strongylocentrotus purpuratus. Dev. Genes Evol. 212:419–431.
    Inestrosa, N. C., Gonzalez, M. and Campos, E. O., 1993. Metamorphosis of Conholepas concholepas (Bruguiere, 1789) induced by excess potassium. J. Shell. Res. 12: 337-341.
    Inoue, H., Ozaki, N. and Nagasawa, H., 2001. Purification and structural determinationof a phosphorylated peptide with anticalcification and chitin-binding activities in the exoskeleton of the crayfish. Biosci Biotechnol Biochem 65:840–1848.
    Jackson, A.R. MacRae, T.H. and Croll, R.P., 1995. Unusual distribution of tubulion isoforms in the snail Lymnaea stagnalis. Cell Tissue Res. 281:507-515.
    Jackson D, Leys S.P., Hinman V.F., Woods R., Lavin M.F., Degnan B.M., 2002. Ecological regulation of development: induction of marine invertebrate metamorphosis. Int. J. Dev. Biol. 46:679-686.
    Jacob, M.H., 1984. Neurogenesis in Aplyisa californica resembles nervous system formantion in vertebrates. J. Neurosci., 4: 1225-1239.
    Jacobs, D.K., Wray, C.G., Wedeen, C.J., Kostriken, R., DeSalle, R., Staton, J.L., Gates, R.D. and Lindberg, D.R., 2000. Molluscan engrailed expression, serial organization, and shell evolution. Evol and Develop 2:340–347.
    Jayabal, R., M. Kalyani., 1986. Biochemical studies in the hard clam Meretrix meretrix (L.) from Vellar Estuary, east coast of India. Indian J. Mar. Sci. 15: 63-64.
    Jensen, R.A., Morse, D.E., Petty, R.L. and Hooker N., 1990. Artificial induction of larval metamorphosis by free fatty acids. Mar. Ecol. Progr. Ser., 67: 55-71.
    Johnson, C.R., Sutton, D.C., 1994. Bacteria on the surface of crustose coralline algae induce metamorphosis of crown-of thorns starfish. Mar. Biol. 120: 305-310.
    Kaltenback J.C., 1996. Endocrinology of amphibian metamorphosis. Ibid, 403–431
    Kandel, E.R., 1979. Behavioral Biology of Aplysia. W.H. Freeman, San Francisco.
    Kandel, E.R., Kriegstein, A. and Schacher, S., 1981. Development of the central nervous system of Aplysia in terms of the differentiation of its specific identifiable cells. Neurosci., 5: 2033-2063.
    Karsuyama, Y., Wada, S., Yasugi, S. and Saiga, H., 1995. Expression of the labial group Hox gene HrHox-1 and its alteration induced by retinoic acid in development of the ascidian Halocynthia roretzi. Dev. 121: 3197-3205.
    Katoh-Fukui, Y., Noce, T., Ueda, T., Fujiwara, Y., Hashimoto, N., Higashinakagawa, T., Killian, C.E., Livingston, B.T., Wilt, F.H., Benson, S.C., Sucov, H.M. and Davidson, E.H., 1991. The corrected structure of the SM50 spicule matrix protein of Strongylocentrotus purpuratus. Dev, Biol,, 145:201–202.
    Kempf, S.C., Chun, G.V. and Hadfield, M.G., 1992. An immunocytochemical search for potential neurotransmitters in the larvae of Phestilla sibogae (Gastropoda: Opisthobranchia). Comp. Biochem. Physiol. C, 101: 299-305.
    Kempf, S.C., Masinovsky, B. and Willows, A.O.D., 1987. A simple neuronal system characterized by a nomoclonal antibody to scp neuropeptides in embryos and larvae of Tritonia diomedea (Gastropoda, Nudibranchia). J. Neurobiol., 18: 217-236.
    Kempf, S.C., Page, L.R. and Pires, A., 1997. Development of serotonin-like immunoreactivity in the embryos and larvae of nudibranch mollusks with emphasis on the structure and possible function of the apical sensory organ. J. Comp. Neurol., 386: 507-528.
    Kempf, S.C. and Page, L.R., 1995. Anti-tubulin labeling reveals ampullay neuron ciliary bundles in opisthobranch larvae and a new putative neural structure associated with the apical ganglion. Biol. Bull., 208:169-82.
    Kier W.M., 1988. The arrangement and function of molluscan muscle. In: Trueman ER., Clarke MR., editors. The Mollusca. Vol. 11: Form and Function. London: Acad.
    Killian, C.E. and Wilt, F.H., 1996. Characterization of the proteins comprising the integral matrix of Strongylocentrotus purpuratus embryonic spicules. J Biol Chem 271:9150–9159.
    Kingzett, B.C., Bourne, N., Leask, K., 1990. Induction of metamorphosis of the Japanese scallop Patinopecten yessoensis Jay. J. Shellfish Res. 9(1): 119-124.
    Kitajima, T. and Urakami, H., 2000. Differential distribution of spicule matrix proteins in the sea urchin embryo skeleton. Dev Growth Differ 42:295–306.
    Kitamura, K., Nishimura, Y., Kubotera, N., Higuchi, Y. and Yamaguchi, M., 2002. Transient activation of the micro1 homeobox gene family in the sea urchin (Hemicentrotus pulcherrimus) micromere. Dev Genes Evol 212:1–10.
    Kniprath, E., 1981. Ontogeny of the molluscan shell field: a review. Zoo Scripta 10:61–79.
    Kriegstein, A.R., 1977. Development of the nervous system of Aplysia californica. Proc. Nat. Acad. Sci. (USA), 74: 375-378.
    Kroger, N. and Sumper, M., 2000. The biochemistry of silica formation in diatoms. In: Baeuerlein, E. (ed) Biomineralization. Wiley-VCH, Weinheim, pp 151–170.
    Kruglyanskaya, Z.Y. and Sakharov, D.A., 1973. Appearance of biogenic amines in the developing nervous system of embryos of the mollusc Lymnaea stagnalis. Ontogenez, 6: 194-197.
    Kryuchkova, G.A., 1979. Formation of the definitive skeleton in sea urchins of the genus Strongylocentrotus. Sov J Mar Biol 5:276–282.
    Kuang, S. and Goldberg, J.I., 2001. Laser ablation reveals regulation of ciliary activity by serotonergic neurons in molluscan embryos. J. Neurobiol., 47: 1-15.
    Kuang, S., Doran, S.A., Wilson, R.J., Goss, G.G. and Goldberg, J.I., 2002. Serotonergic sensory-motor neurons mediate a behavioral response to hypoxia in pond snail embryos. J. Neurobiol., 52: 73-83.
    Kulakovskiy, E.Y., Flyachinskaya, L.P., 1994. Formation of elements of the regulatory systems in larval development of Mytilus edulis. Hydrobiol. J. 30, 85-94.
    Kume, M., Dan, K., 1968. Invertebrate embryology (Trans. by J.C. Dan). Nolit Publishing House, Belgrade.
    Kurokawa, D., Kitajima, T., Mitsunga-Nakatsubo, K., Ameniya, S., Shimada, H. and Akasaka, K., 1999. HpEts, an ets-related transcription factor implicated in primary mesenchyme cell differentiation in the sea urchin embryo. Mech Dev 80:41–52.
    Lacalli, T.C., 1981. Structure and development of the apical organ in trochophores of Spirobrachus Polycerus. Phyllodoce maculata and Phyllodoce mucosa (Polychaeta). Proc. Roy. Soc. Lond. B. 212: 381-402.
    Lacalli, T.C., 1982. The nervous system and ciliary band of Muller's larva. Proc. Roy. Soc. Lond. B., 217: 37-58.
    Lacalli, T.C., 1986. Prototroch structure and innervation in the trochophore larva of Phyllodoce (Polychaeta). Can. J. Zool., 64: 176-184.
    Lacalli, T.C., 1994. Apical organs, epithelial domains and origin of the chordate central nervous system. Amer. Zoo., 34: 533-541.
    Lacaze-Duthiers H. 1857. Histoire de l'organisation et du développement du Dentale. Ann. Sci. Nat. Zool. (4) 7: 171-255, pls. 5-9.
    Lacoste, A., Malham, S.K., Cueff, A., Poulet S.A., 2001a. Noradrenaline modulates oyster hemocyte phagocytosis via a β-adrenergic receptor-cAMP signaling pathway. Gen. Comp. Endocrinol. 122: 252-259.
    Lacoste, A., Malham, S.K., Cueff, A., Poulet, S.A., 2001b. Noradrenaline modulates hemocyte reactive oxygen species production via b-adrenergic receptors in the oyster Crassostrea gigas. Dev. Comp. Immunol. 25: 285-289.
    Lakshminarayanan, R., Kini, R.M. and Valiyaveettil, S., 2002. Investigation of the role of ansocalcin in the biomineralization in goose eggshell matrix. Proc Nat Acad Sci USA 99:5155–5159.
    Lambert, G. and Lambert Charles, C., 1996a. Antibodies to echinoid larval spicule proteins cross react with the spicular complex in the ascidian Herdmania momus. Bulletin de L'Institut Oceanographique (Monaco) 14:253–261.
    Lambert, G. and Lambert, C.C., 1996b. Spicule formation in the New Zealand ascidian Pyura pachydermatina (chordata, ascidiacea). Connect Tissue Res 34:263–269.
    Lambert, G., 1992. Ultrastructural aspects of spicule formation in the solitary ascidian Herdmania momus (urochordata, ascidiacea). Acta Zool 73:237–245.
    Lambert, G., Lambert, C.C. and Lowenstam, H.A., 1990. Protochordate biomineralization. In: Carter, J.G (ed) Skeletal biomineralization: patterns, processes and evolutionary trends. Vol. 1. Van Nostrand Rheinhold, New York, pp 461–469.
    Lambert, J.D. and Nagy, L.M., 2003. The MAPK cascade in equally cleaving spiralian embryos. Dev. Biol., 263: 231-241.
    Lee, P.N., Callaerts, P., De Couet, H.G. and Martindale, M.Q., 2003. Cephalopod Hox genes and the origin of morphological novelties. Nature, 424: 1061-1065.
    Lee, Y.-H., Britten, R.J. and Davidson, E.H., 1999. SM37, a skeletogenic gene of the sea urchin embryo linked to the SM50 gene. Dev Growth Differ 41:303–312.
    Leise, E.M. and Hadfield, M.G., 2000. An inducer of molluscan metamorphosis transforms activity patterns in a larval nervous system. Biol. Bull., 199: 241-50.
    Leitz J., 1828. Induction of metamorphosis of the marine hydrozoan Hydractinia echinata Fleming. Biofouling 12:173–187 34.
    Leitz T. and Muller W.A. 1987. Evidence for the involvement of PI-signaling and diacylglycerol second messengers in the initiation of metamorphosis in the hydroid hydractinia echinata fleming. Dev. Biol. 121(1): 82-9.
    Leitz, T., Beck, H., Stephan, M., Lehmann W.D., Petrocellis L De and Marzo V. Di, 1994. Possible involvement of arachidonic acid and eicosanoids in metamorphic events in Hydractinia echimata (Coelenterata;Hydrozoa). J. Exp. Zoo., 269:422-431.
    Leys, S. P. and Degan, B. M., 2001. The cytological basis of photoresponsive behaviour in a sponge larva. Biol. Bull. in press.
    Leys, S. P. and Degnan, B. M., 2002. Embryogenesis and metamorphosis in a haplosclerid demosponge: gastrulation and transdifferentiation of larval ciliated cells to choanocytes. Invert. Biol. 210: 323-338.
    Leys, S. P. and Mackie, G. O., 1997. Electrical recording from a glass sponge. Nature 387: 29-31.
    Leys, S. P. and Reiswig, H. M., 1998. Nutrient transport pathways in the neotropical sponge Aplysina. Biol. Bull. 195: 30-42.
    Lin, M.F. and Leise, E.M., 1996a. Gangliogenesis in the prosobranch gastropod Ilyanassa obsoleta. J. Comp. Neurol., 374: 180-193.
    Lin, M.F. and Leise, E.M., 1996b. Gangliogenesis in the prosobranch gastropod Ilyanassa obsoleta. J. Comp. Neurol., 374: 194-203.
    Lowenstam, H. and Weiner, S., 1989. On biomineralization. Oxford University Press, New York.
    Lowenstam, H.A. and Abbott, D.P., 1975. Vaterite – mineralization product of hard tissues of a marine organism (Ascidiacea). Science 188:363–365.
    Lowenstam, H.A., 1989. Spicular morphology and mineralogy in some pyuridae (Ascidiacea) B. Mar Sci 45:243–252.
    MacBride, E.W., 1903. The development of Echinus esculentus, together with some points on the development of E. miliaris and E. acutus. Phil. Trans. Roy Soc B 195:285–330.
    Mackie G. O., 1979. Is there a conduction system in sponges? Colloques int. Cent. natn. Res. Scient. Biologie des spongiares 291: 145-151.
    Mackie, G. O., Singla, C.L. and Thiriot-Quievreux, C., 1976. Nervous control of ciliary activity in gastropod larvae. Biol., Bull., 151: 182-199.
    Maldonado M. and Young, C. M., 1996. Effects of physical factors on larval behavior, settlement and recruitment of four tropical demosponges. Mar. Ecol. Prog. Ser. 138: 169-180.
    Mann, K., 1999. Isolation of a glycosylated form of the chicken eggshell protein ovocleidin and determination of the glycosylation site. Alternative glycosylation/phosphorylation at an Nglycosylation sequon. FEBS Lett. 433:12–14.
    Mann, K., Weiss, I.M., Andre, S., Gabius, H.-J.K. and Fritz, M., 2000. The amino-acid sequence of the abalone (Haliotis laevigata) nacre protein perlucin. Eur J Biochem 267:5257–5264.
    Marin, F., Corstjens, P., de Gaulejac, B., deVrind-deJong, E. and Westbroek, P., 2000. Mucins and molluscan calcification. J Biol Chem 275:20667–20675.
    Marios, R. and Croll, R.P., 1992. Development of serotonergic cells within the embryonic central nervous system of the pond snail, Lymnaea stagnalis. J. Comp. Neurol., 322: 255-265.
    Marois, R, Carew T.J., 1997a. Fine structure of the apical ganglion and its serotonergic cells in the larva of Aplysia californica. Biol. Bull. 192: 388-398.
    Marois, R, Carew T.J., 1997b. Ontogeny of serotonergic neurons in Aplysia californica. J. Comp. Neurol. 386: 477-490.
    Marois, R, Carew T.J., 1997c. Projection patterns and target tissues of serotonergic cells in larval Aplysia californica. J. Comp. Neurol. 386: 491-506.
    Martinez, G., Aguilera C., Campos E.O., 1999. Induction of settlement and metamorphosis of the scallop Argopecten purpuratus Lamarck by excess K+ and epinephrine: energetic costs. J. Shellfish Res. 18(1): 41-46.
    Martinez, G., Rivera, A., 1994. Role of monoamines in the reproductive process of Argopecten purpuratus. Invertebr. Reprod. Dev. 25: 167–174.
    Marxen, J. and Becker, W., 2000. Calcium binding constituents of the organic shell matrix from the freshwater snail Biomphalaria glabrata. Comp Biochem Physiol B 127: 235–242.
    Mavrogiannis, L.A., Antonopoulou, I., Baxova, A., Kutilek, S., Kim, C.A., Sugayama, S.M., Salamanca, A., Wall, S.A., Moriss-Kay, G.M., Wilkie, A.O., 2001. Haploinsuffiency of the human homeobox gene ALX4 causes skull ossification defects. Nat Genet 27:17–18.
    McCain, E.R., 1992. Cell Interactions influence the pattern of biomineralization in the Illyanassa obsoleta (Mollusca) embryo.Dev Dynamics 195:188–200.
    Meisenheimer J., 1901. Entwicklungsgeschichte von Dreissensia polymorpha Pall. Z. wiss. Zool. 69: 1-137, pls. 1-13.
    Michel, S., Schoch, K. and Stevenson, P.A., 2002. Amine and amino acid transmitters in the eye of the mollusk Bulla gouldiana: An immunocytochemical study. J. Comp. Neurol., 425: 244-56.
    Michenfelder, M., Fu, G., Lawrence, C., Weaver, J.C., Wustman, B.A., Taranto, L, Evans, J.S. and Morse, D.E., 2003. Characterization of two molluscan crystal-modulating biomineralization proteins and identification of putative mineral binding domains. Biopolymers, 70(4): 522-533.
    Miller, S.E., Hadfield, M.G., 1986. Ontogeny of phototaxis and metamorphic competence in larvae of the nudibranch phestilla sibogae bergh (Gastropoda;Opisthobranchia). J. Exp. Mar. Biol. Ecol. 97, 95-112.
    Miyamoto, H., Miyashita, T., Okushima, M., Nakano, S., Morita, T. and Matsushiro, A., 1996. A carbonic anhydrase from the nacreous layer in oyster pearls. Proc Nat Acad Sci USA 93:9657–9660.
    Miyashita, T., Takagi, R., Okushima, M., Nakano, S., Miyamoto, H. and Matsuhiro, A., 2000. Complementary DNA cloning and characterization of pearlin, a new class of matrix protein in the nacreous layer of oyster pearls. Mar Biotechnol 2:409–418.
    Moffett, S.B., 1995. Neural regeneration in gastropod molluscs. Prog. Neurobiol., 46: 289-330.
    Moor, B., 1983. Organogenesis. In: The Mollusca, Vol. 3, N.H. Verdonk, A.S. Tompa and J.A.M. Van den Biggelaar (eds.), Academic Press, New York, pp. 134-177.
    Morse D.E., 1990. Recent progress in larval settlement and metamorphosis: closing the gaps between molecular biology and ecology. Bull Mar Sci 46:465–483
    Morse, D.E., Duncan, H., Hooker, N., Baloun, A. and Young, G., 1980. GABA induces behavioral and development metamorphosis in planktonic molluscan larvae. Fed. Proc., 39: 3237-3241.
    Morse, D.E., Morse, A.N.C., Raimondi, P.T., Hooker, N., 1994. Morphogen-based chemical flypaper for Agaricia humilis coral larvae. Biol. Bull. 186, 172-181.
    Morton J.E., 1959. The habits and feeding organs of Dentalium entalis. J. mar. biol. Ass. UK 38: 225-238.
    Morton, B., Morton J., 1983. The Sea Shore Ecology of Hong Kong. Hong Kong University Press, Hong Kong, 350 pp.
    Moshel, S.M., Levine, M. and Collier, J.R., 1998. Shell differentiation and engrailed expression in the Ilyanassa embryo. Dev Genes Evol 208:135–141.
    Moss, C., Burke, R.D. and Thorndyke, M.C., 1994. Immunocytochemical localization of the neuropeptide s1 and serotonin in larvae of the starfish Piaster and Asterias rubens. J. Mar. Biol. Ass. UK, 74: 61-74.
    Nakajima, Y., 1988. Serotonergic nerve cells of starfish larvae. In: Echinoderm Biology, R.D. Burke, P.V. Mladenov and P. Lambert (eds.), A.A. Balkema, Rotterdam, pp. 235-239.
    Nakano, H., Hibino, T., Oji, T., Hara, Y. and Amemya, S., 2003. Larval stages of a living sea lily (stalked crinoid echinoderm). Nature 421:158–160.
    Nakayama, A., Satou, Y. and Satoh, N., 2001. Isolation and characterization of genes that are expressed during Ciona intestinalis metamorphosis. Dev. Genes Evol. 211: 184-189.
    Nhan, D.D., Am N.M., Carvalho F.P., Villeneuve J.P., Cattini C., 1999. Organochlorine pesticides and PCBs along the coast of North Vietnam. Sci. Total. Environ. 238, 363-371.
    Nielsen, C., 1987. Structure and function of metazoan ciliary bands and their phylogenetic significance, Acta Zool., 68: 205-262.
    Nielsen, C., 1998. Origin and evolution of animal life cycles. Biol. Rev. 73: 125-155.
    Nielsen, C., 2004. Trochophora larvae: cell lineages, ciliary bands and body regions. 1. Annelida and Mollusca. J. Exp. Zool., 302B: 35-68.
    Nielsen, M.G., Wilson, K.A., Raff, E.C. and Raff, R.A., 2000. Novel gene expression patterns in hybrid embryos between species with different modes of development. Evol and Develop 2:133–144.
    Nolen, T.G. and Carew, T.J., 1994. Ontogeny of serotonin-immunoreactive neurons in juvenile Aplysia californica: Implications for the development of learning. Behav. Neural. Biol., 61: 282-295.
    O'Brien, E.K. and Degnan, B.M., 2002. Developmental expression of a class IV POU gene in the gastropod Haliotis asinina supports a conserved role in sensory cell development in bilaterians. Dev. Genes Evol., 212: 394-398.
    Okai, N., Tagawa, K., Humphreys, T., Satoh, N. and Ogasawara, M., 2000. Characterization of gill-specific genes of the acorn worm Ptychodera flava Dev Dynam 217:309–319.
    Okazaki, K., 1975. Spicule formation by isolated micromeres of the sea urchin embryo. Amer Zool 15:567–581.
    Oliveri, P., Carrick, D.M., Davidson, E.H., 2002. A regulatory gene network that directs micromere specification in the sea urchin embryo. Development biology, 246: 209-228.
    Osborne, N.N., Briel, G. and Neuhoff, V., 1972. Distribution of GABA and other amino acids in different tissues of the gastropod mollusc, Helix pomatia, including in vitro experiments with 14c-glucose and 14c-glutamic acid. Int. J. Neurosci., 1 : 265-272.
    Page L.R. 1997. Larval shell muscles in the abalone Haliotis kamtschatkana. Biol. Bull. 193: 30-46.
    Page L.R. 1998. Sequential developmental programmes for retractor muscles of a caenogastropod: reappraisal of evolutionary homologues. Proc. R. Soc. Lond. B 265: 2243-2250.
    Page LR. 1995. Similarities in form and development sequence for three larval shell muscles in nudibranch gastropods. Acta Zool. (Stockholm) 76: 177-191
    Page, L. R. and Pederson, R. V. K., 1998. Transformation of phytoplanktivorous larvae into predatory carnivores during the development of Polynices lewisii (Mollusca, Caenogastropoda). Invert. Biol. 117: 208-220.
    Page, L.R., 1992. New interpretation of a nudibranch central nervous system based on ultrastructural analysis of neurodevelopment in Melibe leonina. II. Pedal, pleural and labial ganglia. Biol. Bull., 182: 366-381.
    Page, L.R., 1993. Developmental analysis reveals labial and subradular ganglia and the primary framework of the nervous system in nudibranch gastropods. J. Neurobiol., 24: 1443-1459.
    Page, L.R., 2002. Apical sensory organ in larvae of the patellogastropod Tectura scutum. Biol. Bull., 202: 6-22.
    Page, L.R., and Parries, S.C., 2000. Comparative study of the apical ganglion in planktotrophic caenogastropod larvae: Ultrastructure and immunoreactivity to serotonin. J. Comp. Neurol., 418: 383-401.
    Pasquinelli, A.E., Reinhart, B.J., Slack, F., Martindale, M.Q., Kuroda, M.I., Maller, B., Hayward, D.C., Ball, E.E., Degnan, B.M., Muller, P., Spring, J., Srinivsan, A., Fishman, M., Finnerty, J., CORBO, J., Levine, M., Leahy, P., Davidson, E. and Ruvkun, G. 2000. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408: 86-89.
    Pawlik, J. P., 1992. Chemical ecology of the settlement of benthic marine invertebrates. Oceanog. Mar. Biol. Annu. Rev. 30: 273-335.
    Pechenik, J. A. and Eyster, L. S., 1989. Influence of delayed metamorphosis on the growth and metabolism of young Crepidula fornicata (Gastropoda) juveniles. Biological bulletin, marine biological laboratory, woods hole, 176 (1): 14-24
    Pechenik, J.A., Li, W. and Cochrane, D.E., 2002. Timing is everything: The effects of putative dopamine antagonists on metamorphosis vary with larval age and experimental duration in the prosobranch gastropod Crepidula fornicata. Biol. Bull., 202: 137-147.
    Pertseva, M.N., Kuznetzova, L.A., Pestneva, S. A., Grishin, A.V., 1992. β-agonist-induced inhibitory-guanine-nucleotide-binding regulatory protein coupling to adenylate cyclase in mollusk Anodonta cygnea foot muscle sarcolemma. Eur. J. Biochem. 210, 279-286.
    Peterson, K. J., Cameron, R. A. and Davidson, E. H., 1997. Set-aside cells in maximal indirect development: Evolutionary and developmental significance. BioEssays 19: 623-631.
    Pires, A., Coon, S.L. and Hadfield, M.G., 1997. Catecholamines and dihydroxyphenylalanine in metamorphosing larvae of the nudibranch Phestilla sibogae Bergh (Gastropoda: Opisthobranchia). J. Comp. Physiol., 181A: 187-194.
    Pires, A., Croll, R.P. and Hadfield, M.G., 2000a. Catecholamines modulate metamorphosis in the opisthobranch gastropod, Phestilla sibogae. Biol. Bull., 198: 319-31.
    Pires, A., Guilbault, T.R., Mitten, J.V. and Skiendzielewski, J.A., 2000b. Catecholamines in larvae and juveniles of the prosobranch gastropod, Crepidula fornicata. Comp. Biochem. Physiol., 127C: 37-47.
    Plummer, J.T., 2002. The bivalve larval nervous system. MSc Thesis, Department of Physiology & Biophysics, Dalhousie University, Halifax, Nova Scotia, Press. p. 211-252.
    Raff, R.A., 1992. Direct-developing sea urchins and the evolutionary reorganization of early development. BioEssays 14:211–218. 250
    Raineri, M., 1995. Is a mollusc an evolved bent metatrochophore? A histochemical investigation of neurogenesis in Mytilus Mollusca: bivalvia . J. Mar. Biol. Ass. UK 75: 571-592.
    Raineri, M., Ospovat, M., 1994. The initial development of gangliar rudiments in a posterior position in Mytilus gallopro_incialis Mollusca: bivalvia . J. Mar. Biol. Ass. UK 74: 73-77.
    Raven, C.P., 1949. On the structure of cyclopic, synophthalmic and anophthalmic embryos, obtained by the action of lithium in Limnaea stagnalis. Arch. Neederl. Zool., 8: 323-353.
    Raven, C.P., 1966. Morphogenesis: The Analysis of Molluscan Development, Pergamon Press, Oxford.
    Raz, S., Hamilton, P.C., Wilt, F.H., Weiner, S. and Addadi, L., 2003. The transient phase of amorphous calcium carbonate in the sea urchin larval spicule: the involvement of proteins and magnesium ions in its formation and stabilization. Adv. Funct. Mater., 13(6): 480-486.
    Raz, S., Testeniere, O., Hecker, A., Weiner, S. and Luquet, G., 2003. Stable amorphous calcium carbonate is the main component of the calcium storage structures of the crustacean Orchestia cavimana. Biol Bull 203:269–274.
    Reed, C.G., 1988. Organization of the nervous system and sensory organs in the larva of the marine bryozoan Bowerbankia gracilis (Ctenostomata: Vesiculariidae): Functional significance of the apical disc and pyriform organ. Acta Zool., (Stockholm) 69: 177-194.
    Render, J., 1997. Cell fate maps in the Ilyanassa obsoleta embryo beyond the third division. Dev. Biol., 189: 301-310.
    Rodriguez S.R., Ojeda F.P., Inestrosa N.C., 1993. Settlement of benthic marine invertebrates. Mar. Ecol. Prog. Ser. 97,193-207
    Rupert, E.E. and Barnes, R.D., 1994. Invertebrate Zoology (6th ed.). Saunders College Publishing, Fort Worth.
    Ruthensteiner, B. and Schaefer, K., 2002. The cephalic sensory organ in veliger larvae of pulmonates (Gastropoda: Mollusca). J. Morphol., 251: 93-102.
    Sakharov, D.A., Salanski, J., 1982. Effects of dopamine antagonists on snail locomotion. Experientia. 38, 1090–1091.
    Salvini-Plawen Lv. 1969. Solenogastres und Caudofoveata (Mollusca, Aculifera): Organisation und phylogenetische Bedeutung. Malacologia 9: 191-216.
    Salvini-Plawen Lv. 1972. Zur Morphologie und Phylogenie der Mollusken: Die Beziehung der Caudofoveata und der Solenogastres als Aculifera, als Mollusca und als Spiralia. Z. wiss. Zool. 184: 205-394.
    Salvini-Plawen Lv. 1991. Origin, phylogeny and classification of the phylum Mollusca. Iberus 9: 1-33.
    Salvini-Plawen Lv. and Steiner G. 1996. Synapomorphies and plesiomorphies in higher classification of Mollusca. In: Taylor JD., editor. Origin and Evolutionary Radiation of the Mollusca. Oxford: Oxford Univ. Press. p. 29-51.
    Samata, T., Hayashi, N., Kono, M., Hasegawa, K., Horita, C. and Akera, S., 1999. A new matrix protein family related to the nacreous layer formation of Pinctada fucata. FEBS lett., 26:462(1-2):225-9.
    Santagata, N., Wheeler, C.H., Burke, J.F. and Benjamin, P.R., 1994. Neuropeptides myonodulin, small cardioactive peptide, and buccalin in the central nervous system of Lymnaea stagnalis: Purification, immunoreactivity, and artifacts. J. Comp. Neurol., 342: 335-351.
    Santagata, S., 2002. Sturcture and metamorphic remodeling of the larval nervous system and musculature of Phoronis pallida (Phoronida). Evol. Dev., 4: 28-42.
    Santagata, S., 2004. Larval development of Phoronis pallida (Phoronida): implications for morphological convergence and divergence among body plans. J. Morphol., 259: 347-358.
    Sarashina, I. and Endo, K.I., 2001. The complete primary structure of molluscan shell protein 1 (MSP-1), an acidic glycoprotein in the shell matrix of the scallop Patinopecten yessoensis. Mar Biotechnol 3:362–369.
    Satoh, N. 1994 . Developmental Biology of Ascidians. Cambridge University Press, Cambridge.
    Schacher, S., Kandel, E.R. and Woolley, R., 1979. Development of neurons in the abdominal ganglion of Aplysia californica I. Axosomatic synaptic contacts. Dev. Biol., 71: 176-190.
    Scheltema AH. 1993. Aplacophora as progenetic aculiferans and the coelomate origin of mollusks as the sister taxon of Sipuncula. Biol. Bull. 184: 57-78.
    Schneider T., Leitz T., 1994 Protein kinase C in hydrozoans: involvement in metamorphosis of Hydractinia and in pattern formation of Hydra. Roux's Arch Dev Biol 203:422–428
    Shen, X., Belcher, A.M., Hansma, P.K., Stucky, G.D. and Morse, D.E., 1997. Molecular cloning and characterization of Lustrin a, a matrix protein from shell and pearl nacre of Haliotis rufesens., J Biol Chem 272:32472–32481.
    Shi Y-B 1996. Thyroid hormone-regulated early and later genes during amphibian metamorphosis. Ibid, 505–538
    Shigeno, S., Tsuchiya, K. and Segawa, S., 2001. Embryonic and paralaral development of the central nervous system of the loliginid squid Sepioteuthis lessoniana. J. Comp. Neurol., 437: 449-475.
    Shimizu, K. and Morse, D.E., 2000. The biological and biomimetic synthesis of silica and other polysiloxanes. In: Baeuerlein, E. (ed) Biomineralization. Wiley-VCH, Weinheim, pp 207–220.
    Shpigel, M., Coon, S.L., Kleinot, P., 1989. Growth and survival of clutches spat of Ostrea edulis Linneaus, 1750 produced using epinephrine and shell chips. J. Shellfish Res. 8:355-357.
    Simkiss, K. and Wilbur, K.M., 1989. Biomineralization. Academic Press, San Diego.
    Simpson, T. L. 1984. The cell biology of sponges. Springer Verlag, New York.
    Sleigh M.A., Blake J.R., 1977. Methods of ciliary propulsion and their size limitations, in Scale Effects in Animal Locomotion (Pedley TJ, ed.) pp. 243–256. Academic Press, London, New York, San Francisco
    Smith F.G., 1935. The development of Patella. Phil. Trans. R. Soc. Lond. B 225: 95-125.
    Smith S A, Nason J, Croll R P, 1998. Distribution of catecholamines in the sea scallop, Placopecten magellanicus, Can J Zool, 76:1254-1262.
    Steiner G. 1992a. The organisation of the pedal musculature and its connection to the dorsoventral musculature in Scaphopoda. J. Moll. Stud. 58: 181-197.
    Steiner G. 1992b. Phylogeny and classification of Scaphopoda. J. Moll. Stud. 58: 385-400.
    Stock, S.R., Barss, J., Dahl, T., Veis, A., Almer, J.D., 2002. Xray adsorption microtomograrphy (microCT) and small beam diffraction mapping of sea urchin teeth. J Struct Biol 139:1–12.
    Stoner, A. W., Ray, M., Glazer, R. A. and Mccarthy, K. J., 1996. Metamorphic responses to natural substrata in a gastropod larva: decisions related to postlarval growth and habitat preference. J. Exp. Mar. Biol. Ecol. 205: 229-243.
    Strathmann M.F., 1987. Reproduction and Development of Marine Invertebrates of the Northern Pacific Coast, p. 670. University of Washington Press, Seattle
    Strathmann, R.R., 1978. The evolution and loss of feeding larval stages of marine invertebrates. Evolution, 32: 894-906.
    Strathmann, R.R., 1993. Hypothesis on the origins of marine larvae. Ann. Rev. Ecol. Syst., 24: 89-117.
    Strathmann, R.R., and Leise, E., 1979. On feeding mechanisms and clearance rates of molluscan veligers. Biol. Bull., 157: 524-535.
    Stricker, S.A., 1986. The fine-structure and development of calci-fied skeletal elements in the body wall of holothurian echinoderms. J Morphol 188:273–288.
    Sudo, S., Fujikawa, T., Nagakura, T., Ohkubo, T., Sakaguchi, K., Tanaka, M., Nakashima, K and Takahashi, T., 1997. Structures of mollusc shell framework proteins. Nature 387:563–564.
    Sunderland, Massachusetts. Byrne, M., 1994. Ophiuroidea. In: Harrison, F.W. and Chia, F.-S. (eds) Microscopic Anatomy of Invertebrates, vol. 14. Wiley-Liss
    Sweet, H.C., 1998. Specification of first quartet micromeres in Ilyanassa involves inherited factors and position with respect to the inducing D macromere. Development, 125: 4033-4044.
    Sweet, H.C., Gehring, M. and Ettensohn, C.A., 2002. LvDelta is a mesoderm-inducing signal in the sea urchin embryo and can endow blastomeres with organizer properties. Development 129:1945–1955.
    Syed, N. I., Winlow, W., 1991. Respiratory behavior in the pond snail Lymnaea stagnalis. II. Neural elements of the central pattern generator. J. Comp. Physiol. 169A, 557–568.
    T Trapido-Rosenthal, H. and Morse, D. E., 1985. L-α, ω-diamino acids facilitate GABA induction of larval metamorphosis in a gastropod mollusc ( Haliotis rufescens). J. Comp. Physiol. 155: 403-414.
    Takagi, Y., Ishii, K, Ozaki, N. and Nagasawa, N., 2000. Immunolocalization of gastrolith matrix protein (GAMP) in the gastroliths and exoskeleton of crayfish. Procambarus clarkii. Zool Sci 17:179–184.
    Tata J.R., 1996. Hormonal interplay and thyroid hormone receptor expression during amphibian metamorphosis. Ibid,465–503
    Taylor, J. J., Southgate, P. C. and Rose, R. A., 1998. Assessment of artificial substrates for collection of hatchery-reared silver-lip oyster ( Pinctada maxima, Jameson) spat. Aquaculture 162: 219-230.
    Testeniere, O., Hecker, A., LeGurun, S., Quennedey, B., Graf, F. and Luquet, G. 2002. Characterization and spatio-temporal expression of orchestin, a gene encoding an ecdysone-inducible protein from a crustacean organic matrix. Biochem 361:327–
    Teyke, T., Rosen, S.C., Weiss, K.R., Kupfermann, I., 1993. Dopaminergic neuron B20 generates rhythmic neuronal activity in the feeding motor circuitry of Aplysia. Brain. Res. 630, 226–237.
    Thavaradhara, K. and Leise, E.M., 2001. Localization of nitric oxide synthase-like immunoreactivity in the developing nervous system of the snail Ilyanassa obsoleta. J. Neurocytol., 30: 449-456.
    Thummel C.S., 1996. Flies on steroids—Drosophila metamorphosis and the mechanisms of steroid hormone action. Trends Genet 12:306–310
    Trapido-Rosenthal, H. and Morse, D. E., 1986. Availability of chemosensory receptors is down regulated by habituation of larvae to a morphogenetic signal. Proc. Natl Acad. Sci. USA 83: 7658-7662.
    Treccani, L., Koshnavaz, S., Blank, S., vonRoden, K., Schulz, U., Weiss, I., Mann, K., Radmacher, M. & Fritz, M., 2003. Biomineralizing proteins, with emphasis on invertebrate-mineralized structures. Biopolymers (ed. by Fahnestock and Steinbüchl), pp. 289–321. Wiley-VCH-Verlag GmbH, Weinheim.
    Trueman ER. 1966. The fluid dynamics of the bivalve molluscs, Mya and Margaritifera. J. exp. Biol. 45: 369-382.
    Trueman ER. 1967. The dynamics of burrowing in Ensis (Bivalvia). Proc. R. Soc. Lond. B 166: 459-476.
    Trueman ER. 1968. The burrowing process of Dentalium (Scaphopoda). J. Zool. (London) 154: 19-27.
    Trueman ER. 1980. Swimming by jet propulsion. In: Trueman ER., editor. Aspects of animal movement. Cambridge: Cambridge Univ. Press. p. 93-105.
    Tsutsui, N., Ishii, K., Takagi, Y., Watanabe, T. and Nagasawa, H., 1999. Cloning and expression of a cDNA encoding an insoluble marix protein in the gastroliths of a crayfish, Procambarus clarkii. Zool Sci 16:619–628.
    Twarog, B.M., 1954. Responses of a molluscan smooth muscle to acetylcholine and 5-hydroxytryptamine. J. Cell. Comp. Physiol., 44: 141-164.
    Urry, L.A., Hamilton, P.C., Killian, C.E. and Wilt, F.H., 2000. Expression of spicule matrix proteins in the sea urchin embryoduring normal and experimentally altered spiculogenesis. Dev Biol 225:201–213.
    Uthe, D., 1995. Fine structure of the cephalic sensory organ in the veliger larvae of Littorina littorea (L.) (Mesogastropoda, Littorinidae). Hydrobiologica, 309: 45-52.
    Van De Vyver, G. and Buscema, M., 1981. Capacités morphogènes des cellules d'éponges dissociées. Annls Soc. R. Zool. Belg. 111: 9-19.
    Van Den Biggelaar, J. A. M., Dictus, W. J. A. G. and VanloonN A. E., 1997. Cleavage patterns, cell-lineages and cell specification are clues to phyletic lineages in Spiralia. Cell and Developmental Biology, 8(4): 367-378.
    Vazquez, M.A., Allen, K.W., Kattan Y.M., 1991. Long-term effects of the 1991 Gulf War on the hydrocarbon levels in clams at selected areas of the Saudi Arabian Gulf coastline. Mar. Pollut. Bull. 40, 440-448.
    Veis, A., Barass, J., Dahl, T., Rahima, M. and Stock, S., 2002. Mineral-related proteins of sea urchin teeth: Lythechinus variegatus. Microsc. Res Tech 59:342–351.
    Verdonk, N.H. and Cather, J.N., 1983. Morphogenetic determination and differentiation. In: The Mollusca, Vol 3, N.H. Verdonk, J.A.M. van den Biggelaar and A.S. Tompa (eds.), Academic Press, New York, pp. 215-252.
    Vitellaro-Zuccarello, L. and DeBiasi, S., 1988. GABA-like immunoreativity in the pedal ganglia of Mytilus galloprovincialis: Light and electron microscopy study. J. Comp. Neurol., 267: 516-524.
    Voronezhskaya, E. E., Hiripi, L., Elekes, K. and Croll, R.P., 1999. Development of catecholaminergic neurons in the pond snail, Lymnaea stagnails: 1. Embryonic development of dopaminergic neurons and dopamine-dependent behaviors. J. Comp. Neurol., 404, 297-309.
    Voronezhskaya, E.E. and Elekes, K., 1993. Distribution of serotonin-like immunoreactive neurons in the embryonic nervous system of lymnaeid and planorbid snails. Neurobiol., 1: 371-383.
    Voronezhskaya, E.E. and Elekes, K., 1996. Transient and sustained expression of FMRFamide-like immunoreactivity in the developing nervous system of Lymnaea stagnalis. Cell Molec. Neurobiol., 16: 661-676.
    Voronezhskaya, E.E. and Elekes, K., 2003. Expression of FMRFamide gene encoded peptides by identificed neurons in embryos and juveniles of the pulmonate snail Lymnaea stagnalis. Cell Tiss. Res., 314: 297-313.
    Voronezhskaya, E.E. and Elekes, K., 2003. Expression of FMRFamide gene encoded peptides by identificed neurons in embryos and juveniles of the pulmonate snail Lymnaea stagnalis. Cell Tiss. Res., 314: 297-313.
    Voronezhskaya, E.E., Hiripi, L., Elekes, K. and Croll, R.P., 1999. Development of catecholaminergic neurons in the pond snail, Lymnaea stagnalis: I. Embryonic development of dopaminergic neurons and dopamine-dependent behaviors. J. Comp. Neurol., 404: 297-309.
    Voronezhskaya, E.E., Pavlova, G.A. and Sakharov, D.A., 1992. Possible control of molluscan embryogenesis by neuronal catecholamines (in Russian). Ontogenesis, 23: 295.
    Voronezhskaya, E.E., Tsitrin, E.B., and Nezlin, L.P., 2002. Neuronal development in larval chiton Ischnochiton hakodadensis (Mollusca: Polyplacophora). J. Comp. Neurol., 444: 25-38.
    Voronezhskaya, E.E., Tsitrin, E.B., and Nezlin, L.P., 2003. Neuronal development in larval polychaete Phyllodoce maculata (Phyllodocidae). J. Comp. Neurol., 455: 299-309.
    Walker, R.J., Azanza, G.A. and Woodruff, G.N., 1975. The action of γ-amino-butyric acid (GABA) and related compounds on two identifiable neurons in the brain of the snail, Helix aspersa. Comp. Biochem. Physiol., 50C: 147-157.
    Wang, R.Z., Addadi, L. and Weiner, S., 1997. Design strategiesof sea urchin teeth: structure, composition and micromechanical relations to function. Phil Trans R Soc B 352:469–480.
    Wanninger A., Haszprunar G., 2001. Chiton myogenesis: Perspectives for the development and evolution of larval and adult muscle systems in molluscs. Journal of morphology, 251(2):103-113.
    Wanninger A., Haszprunar G., 2002. Muscle development in Antalis entails (Mollusca, Scaphopoda) and it significance for scaphopod relationships. Journal of morphology, 245(1):53-64.
    Wanninger A., Ruthensteiner B., Lobenwein S., Salvenmoser W., Dictus W. J.A.G., Haszprunar G., 1999. Development of the musculature in the limpet Patella (Mollusca, Patellogastropoda). Development, Genes, and Evolution, 209: 226-238.
    Wanninger, A. and Haszprunar, G., 2001. The expression of an Engrailed protein during embryonic shell formation of the tuskshell, Antalis entalis (Mollusca, Scaphopoda). Evol and Develop 3:312–321.
    Wanninger, A. and Haszprunar, G., 2003. The development of the serotonergic and FMRFaminergic nervous system in Antalis entalis (Mollusca, Scaphopoda). Zoomorphology, 122: 77-85.
    Wapstra, M.;van Soest, R.W.M. (1987). Sexual reproduction, larval morphology and behaviour in Demosponges from the southwest of the Netherlands, in: Vacelet, J.;Boury-Esnault, N. (Ed.) (1987). Taxonomy of Porifera from the N.E. Atlantic and Mediterranean Sea. NATO ASI Series G: Ecological sciences, 13: pp. 281-307
    Wastra, M. and Van Soest, R. W. M., 1987. Sexual reproduction, larval morphology and behaviour in demosponges from the southwest of the Netherlands. In “Taxonomy of Porifera” (J. VACELET and N. BOURY-ESNAULT, Eds.), pp. 281-307. Springer-Verlag, Berlin.
    Weiss, I.M., Gohring, W., Fritz, M. and Mann, K., 2001. Perlustrin, a Haliotis laevigata (Abalone) nacre protein, is homologous to the insulin-like growth factor binding protein N-terminal module of vertebrates. Biochem Biophys Res Comm 285:244–249.
    Weiss, I.M., Kaufmann, S., Mann, K. and Fritz, M., 1999. Purification and characteriztion of Perlucin and Perlustrin, two new proteins from the shell of the mollusc, Haliotis laevigata. Biochem Biophys Res Comm 267:17–21.
    Weiss, I.M., Tuross, N., Addadi, L. and Weiner, S., 2002. Mollusc larval shell formation: amorphous calcium carbonate is a precursor phase for aragonite. J Exp Zool 293:478–491.
    Wewer, U.M., Ibaraki, K., Schjorring, P., Durkin, M.E., Young, M.F., Albrechtsen, R., 1994. A potential role for tetranectin in mineralization during osteogenesis. J Cell Biol 127:1767–1775.
    Wieczorek, S. K. and Todd, C., 1998. Inhibition and facilitation of settlement of epifaunal marine invertebrate larvae by microbial biofilm cues. Biofouling 12: 81-118.
    Wiley-Liss Inc., New York, pp 169–246. Collier, J.R., 1997. Gastropods, the Snails. In: Gilbert, S.F. and Raunio, A.M. (eds) Embryology, Constructing the Organism. Sinauer Assoc, Sunderland, Massachusetts, pp 189–218.
    Williamson J.E., de Nys R., Kumar N., Carson D.G., Steinberg P.D., 2000. Induction of metamorphosis in the sea urchin Holopneustes purpurascens by a metabolite complex from the algal host Delisea pulchra. Biol Bull 198:332–345
    Willows, A.O.D., Pavlova, G.A. and Phillips, N.E., 1997. Modulation of ciliary beat frequency by neuropeptides from identified molluscan neurons. J. Exp. Biol., 200: 1433-1439.
    Wilson, H. V. and Penny, J. T. 1930. The regeneration of sponges (Microciona) from dissociated cells. J. Exp. Zool. 56: 72-134.
    Wilt, F.H., 1999. Matrix and mineral in the sea urchin larval skeleton. J Struct Biol 126:216–226.
    Wilt, F.H., 2002. Biomineralization of spicules of sea urchin embryos. Zool Sci 19:253–261.
    Woollacott R.M., Hadfield M.G., 1996. Induction of metamorphosis in larvae of a sponge. Invert Biol 115:257–262
    Woollacott, R. M. and Hadfield, M. G. 1989. Larva of the sponge Dendrilla cactus (Demospongiae: Dendroceratida). Trans. Am. Microsc. Soc. 108: 410-413.
    Woollacott, R. M., 1993. Structure and swimming behavior of the larva of Haliclona tubifera (Porifera: Demospongiae). J. Morph. 218: 301-321.
    Wray, G.A., McClay, D.R., 1988. The origin of spicule-forming cells in a primitive sea-urchin (Eucidaris tribuloides) which appears to lack primary mesenchyme cells. Development 103:305–315.
    Wulf E., Deboren A., Bautz F.A., Faulstich H., Wieland T., 1979. Fluorescent phallatoxin, a tool for the visualization of cellular actin. Proc Natl Acad Sci USA 76:4478–4502
    Wustman, B.A., Santos, R., Zhang, B. and Evans, J.S., 2002. Identification of a ‘‘glycine-loop''-like coiled structure in the 34 AA Pro, Gly, Met repeat domain of the biomineral-associated protein, PM27., Biopolymers 65:362–372.
    Xu, G. and Evans, J.S., 1999. Model peptide studies of sequence repeats derived from the intracrystalline biomineralization protein, SM50. I. GVGGR and GMGGQ repeats. Biopolymers 49:303–312.
    Yamamoto H., Okino T., Yoshimura E., Tachibana A., Shimizu K. and Fusetani N. 1997. Comparative physiology and biochemistry methyl farnesoate induces larval metamorphosis of the barnacle, Balanus amphitrite via protein kinase C activation. The Journal of Experimental Zoology, 278(6): 349-355.
    Zhang, B., Xu, G. and Evans, J.S., 2000. Model peptide studies of sequence repeats derived from the intracrystalline biomineralization protein, SM50. II. Pro, Asn-rich tandem repeats. Biopolymers 54:464–475.
    Zhang, B.,Wustman, B.A., Morse, D. and Evans, J.S., 2002. Model peptide studies of sequence regions in elastomeric biomineralization protein, Lustrin A. I. The C-domain concensus -PG-,-NVNCT-motif. Bioploymers 63:358–369.
    Zhao, G.Q., Eberspaecher, H., Seldin, M.F. and de Crombrugghe, B., 1994. The gene for the homeodomain-containing protein Cart-1 is expressed in cells that have a chondrogenic potential during embryonic development. Mech Dev 48:245–254.
    Zhou, H., Kartsogiannis, V., Hu, Y.S., Elliot, J., Quinn, J.M.W., McKinstry, W.J., Gillespie, M.T., Ng, K.W., 2001. A novel osteoblast-derived C-type lectin that inhibits osteoclast formation. J Biol Chem 276:14916–14923.
    Zhu, X., Mahairas, G., Illies, M., Cameron, R.A., Davidson, E.H. and Ettensohn, C.A., 2001. A large-scale analysis of mRNAs expressed by primary mesenchyme cells of the sea urchin embryo. Development 128:2615–2627.
    Zimmer R.L., 1991. Phoronida, in Reproduction of Marine Invertebrates, V.VI (Giese AC, Pearse JS, Pearse VB, eds) pp. 1–45. Boxwood Press, Pacific Grove, CA
    Zimmer, R. K. and Butman, C. A., 2000. Chemical signaling processes in the marine environment. Biol. Bull. 198: 168-187.
    Zoccola, D., Tambutte, E., Senegas-Balas, F., Michiels, J.-F, Failla, J.-P, Jaubert, J. and Allemand, D., 1999. Cloning of a calcium channel a1 subunit from the reef-building coral, Stylophora pistillata. Gene 227:157–167.
    张涛, 2000. 海洋无脊椎动物幼虫附着变态研究进展 I. 附着变态模型及人工诱导物在经济贝类苗种生产中的应用. 海洋科学, 24(2):38-41.
    张涛, 2000. 海洋无脊椎动物幼虫附着变态研究进展 I. 影响因子. 海洋科学, 24(1):25-29.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700