组织型纤溶酶原激活物及其抑制剂对血管平滑肌细胞增生迁移的作用及其有关机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
动脉粥样硬化(AS)作为导致脑梗塞、心肌梗塞、肢端坏疽,以及器官或组织功能丧失的主要病因,是引起死亡的主要原因之一。近十年来,经皮冠脉腔内成形术(PTCA)成为治疗冠状动脉粥样硬化疾病的常用手段。随着临床经验的积累及仪器设备的完善,临床应用越来越广泛。然而术后高达30-50%的再狭窄率仍是目前亟待解决的难题,也是PTCA进一步推广应用的一大障碍。血管平滑肌细胞(SMC)从中膜向内膜迁移以及在内膜、中膜增生在AS形成及PTCA术后再狭窄过程中都起着重要作用。血小板、内皮细胞、激活的单核细胞、SMC本身均可释放一些生长因子和细胞介质,例如:PDGF、bFGF、EGF、IGF-1等并通过相互协调,促进SMC的增生和迁移。尽管对SMC增生和迁移的机制已进行了大量的研究,但目前仍未十分清楚。一些研究提出纤溶酶原激活物(PAs)系统可能也参与SMC的增生和迁移。PAs是纤溶系统的主要成分,包括组织型(tPA)和尿激酶型(uPA)两种类型,其主要功能是使纤溶酶原转化成纤溶酶,纤溶酶使纤维蛋白和很大一部分细胞外基质成分降解,且使胶原酶原激活转变成胶原酶。虽然PAs对肿瘤细胞和其他一些细胞的作用已有所研究,但近年来Clowes等才在球囊损伤的鼠颈动脉壁观察到PAs表达,并认为可能与SMC的增生和迁移有关。动物实验显示PDGF,AngⅡ,PMA等均可刺激动脉壁PAs表达增加。近年来对动物和人的动脉壁及动脉粥样硬化斑块部位有关PAs和PAI-1的分布虽已进行了不少研究,但对PAs,PAI-1与血管SMC增生的关系仍很不清楚,一些研究结果也不完全一致。
     本项研究首先建立兔髂动脉损伤模型,用Fogarty球囊导管造成血管内皮剥脱,观察损伤前后血管壁结构的改变;在损伤前后测定血管壁tPA活性变化;以tPA cDNA为探针进行原位分子杂交,观察tPA与血管SMC增生和迁移的关系。研究发现在内皮剥脱后第4天,中膜SMC开始向内膜迁移,第7天,内膜已较明显增厚,以SMC成分为主。内皮剥脱导致中膜提取物中tPA活性明显升高,tPA活性的变化与tPA mRNA表达水平的变化一致。提示tPA活性的升高可能与
Atherosclerosis (AS) is known as the main cause of inducing the development of cerebral thrombosis, myocardial infarction, and gangrene of the extremities, accompanied with a very high mortality. Percutaneous transluminal coronary angioplasty (PTCA) has been adopted as a measure for the treatment of coronary atherosclerotic diseases since last decade. Increased experience in practice and improvement of the equipments, facilities as well as the consummation of indications have led PTCA to be more and more expanded in clinical application. However, the high incidence of restenosis following 30-50% of initially successful procedures remains the major problem to be resolved. It's considered that migration and proliferation of vessel smooth muscle cell (SMC) play a predominant role in the development of restenosis. Growth factors and cytokines, such as PDGF, bFGF, E:GF, IGF-1, released from platelets, endothelial cells, activated monocytes and SMC, work together and stimulate SMC undergoing migration and proliferation. Although a lot of studies have been carried out, anyhow, the mechanism of SMC migration and proliferation in case of restenosis still remains not well understood.
    Data of recent investigations have suggested that plasminogen activators (PAs) system may play an important role in this process. Plasminogen activators, including tissue-type plasminogen activator(tPA) and urokinase-type plasminogen activator (uPA), are the major parts of fibrinolytic system. The principal function of these two plasminogen activators is to convert plasminogen to plasmin. Plasmin in turn degrades not only fibrin but also a broad range of extracellular matrix molecules. It also activates procollagenase to collagenase. Even though the effects of PAs on tumor and other cells have been studied and published, Clowes et al provided initial evidence for the expression of PAs in a balloon-injured rat carotid artery only
引文
1. World Health Organization: Classification of atherosclerotic lesions. WHO Tech Rep Serv 1985; 143: 1-20
    2. Ross R, Glomset JA. Atherosclerosis and the arterial smooth muscle cell. Science. 1973; 180: 1332-1339
    3. Ross R. Atherosclerosis: A Defense Mechanism Gone Awry. Am. J. Pathol. 1993; 143: 987-1002
    4. Clowes AW, Reidy MA, Clowes MM. Kinetics of Cellular Proliferation After Arterial Injury. I. Smooth Muscle Growth in the Absence of Endothelium. Lab Invest. 1983; 49: 327-333
    5. Austin GE, Norman NB, Hollman J, et al. Intimal Proliferation of Smooth Muscle Cells as an Explanation for Recurrent Coronary Artery Stenosis After Percutaneous Transluminal Coronary Angioplasty. J Am Coil Cardiol. 1985; 6: 369-375
    6. Morimoto S, Mizuno Y, Hiramitsu S, et al. Restenosis After Percutaneous Transluminal Coronary Angioplasty. 1990; 54: 43-56
    7. Dano K, Andreasen PA, Grondahl-Hansen J, et al. Plasminogen activators, tissue degradation, and cancer. Adv Cancer Res, 1985; 44: 139
    8. Schleeft RA, Birdwell CR: The effect ofproteases on endothelial cell migration in vitro. Exp Cell Res. 1982; 141: 503-508
    9. Kirchheimer JC, Wojta J, Christ G, et al. Proliferation of a human epidermal tumor cell line stimulated by urokinase. FASEB J. 1987; 1: 125-128
    10. Ossowski L. Plasminogen activator dependent pathways in the dissemination of human tumor cells in the chick embryo. Cell. 1988; 52: 321-328
    11. Pepper MS, Vassalli J-D, Montesano R, et al. Urokinase-type plasminogen activator is induced in migrating cappillary endothelial cells. J Cell Biol. 1987; 105: 2535-2541
    12. Clowes AW, Clowes MM, Au YPT, et al. Smooth muscle cells express urokinase during mitogenesis and tissue-type plasminogen activator during migration in injured rat carotid artery. Circ Res, 1990; 67: 61-67
    13. Sperti G, et al. Platelet-derived growth factor increases plasminogen activator inhibitor-1 activity and mRNA in rat cultured vascular smooth muscle. Ann N Y Acad Sci. 1992; 667: 178-180
    14. van-Leeuwen RTJ, Kd A, Andreotti F, et al. Angiotensin Ⅱ increases plasminogen activator messenger RNA in cultured rat aortic smooth muscle cells. Circulation. 1994; 90: 362-368
    15. Au YPT, Kenagy RD, Clowes AW, et al. Heparin selectively inhibits the transcription of tissue-type plasminogen activator in primate arterial smooth muscle cells during mitogenesis. J Biol Chem. 1992; 267: 3438-3444
    16. Padro T, Quax PHA, van den Hoogen CM, et al. Tissue-type plasminogen activator and its inhibitor in rat aorta. Effect of endotoxin. Arterioscler Thromb. 1994; 14: 1459-1465
    17. Raghunath PN, Tomaszewski JE, Brady ST, et al. Plasminogen activator system in human coronary atherosclerosis. Arterioscler Thromb Vasc Biol. 1995; 15: 1432-1443
    18. Lupu F, Helm DA, Bachmann F, et al. Plasminogen Activator Expression in human??atherosclerotic lesions. Arterioscler Thromb Vasc Biol. 1995; 15:1444-1455
    19.More RS, Underwood MJ, Brack MJ, et al. Changes in vessel wall plasminogen activator activity and smooth muscle cell proliferation and activation after arterial injury. Cardiovasc Res. 1995; 29:22-26
    20.Herbert JM, Lamarche I, Prabonnand V, et al. Tissue-type plasminogen activator is a potent mitogen for human aortic smooth muscle cells. J Biol Chem. 1994;269:3076-3080
    21.张哲,陈辉:实用病理组织染色技术。 1988;PP35-57 辽宁科学技术出版社沈阳
    22.Thomas Spector. Refinement of the Coomassie Blue Method of protein quantitation. Analytical Biochemistry. 1978; 86: 142-146
    23.Ross R. The smooth muscle cell II. Growth of SMC in culture and formation of elastin fibers. J Cell Biol. 1971; 50: 172-176
    24.Nermecek GM, SR Coughlin, DH Handley, et al. Stimulation of aortic smooth muscle cell mitogeneic by serotonin. Proc Natl Acad Sci USA. 1986; 83: 674-678
    25.Plumb JA, Milroy R, Kaye SB. Effects of the pH dependence of 3-(4,5- dimethyIthiazol-2-yl)-2,5,diphenyl-tetrazolium bromide-formazan absorption on chemosensitivity determined by a novel tetrazolium-based assay. Cancer Res. 1989; 49: 4435-4440
    26.Sambrook J, EF Fritsch, T Maniatis. Molecular Cloning. A Laboratory Manual. 2nd ed. Cold Spring Harbor Laboratory Press, 1989
    
    27.Chomaczinski P. Single-step method of RNA isolation by acid guanidium thiocyanate-phenol-choloroform extraction. Annal Biochem. 1987; 162: 156-16
    28.Baumgartner HR. Eine neue methode zur erzeugung vor thromben durch gezielte uberdehnung der defasswand. Z. Ges. Exp. Med. 1963; 137:227
    29.Gruentzig A. Transluminal dilation of coronary artery stenoses. Lancet. 1978; I:263
    30.Waller BF. Crackers, stretchers, drillers, scrapers, shavers, burners, welders, melters. The future treatment of coronary artery disease? A clinico-morphologic assessment. J Am Coll Cardiol. 1988; 13:969
    
    31.Brady AJB, Warren JB. Angioplasty and restenosis. Br Med J. 1991; 303:729-730
    32.Forrester JS, Fishbein M, Helfart R, et al. A paradigm for restenosis based on cell biology. Clues for the development of new preventative strategies. J Am Coll Cardiol. 1991; 17:758
    33.Mustard JF, Packham MA, Kinlough-Rathbone RL, et al. Platelets, blood flow, and the vessel wall. Circulation. 1990; 81(Suppl I): I-24-I-27.
    34.Fingerle J, Johnson R, Clowes AW, et al. Role of platelets in smooth muscle cell proliferation and migration after vascular injury in rat carotid artery. Proc Natl Acad Sci USA. 1989;86:8412-8416
    35. Ferns GA, Raines EW, Sprugel KH, et al. Inhibition of neointimal smooth muscle accumulation after angioplasty by an antibody to PDGF. Science. 1991;253:1129-1132
    36.Lindner V, Majack RA, Reidy MA. Basic fibroblast growth factor stimulates endothelial regrowth and proliferation in denuded arteries. J Clin Invest.1990;85.2004-2008
    37.Dzau VE, Pratt R, Gibbons G, et al. Molecular mechanisms of angiotensin in??regulation of vascular and cardiac growth. J Mof Cell Cardiol. 1989; 21(Suppl.III):57
    
    38.Sato Y, Rifkin DB. Inhibition of endothelial cell movement by pericytes and smooth muscle cells: activation of a latent transforming growth factor-β1-like molecule by plasmin during co-culture. J Cell Biol. 1989; 109: 309-315
    39.Saksela O, Rifkin DB. Release of basic fibroblast growth factor-heparan sulfate complexes from endothelial cells by plasminogen activator-mediated proteolytic activity. J Cell Biol. 1990; 110:769-775
    40.Hamsten A, Walldius G, Szamosi A, et al. Plasminogen activator inhibitor in plasma: risk factor for recurrent myocardial infarction. Lancet. 1987; 2: 3-9
    41.Rocha E, Alfaro MJ, Paramo JA, et al. Preoperative identification of patients at high risk of deep venous thrombosis despite prephylaxis in total hip replacement. Thromb Haemost. 1988; 59: 93-95
    42.More RS, Underwood MJ, Brack MJ, et al. Changes in vessel wall plasminogen activator activity and smooth muscle cell proliferation and activation after arterial injury. Cardiovasuclar Research. 1995;29:22-26
    43.Lupu F, Heim DA, Bachmann F, et al. Plasminogen activator expression in human atherosclerotic lesions. Arterioscler Thromb Vasc Biol. 1995;15:1444-1455
    44.Liotta LA, Goldfaro RH, Brundage R, et al. Effect of plasminogen activator (urokinase), plasmin, and thrombin on glycoprotein and collagenous components of basement membrane. Cancer Res. 1981; 41: 4629-4636
    45.Bjorkerud S. Impaired fibrinolysis-inducing capacity for postinjury phenotype of cultivated human arterial and human atherosclerotic intimal smooth muscle cells. Circ Res. 1988; 62: 1011-1018
    46.Sperti G, van Leeuwen RTJ, Quax PHA, et al. Cultured rat aortic vascular smooth muscle cells digest naturally produced extracellular matrix. Circ Res. 1992;71:385-392
    47. Jackson CL, Raines EW, Ross R, et al. Role of endogenous platelet-derived growth factor in arterial smooth muscle cell migration after balloon catheter injury. Arterioscler Thromb. 1993;13:1218-1226
    48.Bjorkerud S. Impaired fibrinolysis-inducing capacity for postinjury phenotype of cultivated human arterial and human atherosclerotic intimal smooth muscle cells. CircRes. 1988; 62: 1011-1018
    49.Reilly CF, McFall RC. Platelet-derived growth factor and transforming growth factor-3 regulate plasminogen activator inhibitor-1 synthesis in vascular smooth muscle cells. J Biol Chem. 1991; 266: 9419-9427
    
    50.Gelehrter TD, Sznycer-Laszuk R. Thrombin induction of plasminogen activator- inhibitor in cultured human endothelial cells. J Clin Invest. 1986; 77: 165-169
    51.Korner G, Bjornsson TD, Vlodavsky I. Extracellular matrix produced by cultured corneal and aortic endothelial cells contains active tissue-type and urokinase-type plasminogen activators. J Cell Physiol. 1993; 154: 456-465
    
    52. Palinski W, Rosenfeld ME, Yla-Herttuala S, et al. Low density lipoprotein undergoes oxidative modification in vivo. Proc Natl Acad Sci USA. 1989;86:1372-1376
    
    53. Haberland ME, Fong D, Cheng L. .Malondialdehyde-altered protein occurs in??atheroma of Watanabe heritable hyperlipidemic rabbits. Science. 1988;241:215-218
    
    54. Bjorkerud S, Bjorkerud B. Lipoproteins are major and primary mitogens and growth promoters for human arterial smooth muscle cells and lung fibroblasts in vitro. Arterioscler Thromb. 1994;14:288-298
    
    55. Chatterjee S. Role of oxidized human plasma low density lipoproteins in atherosclerosis: effects on smooth muscle cell proliferation. Mol Cell Biochem.1992;111:143-147
    
    56. Boulanger CM, Tanner FC, B'ea ML, et al. Oxidized low density lipoproteins induce mRNA expression and release of endothelin from human and porcine endothelium. Circ Res. 1992;70:1191-1197
    
    57. Stiko-RA, Hultgardh-NA, Regnstrom J, et al. Native and oxidized LDL enhances production of PDGF-AA and the surface expression of PDGF receptors in cultured human smooth muscle cells. Arterioscler Thromb. 1992;12:1099-1109
    
    58. Zwijsen RM, Japenga SC, Heijen AM, et al. Induction of platelet-derived growth factor chain A gene expression in human smooth muscle cells by oxidized low density lipoproteins. Biochem Biophys Res Commun. 1992;186:1410-1416
    
    59. Kraemer R, Pomerantz KB, Joseph-Silverstein J, et al. Induction of basic fibroblast growth factor mRNA and protein synthesis in smooth muscle cells by cholesteryl ester enrichment and 25-hydroxycholesterol. J Biol Chem. 1993;268:8040-8045
    
    60. Hayashi K, Nishio E, Nakashima K, et al. Role of cholesterol-accumulating macrophages on vascular smooth muscle cell proliferation. Clin Biochem.1992;25:345-349
    
    61. Hahn AW, Ferracin F, Buhler FR, et al. Modulation of gene expression by high and low density lipoproteins in human vascular smooth muscle cells. Biochem Biophys Res Commun. 1991;178:1465-1471
    
    62. Resink TJ, Tkachuk VA, Bernhardt J, et al. Oxidized low density lipoproteins stimulate phosphoinositide turnover in cultured vascular smooth muscle cells. Arterioscler Thromb. 1992;12:278-285
    
    63. Resink TJ, Rybin V, Bernhardt J, et al. Cellular signalling by lipoproteins in cultured smooth muscle cells from spontaneously hypertensive rats. J Vasc Res.1993 ;30:169-180
    
    64. Kusuhara M, Chait A, Cader A, et al. Oxidized LDL stimulates mitogen-activated protein kinases in smooth muscle cells and macrophages. Arterioscler Thromb Vasc Biol. 1997;17:141-148
    
    65. Bjorkerud B, Bjorkerud S. Contrary effects of lightly and strongly oxidized LDL with potent promotion of growth versus apoptosis on arterial smooth muscle cells, macrophages, and fibroblasts. Arteriolcler Thromb Vasc Biol. 1996;16:416-424
    
    66. Sawa H, Sobel BE, Fujii S. Potentiation by hypercholesterolemia of the induction of aortic intramural synthesis of plasminogen activator inhibitor type 1 by endothelial injury. Circ Res. 1993; 73: 671-680
    
    67. Kelly K, Cochran BH, Stiles CD, et al. Cell-Specific regulation of the c-myc gene by lymphocyte mitogens and platelet-derived growth factor. Cell. 1983; 35: 603-610
    
    68. Rabbitts PH, Watson JV, Lamond A, et al. Metabolism of c-myc gene products: c- myc mRNA and protein expression in the cell cycle. EMBO J. 1985; 4:2009-201569. Hann SR, Thompson CB, Eisenman RN. c-myc oncogene protein synthesis is independent of the cell cycle in human and avian cells. Nature(London). 1985;314:366-369 Studzinski GP, Brelvi ZS, Feldman SC, et al.
    
    70. Stewart TA, Pattengale PK, Leder P. Transforming growth factor β1 suppression of c-myc gene transcription: Role in inhibition of keratinocyte proliferation. Cell.1984; 38:627-637
    
    71. Kaddurah-Daouk R, Greene JM, Baldwin AS Jr, et al. Activation and repression of mammalian gene expression by the c-myc protein. Genes Dev. 1987;1:347-357
    
    72. Iguchi-Ariga SMM, Itani T, Kiji Y, et al. Possible function of the c-myc product: promotion of cellular DNA replication. EMBO J. 1987;6:2365-2371
    
    73. Klagsbrum M, ER Edelman. Biological and biochemical properties of fibroblast growth factors. Arteriosclerosis. 1989; 9:269-278
    
    74. Banskota NK, Taub R, Zellner K, et al. Insulin, insulin-like growth factor 1 and platelet-derived growth factor interat additively in the induction of the protooncogene c-myc and cellular proliferation in cultured bovine aortic smooth muscle cells. Molec Endocrin. 1989;3:1183-1190
    
    75. Kindy MS, Sonenshein GE. Regulation of oncogene expression in cultured aortic smooth muscle cells. J Biol Chem. 1986;261:12865-12868
    
    76. Castellot JJ, Pukac LA, Caleb BL, et al. Heparin selectively inhibits a protein kinase c-dependent mechanism of cell cycle progression in calf aortic smooth muscle cells. J Cell Biol. 1989;109:3147-3155
    
    77. Ryseck RP, Hirai SI, Yaniv M, et al. Transcriptional activation of c-jun during the G_0/G_1 transition in mouse fibroblasts. Nature(London). 1988;334:535-537
    
    78. Hall DJ, Stiles CD: Platelet-derived growth factor-inducible genes respond differentially to at least two distinct intracellular messengers. J Biol Chem. 1987;262:15302-15308
    
    79. Coughlin SR, Lee WMF, Williams PW, et al. c-myc gene expression if stimulated by agents that activate protein kinase C and does not account for the mitogenic effect of PDGF. Cell. 1985; 43:243-251
    
    80. McCaffrey P, Ran W, Campisi J. et al. Two independent growth factor-generated signals regulate c-fos and c-myc mRNA levels in Swiss 3T3 cells. J Biol Chem.1987;262:1442-1445
    
    81. Holt JT, Redner RL, Nienhuis AW. An oligomer complementary to c-myc mRNA inhibits proliferation of HL-60 promyelocytic cells and induces differentiation. Mol Cell Biol. 1988;8:963-973
    
    82. Shi Y, Hutchinson HG, Hall DJ, et al. Down regulation of c-myc expression by antisense oligonucleotides inhibits proliferation of human smooth muscle cells. Circulation. 1993;88:1190-1195
    
    83. Rustgi AK, Dyson N, Bernards R. Amino-terminal domains of c-myc and N-myc proteins mediate binding to the retinoblastoma gene product. Nature(London).1991;352:541-544
    
    84. Blackwood EM, Eisenman RN. Max: a helix-loop-helix zipper protein that forms a sequence-specific DNA-binding complex with myc. Science. 1991 ;251:1211-1217
    
    85. Furukawa Y, Piwnica-Worms H,Ernst TJ, et al. cdc2 Gene expression at the G_1 to S transition in human T lymphocytes. Science. 1990;250:805-80886. Herman JPR, Hermans WRM, Vos J, et al. Pharmacological approaches to the prevention of restenosis following angioplasty. The search for the holy grail? (Part I). Drugs. 1993;46:18-52
    
    87. Franklin SM, Faxon DP. Pharmacologic prevention of restenosis after coronary angioplasty: review of the randomized clinical trials. Coronary Artery Dis.1993;4:232-242
    
    88. Popma JJ, Califf RM, Topol EJ. Clinical trials of restenosis after coronary angioplasty. Circulation. 1991;84:1426-1436
    
    89. Landzberg BR, Frishman WH, Lerrick K. Pathophysiology and pharmacological approaches for prevention of coronary artery restenosis following coronary artery balloon angioplasty and related procedures. Progress in Cardiovascular Diseases.1997; XXXIX:361-398
    
    90.Thierry AR, Rahman A, Dritschilo A. Liposomal delivery as a new approach to transport antisense oligonuleotides. In: Erickson R, Izant JG, eds. Gene Regulatin:Biology of Antisense RNA and DNA. New York: Raven Press Ltd;1992:147-161
    
    91.Thuong NT, Asseline U, Roig V, et al. Oligo(α-deoxynucleotide)s covalently linked to intercalating agents: differential binding to ribo-and deoxyribopoly nucleotides and stability towards nuclease digestion. PNAS USA. 1987;84:5129-5133
    
    92. Wickstrom EL, Bacon TA, Gonzalez A, et al. Human promyelocytic leukemia HL-60 cell proliferation and c-myc protein expression are inhibited by an antisense pentadecadeoxynucleotide targeted against c-myc mRNA. PNAS USA.1988;85:1028-1033
    
    93. Verspieren P, Cornelissen AWCA, Thuong NT, et al. An acridine-linked oligodeoxynucleotide targeted to the common 5' end of trypanosome mRNAs kills cultured parasites. Gene. 1987;61.307-315
    
    94. Doan TL, Perrouault L, Helene C. Targeted cleavage of polynucleotides by complementary oligonucleotides covalently linked to iron-porphyrins. Biochemistry.1986;25:6736-6739
    
    95. Eckstein F. Investigation of enzyme mechanisms with nucleoside phosphorothioates. Annu Rev Biochem. 1985;54:367-402
    
    96. Hayashi K, Makino R, Kawamura H, et al. Characterization of rat c-myc and adjacent regions. Nucleic Acids Res. 1987;15:6419-6436
    
    97. Bennett MR, Anglin S, McEwan JR, et al. Inhibition of vascular smooth musxle cell proliferation in vitro and in vivo by c-myc antisense oligodeoxynucleotides. J Clin Invest. 1994;93:820-828
    
    98. Edelman ER, Simons M, Sirois MG, et al. c-myc in vasculoproliferative disease. Circ Res. 1995;76:176-182
    1. Gruentzig A, Senning A, Siegenthaler WE. Nonoperative dilatation of coronary artery stenosis. Percutaneous transluminal coronary angioplasty. N Engl J Med.1979;301:61-68
    
    2. Holmes DR Jr, Berger PB. Complex and multivessel dilation. In: Topol EJ, ed. Textbook of interventional cardiology. Philadelphia: WB Saunders. 1994:231-250
    
    3. deFeyter PJ, Serruys PW. Percutaneous transluminal coronary angioplasty for unstable angina. In: Topol EJ, ed. Textbook of interventional cardiology. Philadelphia: WB Saunders. 1994:274-291
    
    4. Grines CL, Browne KF, Marco J, et al. A comparison of immediate angioplasty with thrombolytic theratpy for acute myocardial infarction. N Engl J Med.1993;328:673-679
    
    5. Vogel RA. Elective supported angioplasty registry: benefit of prophylactic cardiopulmonary bypass support in low ejection fraction. Circulation. 1992;86 (Suppl I):I-787-I-780
    
    6. Nobuyoshi M, Kimura T, Nosaka H, et al. Restenosis after successful percutaneous transluminal coronary angioplasty: serial angiographic follow-up of 229 patients. J Am Coll Cardiol. 1988;12:616
    
    7. McBride W, Lange RA, Hillis LD. Restenosis after successful coronary angioplasty. Pathophysiology and prevention. N Engl J Med. 1988;318:1734-1737
    
    8. Bauters C, McFadden EP, Lablanche JM, et al. Restenosis rate after multiple percutaneous transluminal coronary angioplasty procedures at the same site: a quantitative angiographic study in consecutive patients undergoing a third angioplasty for a second restenosis. Circulation. 1993;88:969-974
    
    9. Berk BC, Taubman MB, Griendling KK, et al. Thrombin stimulated events in cultured vascular smooth muscle cells. J Biol Chem. 1990;265:1734-1740
    
    10. Walker LN, Bowen-Pope DF, Ross R, et al. Production of platelet-derived growth factor-like molecules by cultured arterial smooth muscle cells??accompanies proliferation after arterial injury. Proc Natl Acad Sci USA.1986;83:7311-7315.
    
    11. Bell L, Madri JA. Effect of platelet factors on migration of cultured bovine aortic endothelial and smooth muscle cells. Circ Res. 1989;65:1057-1065
    
    12. Dartsch PC, Voisard R, Bauriedel G, et al. Growth characteristics and cytoskeletal organization of cultured smooth muscle cells from human primary stenosing and restenosing lesions. Arteriosclerosis. 1990; 10:62-75
    
    13. Muller DWM, Ellis SC, Topol EJ. Experimental models of coronary restenosis. J Am Coll Cardiol. 1992; 19:418-432
    
    14. Clowes AW, Clowes MM. Kinetics of cellular proliferation after arterial injury. II: Inhibition of smooth muscle growth by heparin. Lab Invest. 1985;52:611-616
    
    15. Clowes AW, Reidy MA, Clowes MM. Mechanisms of stenosis after arterial injury. Lab Invest. 1983,49:208-215
    
    16. Gellman J, Ezekowitz MD, Sarembock IJ. Effect of lovastatin on intimal hyperplasia after balloon angioplasty: a study in an atherosclerotic hypercholesterolemic rabbit. J Am Coll Cardiol. 1991; 17:251-259
    
    17. Schwartz RS, Murphy JG, Edwards WD, et al. Restenosis after balloon angioplasty: a practical proliferative model in porcine coronary arteries. Circulation. 1990;82:2190-2200
    
    18. Clowes AW, Reidy MA, Clowes MM. Kinetics of cellular proliferation after arterial injury: I. Smooth muscle growth in absence of endothelium. Lab Invest.1983;49:327-332
    
    19. Waller BF. Crackers, stretchers, drillers, scrapers, shavers, burners, welders, melters. The future treatment of coronary artery disease? A clinico-morphologic assessment. J Am Coll Cardiol. 1988; 13:969
    
    20. Brady AJB, Warren JB. Angioplasty and restenosis. Br Med J. 1991; 303:729
    
    21. Forrester JS, Fishbein M, Helfart R, et al. A paradigm for restenosis based on cell biology. Clues for the development of new preventative strategies. J Am Coll Cardiol. 1991; 17:758
    
    22. Gibbons GH, Dzau VJ. The emerging concept of vascular remodeling. N Engl J Med. 1994;330:1431-1438
    23. Mustard JF, Packham MA, Kinlough-Rathbone RL, et al. Platelets, blood flow, and the vessel wall. Circulation. 1990; 81(Suppl I): I-24-I-27.
    
    24. Schwartz SM, Campbell CR, Campbell JH. Replication of smooth muscle cells in vascular disease. Circ Res. 1986;58:427-444
    
    25. Lam JYT, Chesebro JR, Steele PM, et al. Deep arterial injury during experimental angioplasty: relations to a positive indium 111 labeled platelet scintigram, quantitative platelet deposition and mural thrombosis. J Am Coll Cardiol. 1986;8:1380-1386
    
    26. Liu MW, Roubin GS, King S. Restenosis after coronary angioplasty. Potential biologic determinants and role of intimal hyperplasia. Circulation. 1989;79:1374-1387
    
    27. Oates JA, Fitzgerald GA, Branch RA, et al. Clinical implications of prostaglandin and thromboxane A2 formation. N Engl J Med. 1988;319:689-698
    
    28. Miano JM, Tota RR, Vlasic N, et al. Early proto-oncogene expression in rat aortic smooth muscle cells following endothelial removal. Am J Pathol. 1990; 137:761-765
    
    29. Bauters C, de Groote P, Adamantides M, et al. Proto-oncogene expression in rabbit aorta alter wall injury. First marker of the cellular process leading to restenosis after angioplasty? Eur Heart J. 1992;13:556-559
    
    30.Pardee AB. G1events and regulation of cell proliferation. Science.1989;246:603-608
    
    31. Miano JM, Viasic N, Tota RR. Localization of fos and jun proteins in rat aortic smooth muscle cells after vascular injury. Am J Pathol. 1993; 142:715-724
    
    32. Reed JC, Alpers JD, Nowell PC, et al. Sequential expression of protooncogenes during lectin-stimulated mitogenesis of normal human lymphocytes. Proc Natl Acad Sci USA. 1986;83:3982-3986
    
    33. Majesky MW, Schwartz SM, Clowes MM, et al. Heparin regulates smooth muscle S phase entry in the injured-rat carotid artery. Circ Res. 1987;61:296-300
    
    34. Clowes AW, Clowes MM, Fingerle J, et al. Regulation of smooth muscle cell growth in injured artery. J Cardiovasc Pharmacol. 1989;14(Suppl 6):S12-15
    35. Rubbia L, Gabbiani G. The cytoskeleton of arterial smooth muscle cells during development, atheromatosis and tissue culture. J Cardiovasc Pharmacol. 1989;14(Suppl 6):S9-S11
    
    36. Boyd CD,Kniep AC, Pierce RA, et al. Increased elastin mRNA levels associated with surgically induced intimal injury. Conn Tiss Res. 1988;18:65-78
    
    37. Bauters C, Marotte F, Hamon M, et al. Accumulation of fetal fibronectin mRNAs after balloon denudation of rabbit arteries. Circulation. 1995;92:904-911
    
    38. Schwartz RS, Holmes DR, Topol EJ. The restenosis paradigm revisited: an alternative proposal for cellular mechanisms. J Am Coll Cardiol. 1992;20:1284-1293
    
    49. Clowes AW, Clowes MM, Kocher O, et al. Arterial smooth muscle cells in vivo: relationship between actin isoform expression and mitogenesis and their modulation by heparin. J Cell Biol. 1988; 107:1939-1945
    
    40. Lindner W, Reidy MA, Fingerle J. Regrowth of arterial endothelium. Denudation with minimal trauma leads to complete endothelial cell regrowth. Lab Invest.1989;61.556-563
    
    41. Reidy MA, Clowes AW, Schwartz SM. Endothelial regeneration: V. Inhibition of endothelial regrowth in arteries of rat and rabbit. Lab Invest. 1983;49:569-575
    
    42. Austin GE, Norman NB, Hollman J, et al. Intimal proliferation of smooth muscle cells as an explanation for recurrent coronary artery stenosis after percutaneous transluminal coronary angioplasty. J Am Coll Cardiol. 1985;6:369-375
    
    43. Johnson DE, Hinohara T, Selmon MR, et al. Primary peripheral arterial stenoses and restenoses excised by transluminal atherectomy: a histopathologic study. J Am Coll Cardiol. 1990,15:419-425
    
    44. Waller BF, Pinkerton CA, Rothbaum DA, et al. Restenosis tissue following hot tip laser, excimer laser, primary atherectomy and balloon angioplasty procedures: histologically similar intimal proliferation in 33 atherectomy patients (abstr). Circulation. 1990;82(Suppl III):312
    
    45. Serruys PW, Luijten HE, Beatt KJ, et al. Incidence of restenosis after successful coronary angioplasty: a time related phenomenon: A quantitative angiographic study in 342 patients at 1,2,3 and 4 months. Circulation. 1988;77:361-371
    46. Ueda M, Becker AE, Tsukada T, et al. Fibrocellular tissue response after percutaneous transluminal coronary angioplasty. An histochemical analysis of the cellular composition. Circulation. 1991;83:1327-1332
    
    47. Ohara T, Nanto S, Asada S, et al. Ultrastructural study of proliferating and migrating smooth muscle cells at the site of PTCA as an explanation for restenosis (abstr). Circulation. 1988;78(Suppl II):90
    
    48. Gravanis MB, Roubin GS. Histopathologic phenomena at the site of percutaneous transluminal coronary angioplasty: the problem of restenosis. Hum Pathol. 1989;20:477-485
    
    49. Fischell TA, Derby G, Tse TM, et al, Coronary artery vasoconstriction routinely occurs after percutaneous transluminal coronary angioplasty. A quantitative arteriographic analysis. Circulation. 1988;78:1323-1334
    
    50. Rensing BJ, Hermans WR, Straus BH, et al. Regional differences in elastic recoil after percutaneous transluminal coronary angioplasty: A quantitative angiographic study. J Am Coll Cardiol. 1991;17:34B-38B
    
    51. Waller BF, Pinkerton CS, Orr CM, et al. Restenosis 1 to 24 months after clinically successful coronary balloon angioplasty: A necropsy study of 20 patients. J Am Coll Cardiol. 1991;17:58B-70B
    
    52. Waller BF, Pinkerton CA, Foster LN: Morphologic evidence of accelerated left main coronary disease: A late complication of percutaneous transluminal coronary angioplasty of the proximal left anterior descending coronary artery. J Am Coll Cardiol. 1987;9:1019-1023
    
    53. Waller BF, Pinkerton CA, Orr CM, et al. Morphologic observations late (>30 days) after clinically successful coronary balloon angioplasty: An analysis of 20 necropsy patients and review of 41 necropsy patients with coronary angioplasty restenosis. Circulation. 1991;83(suppl I):I-28-I-41
    
    54. Deutsch E, Gerber RS, Martin JL, et al. Initial lesion eccentricity predicts restenosis after successful coronary angioplasty. J Am Coll Cardiol. 1993;21(suppl A):34A
    
    55. Kakuta T, Currier JW, Haudenschild CC, et al. Differences in compensatory vessel enlargement, not intimal formation, account for restenosis afterangioplasty in the hypercholesterolemic rabbit model. Circulation. 1994;89:2809-2815
    
    56. Mintz GS, Kovach JA, Pichard AD, et al. Geometric remodeling is the predominant mechanism of clinical restenosis after coronary angioplasty. J Am Coll Cardiol. 1994;23(suppl I):138A
    
    57. Bier JD, Kakuta T, Currier JW, et al. Arterial remodeling: Importance in primary versus restenotic lesions. J Am Coll Cardiol. 1994;23(suppl I):139A
    
    58. Mintz GS, Douek PC, Bonner RF, et al. Intravascular ultrasound comparison of de novo and restenotic coronary artery lesions. J Am Coll Cardiol. 1993;21:118A-1180(Abstract)
    
    59. Glagov S: Intimal hyperplasia, vascular modeling and the restenosis problem. Circulation. 1994;89:2888-2891
    
    60. Kern MJ, Anderson HV, Talley JD, et al. Relationship of postprocedural distal coronary flow dynamics with restenosis after coronary angioplasty: Results of a multicenter pilot study. J Am Coll Cardiol. 1994;23(suppl I):137A
    
    61. Vanhoutte PM. The endothelium modulator of vascular smooth muscle tone. N Engl J Med. 1989;319:512-513
    
    62. Reidy MA, Schwartz SM. Endothelial regeneration:III. Time course of intima of changes after small defined injury of rat aortic endothelium. Lab Invest.1981,44:301-308
    
    63. Fingerle J, Tina AU YP, Clowes A, et al. Intimal lesion formation in rat carotid arteries after endothelial denudation in absence of medial injury. Arteriosclerosis.1990;10:1082-1087
    
    64. Castellot JJ, Addonizio ML, Rosenberg R, et al. Cultured endothelial cells produce a heparinlike inhibitor of smooth muscle cell growth. J Cell Biol.1981;90:372-379
    
    65. Assender JW, Southgate KM, Newby AC. Does nitric inhibit smooth muscleproliferation? J Cardiovasc Pharmacol. 1991;17:S104-107
    
    66. Garg UC, Hassid A. Nitric oxide-generating vasodilatators and 8-bromo-cyclic guanosine monophosphate inhibit mitogenesis and proliferation of cultured rat vascular smooth muscle cells. J Clin Invest. 1989;83:1774-1777
    67. Palmer RMJ, Ferrige AG, Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature. 1987; 327:524-526
    
    68. Ignarro LJ, Buga GM, Wood KS, et al. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci USA. 1987;84:9265-9269
    
    69. Fingerle J, Johnson R, Clowes AW, et al. Role of platelets in smooth muscle cell proliferation and migration after vascular injury in rat carotid artery. Proc Natl Acad Sci USA. 1989;86:8412-8416
    
    70. Goldberb ID, Stemerman MB. Vascular permeation of platelet factor 4after endothelial injury. Science. 1980;209:611-612
    
    71. Friedman RJ, Stemerman MB, Wenz B, et al. The effect of thrombocytopenia on experimental arteriosclerotic lesion formation in rabbits. J Clin Invest. 1977:60:1191-1201
    
    72. Fuster V, Badimon L, Badimon JJ, et al. The pathogenesis of coronary artery disease and the acute coronary syndromes. N Engl J Med. 1992;326:242-250
    
    73. McNamara CA, Sarembock IJ, Gimple LW, et al. Thrombin stimulates proliferation of cultured rat aortic smooth muscle cells by a proteolytically activated receptor. J Clin Invest. 1993;91:94-98
    
    74. Berk BC, Taubman MB, Griendling KK, et al. Thrombin stimulated events in cultured vascular smooth muscle cells. J Biol Chem. 1990;265:1734-1740
    
    75. den Heijer P, Foley DP, Escaned J, et al. Angioscopic versus angiographic detection of intimal dissection and intracoronary thrombus. J Am Coll Cardiol.1994;24:649-654
    
    76. Bauters C, Lablanche JM, McFadden EP, et al. Relation of coronary angioscopic findings at coronary angioplasty to angiographic restenosis. Circulation. 1995;92:2473-2479
    
    77. De Groote P, Bauters C, McFadden EP, et al. Local lesion-related factors and restenosis after coronary angioplasty: evidence from a quantitative angiographic study in patients with unstable angina undergoing doulbe-vessel angioplasty. Circulation. 1995;91:968-972
    78. Bauters C, Khanoyan P, McFadden EP, et al. Restenosis after delayed coronary angioplasty of the culprit vessel in patients with a recent myocardial infarction treated by thrombolysis. Circulation. 1995;91:1410-1418
    
    79. Ferns GA, Stewart-Lee AL, Anggard EE. Arterial response to mechanical injury: balloon catheter deendothelialization. Atherosclerosis. 1992;92:89-104
    
    80. Hansson GK, Jonasson L, Holm J, et al. y-interferon regulates vascular smooth muscle proliferation and la antigen expression in vivo and in vitro. Circ Res.1988;63:712-719
    
    81. Amento EP, Ehsani N, Palmer H, et al. Cytokines and growth factors positively and negatively regulate interstitial collagen gene expression in human vascular smooth muscle cells. Arteriosclerosis. 1991 ;11:1223-1230
    
    82. Rao GN, Berk BC. Active oxygen species stimulate vascular smooth muscle cell growth and protooncogene expression. Circ Res. 1992;70:593-599
    
    83. Assoian RK, Grotendorst GR, Miller DM, et al. Cellular transformation by coordinate action of three peptide growth factors from human platelets. Nature. 1984;309:804-806
    
    84. Wilcox JN, Smith KM, Williams LT, et al. Platelet-derived growth factor mRNA detection in human atherosclerotic plaques by in situ hybridization. J Clin Invest. 1988;82:1134-1143
    
    85. Ferns GA, Raines EW, Sprugel KH, et al. Inhibition of neointimal smooth muscle accumulation after angioplasty by an antibody to PDGF. Science. 1991;253:1129-1132
    
    86. Nabel EG, Yang Z, Liptay S, et al. Recombinant platelet-derived growth factor B gene expression in porcine arteries induces intimal hyperplasia in vivo. J Clin Invest. 1993:91:1822
    
    87. Lindner V, Majack RA, Reidy MA. Basic FGF induces the proliferation of vascular cells in injured arteries. FASEB J. 1990;4:A625
    
    88. Lindner V, Majack RA, Reidy MA. Basic fibroblast growth factor stimulates endothelial regrowth and proliferation in denuded arteries. J Clin Invest. 1990;85:2004-2008
    89. Lindner V, Reidy MA. Proliferation of smooth muscle cells after vascular injury is inhibited by an antibody against basic fibroblast growth factor. Proc Natl Acad Sci USA 1991;88:3739-3743
    
    90. Lindner V, Reidy MA. Expression of basic fibroblast growth factor and its receptor by smooth muscle cells and endothelium in injured rat arteries. AN en face study. Circ Res. 1993;73:589
    
    91. Nikol S, Isner JM, Pickering JG, et al. Expression of transforming growth factor- β1 is increased in human vascular restenosis lesions. J Clin Invest. 1992;90:1582
    
    92. Chen JK, Hoshi H, McKeehan WL. Transforming growth factor type p specifically stimulates synthesis of proteoglycan in human adult arterial smooth muscle cells. Proc Natl Acad Sci USA. 1987;84:5287
    
    93. Nikol S, Weir L, Sullivan A, et al. Persistently increased expression of the transforming growth factor-pi gene in human vascular restenosis: analysis of 62 patients with one or more episodes of restenosis. Cardiovasc Path.1994;3:57
    
    94. Nabel EG, Shum L, Pompili VJ, et al. Direct transfer of transforming growth factor β1 gene into arteries stimulates fibrocellular hyperplasia. Proc Natl Acad Sci USA. 1993;90:10759
    
    95. Roberts AB, Sporn MB. In: Sporn MB and Roberts AB, (eds.).Handbook of Experimental Pharmacology: Peptide Growth Factors and their Receptors. (Springer Verlag, Berlin) 1990;419
    
    96. Nellen D, Affolter M, Basler K. Receptor serine/theoserine kinases implicated in the control of Drosophila body pattern by decapentaplegic. Cell. 1994;78:225
    
    97. Dano K, Andreasen PA, Grondahl-Hansen J, et al. Plasminogen activators, tissue degradation, and cancer. Adv Cancer Res. 1985,44:139
    
    98. Bartha K, et al. J Biol Chem. 1991;266:792
    
    99. Hamsten A, Walldius G, Szamosi A, et al. Plasminogen activator inhibitor in plasma: risk factor for recurrent myocardial infarction. Lancet. 1987;2:3-9
    
    100. Rocha E, Alfaro MJ, Paramo JA, et al. Preoperative identification of patients at high risk of deep venous thrombosis despite prophylaxis in total hip replacement. Thromb Haemost. 1988;59:93-95101. Padro T, Quax PHA, Hoogen CM, et al. Tissue-type plasminogen activator and its inhibitor in rat aorta. Arterioscler Thromb. 1994; 14: 1459-1465
    
    102. Sperti G, et al. Platelet-derived growth factor increases plasminogen activator inhibitor-1 activity and mRNA in rat cultured vascular smooth muscle. Ann N Y Acad Sci. 1992; 667: 178-180
    
    103. van-Leeuwen RTJ, Kd A, Andreotti F, et al. Angiotensin II increases plasminogen activator messenger RNA in cultured rat aortic smooth muscle cells. Circulation. 1994; 90: 362-368
    
    104. Au YPT, Kenagy RD, Clowes AW, et al. Heparin selectively inhibits the transcription of tissue-type plasminogen activator in primate arterial smooth muscle cells during mitogenesis. J Biol Chem. 1992; 267: 3438-3444
    
    105. Clowes AW, Clowes MM, Au YPT, et al. Smooth muscle cells express urokinase during mitogenesis and tissue-type plasminogen activator during migration in injured rat carotid artery. Circ Res. 1990;67:61-67
    
    106. Whawell SA, Wang Y, Fleming KA, et al. Localization of plasminogen activator inhibitor-1 production in inflamed appendix by in situ mRNA hybridization. J Pathol. 1993;169:67-71
    
    107. Wang Y, Thompson EM, Whawell SA, et al. Wxpression and localization of plasminogen activator inhibitor 1 mRNA in transplant kidneys. J Pathol. 1993,169:445-450
    
    108. Reilly CF, McFall RC. Platelet-derived growth factor and transforming growth factor-p regulate plasminogen activator inhibitor-1 synthesis in vascular smooth muscle cells. J Biol Chem. 1991; 266: 9419-9427
    
    109. Gelehiter TD, Sznzcer-Laszuk R. J Clin Invest. 1986; 77: 165-169
    
    110. More RS, Underwood MJ, Brack MJ, et al. Changes in vessel wall plasminogen activator activity and smooth muscle cell proliferation and activation after arterial injury. Cardiovasuclar Research. 1995;29:22-26
    
    111. Clowes AW, Clowes MM, Au YP, et al. Smooth muscle cells express urokinase during mitogenesis and tissue type plasminogen activator during migration in injured rat carotid artery. Circ Res. 1990; 67: 61-67
    112. Lupu F, Heim DA, Bachmann F, et al. Plasminogen activator expression in human atherosclerotic lesions. Arterioscler Thromb Vasc Biol. 1995; 15:1444-1455
    
    113. Raghunath PN, Tomaszewski JE, Brady ST, et al. Plasminogen activator system in human coronary atherosclerosis. Arterioscler Thromb Vasc Biol. 1995;15:1432-1443
    
    114. Schneiderman J, Sawdey MS, Keeton MR, et al. Increased type 1 plasminogen activator inhibitor gene expression in atherosclerotic human arteries. Proc Natl Acad Sci USA. 1992; 89:6998-7002
    
    115. Jackson CL, Raines EW, Ross R, et al. Role of endogenous platelet-derived growth factor in arterial smooth muscle cell migration after balloon catheter injury. Arterioscler Thromb. 1993; 13:1218-1226
    
    116. Liotta LA, Goldfaro RH, Brundage R, et al. Effect of plasminogen activator (urokinase), plasmin, and thrombin on glycoprotein and collagenous components of basement membrane. Cancer Res. 1981; 41: 4629-4636
    
    117. Bjorkerud S. Impaired fibrinolysis-inducing capacity for postinjury phenotype of cultivated human arterial and human atherosclerotic intimal smooth muscle cells. Circ Res. 1988; 62:1011-1018
    
    118. Sperti G, van Leeuwen RTJ, Quax PHA, et al. Cultured rat aortic vascular smooth muscle cells digest naturally produced extracellular matrix. Circ Res. 1992;71:385-392
    
    119. Herbert JM, Lamarche I, Prabonnaud V, et al. Tissue-type plasminogen activator is a potent mitogen for human aortic smooth muscle cells. J Biol Chem. 1994; 269: 3076-3080
    
    120. Komer G, Bjornsson TD, Vlodavsky I. Extracellular matrix produced by cultured corneal and aortic endothelial cells contains active tissue-type and urokinase- type plasminogen activators. J Cell Physiol. 1993; 154: 456-465
    
    121. Sawa H, Lundgren CH, Vinogradsky B, et al. Antisense oligonucleotide to plasminogen activator inhibitor-1 modulates neointimal thickening in vivo in rats after balloon injury. Circulation. 1995;92(Suppl):I-111
    122. Rakugi H, Kim DK, Krieger JE, et al. Induction of angiotensin converting enzyme in the neointima after vascular injury. Possible role in restenosis. J Clin Invest. 1994;93:339-346
    
    123. Hutchinson HG, Kim DK, Hein L, et al. Quantitative RT/PCR analysis of AT2 expression during vascular development and vascular injury. Circulation. 1994;90(suppl I):463(abstr)
    
    124. Rakugi H, Wang DS, Dzau VJ, et al. Potential importance of tissue angiotensin-converting enzyme inhibition in preventing neointima formation. Circulation. 1994;90:449-455
    
    125. Daeman MJ, Lombardi DM, Bosman FT, et al. Angiotensin II induces smooth muscle cell proliferation in the normal and injured rat arterial wall. Circ Res.1991;658:450-456
    
    126. Lehmann K, Powell JS. Effect of cilazapril on the proliferative response after vascular damage. J Cardiovasc Pharmacol. 1993;22(suppl 4):S19-24
    
    127. Powell JS, Muller RKM, Kuhn H, et al. Inhibitors of angiotensin-xonverting enzyme prevent myointimal proliferation after vascular injury. Science.1989;245:186-188
    
    128. Radomski MW, Palmer RMJ, Moncada S. Endogenous nitric oxide inhibits human platelet adhesion to vascular endothelium. Lancet. 1987;2:1057-1058
    
    129. Groves PH, Penny WJ, Cheadle HA, et al. Exogenous nitric oxide inhibits in vivo platelet adhesion following balloon angioplasty. Cardiovasc Res.1992;26:615-619
    
    130. Niu X, Smith CW, Kubes P. Intracellular oxidative stress induced by nitric oxide synthesis inhibition increases endothelial cell adhesion to neutrophiis. Circ Res.1994;74:1133-1140
    
    131. Folts JD, Stamler J, Keaney JF Jr. Coating stenosed intimally damaged dog coronary arteries with nitrosated albumin prevents platelet adhesion-aggregation and thrombus formation. Circulation. 1994;90(suppl l):345(abstr)
    
    132. Naalej N, Albrecht R, Folts JD. The potent inhibitory effect of a novel nitrosated albumin coating on platelet spreading attachment and thrombosis on a collagen coated surface. Circulation. 1990;90(suppl l):239(abstr)
    133. Dinerman JL, Lowenstein CJ, Snyder SH. Molecular mechanisms of nitric oxide regulation. Circ Res. 1993;73:217-222
    
    134. Joly GA, Schini VB, Vanhoutte PM. Balloon injury and interleukin-β1 induce nitric oxide synthase activity in rat carotid arteries. Circ Res. 1992;71:331-338
    
    135. Hansson GK, Geng Y, Holm J, et al. Arterial smooth muscle cells express nitric oxide synthase in response to endothelial injury. J Exp Med. 1994; 180:733-738
    
    136. Srivatsa SS, Pollock JS, Edwards WD, et al. Nitric oxide synthase is prominantly expressed in neointimal hyperplasia following experimental vascular injury. Circulation. 1994;90(suppl l):298(abstr)
    
    137. Myers PR, Webel RR, Thondapu VR, et al. Vascular nitric oxide synthase activity following coronary artery balloon injury in a porcine restenosis model. Circulation. 1994;90(suppl l):139(abstr)
    
    138. Cayatte AJ, Palacino JJ, Horten K, et al. Chronic inhibition of nitric oxide production accelerates neointimal formation and impairs endothelial function in hypercholesterolemic rabbits. Arterioscler Thromb. 1994;14:753-759
    
    139. Wang B, Singer AH, Tsao P, et al. Dietary arginine prevents atherogenesis in the coronary artery of the hypercholesterolemic rabbit. J Am Coll Cardiol.1994;23:452-458
    
    140. McNamara DB, Bedi B, Aurora H, et al. L-arginine inhibits balloon catheter- induced intimal hyperplasia. Biochem Biophys Res Commun. 1993;193:291-296
    
    141. Taguchi J, Abe J, Okasaki H, et al. L-arginine inhibits neointimal formation following balloon injury. Life Sci. 1993;53:387-392
    
    142. Vanhoutte PM, Houston D. Platelets, endothelium and vasospasm. Circulation.1985;72:728-734
    
    143. Nemecek GM, Coughlin SR, Handley DA, et al. Stimulation of aortic smooth muscle cell mitogenesis by serotonin. Proc Natl Acad Sci USA. 1986;83:674-678
    
    144. Moalic JM, Bauters C, Himbert D, et al. Phenylephrine, vasopressin and angiotensin II as determinants of proto-oncogene and heat-shock protein gene expression in adult rat heart and aorta. J Hypertension. 1989;7:195-201145. Iwaki K, Sukhatme VP, Shubeita HE, et al. Alpha- and beta-adrenergic stimulation induces distinct patterns of immediate early gene expression in neonatal rat myocardial cells. J Biol Chem. 1990;265:13809-13817
    
    146. Clozel M, Fischli W, Guilly C. Specific binding of endothelin on human vascular smooth muscle cells in culture. J Clin Invest. 1989,83:1758-1761
    
    147. Komuro I, Kurihara H, Sugiyama T, et al. Endothelin stimulates c-fos and c-myc expression and proliferation of vascular smooth muscle cells. FEBS Lett. 1988,238:249-259
    
    148. Hirata Y, Takagi Y, Fukuda Y, et al. Endothelin is a potent mitogen for rat vascular smooth muscle cells. Arteriosclerosis. 1989;78:225-228
    
    149. Douglas SA, Louden C, Vickery-Clark LM, et al. A role for endogenous endothelin-1 in neointimal formation after rat carotid artery balloon angioplasty. Protective effecfts of the novel nonpeptide endothelin receptor antagonist SB 209670. Circ Res. 1994;75:190-197
    
    150. Azuma H, Hamasaki H, Niimi Y, et al. Role of endothelin-1 in neointima formation after endothelial removal in rabbit carotid arteries. Am J Physiol. 1994;267:H2259-H2267
    
    151. Kindy MS, Sonenshein GE. Regulation of oncogene expression in cultured aortic smooth muscle cells. Post-transcriptional control of c-myc mRNA. J Biol Chem. 1986;261:12865
    
    152. Simons M, Edelman ER, DeKeyser JL, et al. Antisense c-myb oligonucleotides inhibit intimal arterial smooth muscle cell accumulation in vivo. Nature.1992;359:67
    
    153. Simons M, Morgan KG, Parker C, et al. The proto-oncogene c-myb mediates an intracellular calcium rise during the late G1 phase of the cell cycle. J Biol Chem. 1993;268:627
    
    154. Campan M, Desgranges C, Gadeau AP, et al. Cell cycle dependent gene expression in quiescent stimulated and asynchronously cycling arterial smoothmuscle cells in culture. J Cell Physiol. 1992; 150:493
    
    155. Chang MW, Barr E, Lu MM, et al. Adenovirus-mediated over-expression of the cyclin/cyclin-dependent kinase inhibitor, p21 inhibits vascular smooth musclecell proliferation and neointima formation in the rat cafrotid artery model of balloon angioplasty. J Clin Invest. 1995;96:2260
    
    156. Marx J. How p53 suppresses cell growth. Science. 1993;262:1644
    
    157. Speir E, Modali R, Huang ES, et al. Potential role of human cytomegalovirus and p53 interaction in coronary restenosis. Science. 1994;265:391
    
    158. Bravo R, Frank R, Blundell PA, et al. Cyclin/PCNA is the auxiliary protein of DNA polymerase-delta. Nature. 1987;326:515
    
    159. Pickering JG, Weir L, Jekanowski J, et al. Proliferative activity in peripheral and coronary atherosclerotic plaque among patients undergoing percutaneous revascularization. J Clin Invest. 1993;91:1469
    
    160. Yu CC, Filipe Ml. Update on proliferation-associated antibodies applicable to formalin-fixed paraffin-embedded tissue and their clinical applications. Histochem J. 1993;25:843
    
    161. Schroeder TE. Actin in dividing cells: contractile ring filaments bind heavy meromyosin. Proc Natl Acak Sci. 1973;70:1688
    
    162. Grainger DJ, Hesketh TR, Metcalfe JC, et al. A large accumulation of non- muscle myosin occurs at first entry into M phase in rat vascular smooth-muscle cells. Biochem. J. 1991;277:145
    
    163. Roberts JM. Turning DNA replication on and off. Curr Biol. 1993;5:201-206
    
    164. Freeman RS, Donoghue DJ. Protein kinases and protooncogenes: biochemical regulators of the eukaryotic cell cycle. Biochemistry. 1991;30:2293-2302
    
    165. Koff A, Giordana A, Desai D, et al. Formation and activation of a cyclin E-cdk2 complex during the G1 phase of the human cell cycle. Science.1992;257:1689-1694
    
    166. Won KA, Xiong Y, Beach D, et al. Growth-regulated expression of D-type cyclin genes in human diploid fibroblasts. Proc Natl Acad Sci USA.1992;89:9910-9914
    
    167. Ohtsubo M, Roberts JM. Cyclin-dependent regulation of G_1 in mammalian fibroblasts. Science. 1993;259:1908-1912
    
    168. Draetta G, Beach D. The mammalian cdc2 protein kinase: mechanisms of regulation during the cell cycle. J Cell Sci. 1989;12:21-27
    169. Minshull J, Pines J, Golsteyn R, et al. The role of cyclin synthesis, modification and destruction in the control of cell division. J Cell Sci. 1989;12:77-97
    
    170. Moreno S, Hayles J, Nurse P. Regulation of the cell cycle timing of mitosis. J Cell Sci. 1989; 12:1-8
    
    171. Murray AW. Cyclin synthesis and degradation and the embryonic cell cycle. J Cell Sci. 1989;12:65-76
    
    172. Herrman JPR, Hermans WRM, Vos J, et al. Pharmacological approaches to the prevention of restenosis following angioplasty. The search for the holy grail? (Part1). Drugs. 1993;46:18-52
    
    173. Franklin SM, Faxon DP. Pharmacologic prevention of restenosis after coronary angioplasty: review of the randomized clinical trials. Coronary Artery Dis. 1993;4:232-242
    
    174. Popma JJ, Califf RM, Topol EJ. Clinical trials of restenosis after coronary angioplasty. Circulation. 1991;84:1426-1436
    
    175. Landzberg BR, Frishman WH, Lerrick K. Pathophysiology and pharmacological approaches for prevention of coronary artery restenosis following coronary artery balloon angioplasty and related procedures. Progress in Cardiovascular Diseases. 1997; XXXIX:361-398
    
    176. Ciabattoni G, Ujang S, Sritara P, et al. Aspirin, but not heparin, suppresses the transient increase in thromboxane biosynthesis associated with cardiac catheterization or coronary angioplasty. J Am Coll Cardiol. 1993;21:1377-1381
    
    177. Faxon DP, Sanbom TA, Haudenschild CC, et al. Effect of antiplatelet therapy on restenosis after experimental angioplasty. Am J Cardiol. 1984;53:72C-76C
    
    178. Schwartz L, Bourassa MG, Lesperance J, et al. Aspirin and dipyridamole in the prevention of restenosis after percutaneous transluminal coronary angioplasty. N Engl J Med. 1988;318:1714-1719
    
    179. Serruys PW, Klein W, Rutsch W, et al. PARK: the post angioplasty restenosis ketanserin trial. J Am Coll Cardiol. 1992;21:322A(abstr)
    
    180. Lembo NJ, Black AJ, Roubin GS, et al. Effect of pretreatment with aspirin versus aspirin plus dipyridamole on frequency and type of acute complications of percutaneous transluminal coronary angioplasty. Am J Cardiol. 1990;65:422-426181. Serruys PW, Rutsch W, Heyndrickx GR, et al. Prevention of restenosis after percutaneous transluminal coronary angioplasty with thromboxane A2 receptor blockade. A randomized, double-blind, placebo-controlled trial. Coronary Artery Restenosis Prevention on Repeated Thromboxane Antagonism Study(CARPORT). Circulation. 1991;84:1568-1580
    
    182. Yabe Y, Nakano H, Muramatsu T, et al. Could a novel TXA2 receptor antagonist (S-1452) reduce restenosis after PTCA in patients with post infarction angina. Circulation. 1994;90(suppl l):651(abstr)
    
    183. Knudtson ML, Flintoft VF, Roth DL, et al. Effect of short-term prostacyclin administration on restenosis after percutaneous transluminal coronary angioplasty. J Am Coll Cardiol. 1990;15:691-697
    
    184. Gershlick AH, Spriggins D, Davies SW, et al. Failure of epoprostenol (prostacyclin PGI2) to inhibit platelet aggregation and to prevent restenosis after coronary angioplasty: Results of a randomised placebo controlled trial. Br Heart J. 1994;71:7-15
    
    185. Topol EJ, Califf RM, Weisman HF, et al. Randomised trial of coronary intervention with antibody directed against platelet llb/llla integrin for reduction of clinical restenosis: Results at six months. Lancet. 1994;343:881-886
    
    186. EPIC Investigators. Use of a monoclonal antibody directed against the platelet glycoprotein IIB/IIIa receptor in high risk coronary angioplasty. N Engl J Med.1994;330:956-961
    
    187. Guyton JR, Rosenberg RD, Clowes AW, et al. Inhibition of raft arterial smooth muscle cell proliferation by heparin. In vivo studies with anticoagulant and nonanticoagulant heparin. Circ Res. 1980;46:625-634
    
    188. Clowes AW, Clowes MM. Kinetics of cellular proliferation after arterial injury. II. Inhibition of smooth muscle growth by heparin. Lab Invest. 1985;52:611-616
    
    189. Pukac LA, Hirsch GM, Lormeau JC, et al. Antiproliferative effects of novel, non anticoagulant heparin derivatives on vascular smooth muscle cells in vitro and in vivo. Am J Pathol. 1991; 139:1501-1509
    
    190. Hamon M, Bauters C, Wernert N, et al. Heparin does not inhibit oncogene induction in rabbit aorta following balloon denudation. Cardiovasc Res. 1993;;27:1209-1213191. Currier JW, Pow TK, Haudenschild CC, et al. Low molecular weight heparin (enoxaparin) reduces restenosis in the hypercholesterolemic rabbit. J Am Coll Cardiol. 1991;17:118B-125B
    
    192. Buchwald AB, Unterberg C, Nebendahl K, et al. Low molecular weight heparin reduces neointimal proliferation after coronary stent implantation in hypercholesterolemic minipigs. Circulation. 1992;86:531-537
    
    193. Narins CR, Hillegass WB Jr, Nelson CL. Relation between activated clotting time during angioplasty and abrupt closure. Circulation. 1996;93:667-671
    
    194. Faxon DP, Spiro TE, Minor S, et al. Low molecular weight heparin in prevention of restenosis after angioplasty: Results of enoxaparin restenosis (ERA) trial. Circulation. 1994;90:908-914
    
    195. Karsch KR, Preisack MB, Bonan R, et al. Low molecular weight heparin, reviparin, in prevention of restenosis after PTCA. J Am Coll Cardiol. 1996;27:113A(abstr)
    
    196. Cairns JA, Gill JB, Morton B, et al. Enoxaparine and Maxepa for the Prevention of Angioplasty Restenosis (EMPAR). Circulation. 1994;90(suppl l)651(abstr)
    
    197. Van Belle E, Vallet B, Auffray JL, et al. Chronic inhibition of nitric oxide synthesis reverses the effects of ACE inhibition on neo-endothelium- dependent relaxation and on intimal thickening after balloon injury. Am J Physiol. 1996;270:H298-H305
    
    198. Farhy RD, Carretero OA, Ho KL, et al. Role of kinins and nitric oxide in the effects of angiotensin converting enzyme inhibitors on neointima formation. Circ Res. 1993;72:1202-1210
    
    199. Powell JS, Muller RKM, Baumgartner HR. Suppression of the vascular response to injury: The role of angiotensin-converting enzyme inhibitors. J Am Coll Cardiol. 1991;17:137B-142B
    
    200. Huber KC, Schwartz RS, Edwards WD, et al. Effects of angiotensin converting enzyme inhibition on neointimal proliferation in aporcine coronary injury model. Am Heart J. 1993;125:695-701
    
    201. Churchill DA, Siegel CO, Minor ST, et al. Enalapril in the prevention of restenosis following intracoronary intervention in a swine model. Coronary Artery Dis. 1993;4:461-467202. MARCATOR study group. Effect of high dose angiotensin-converting enzyme inhibition of restenosis: final results of the MARCATOR study, a multicenter, double-blind, placebo-controlled trial of cilazapril. J Am Coll Cardiol. 1995;2:362-369
    
    203. MERCATOR study group. Does the new angiotensin converting enzyme inhibitor cilazapril prevent restenosis after percutaneous transluminal coronary angioplasty? Results of the MERCATOR Study: a multicenter, randomised, double-blind placebo-controlled trial. Circulation. 1992;86:100-110
    
    204. Shah PK, Amin J. Low high-density lipoprotein level is associated with increased restenosis rate after coronary angioplasty. Circulation. 1992;85:1279-1285
    
    205. Miyata M, Biro S, Arima S, et al. High serum concentration of lipoprotein (a) is a risk factor for restenosis after percutaneous transluminal coronary angioplasty in Japanese patients with single vessel desease. Am Heart J. 1996;132:269-273
    
    206. Yamamoto H, Imazu M, Yamabe T, et al. Risk factors for restenosis after percutaneous transluminal coronary angioplasty: Role of lipoprotein (a). Am Heart J. 1995;130:1168-1173
    
    207. Ergina F, Cote G, Ciampi A, et al. Lipoprotein(a) concentration does not correlate with angiographic restenosis. J Am Coll Cardioi. 1996;27:362A(abstr)
    
    208. Yamaguchi H, Lee YJ, Daida H, et al. Effectiveness of LDL-apheresis in preventing restenosis after percutaneous transluminal coronary angioplasty (PTCA): LDL-Apheresis Angioplasty Restenosis Trial (L-ART). Chem Phys Lipids. 1994;67:399-403
    
    209. Daida H, Lee YJ, Yokoi H, et al. Prevention of restenosis after percutaneous transluminal coronary angioplasty by reducing lipoprotein a levels with low density lipoprotein apheresis. Low Density Lipoprotein Apheresis Angioplasty Restenosis Trial (L-ART) Group. Am J Cardioi. 1994;73:1037-1040
    
    210. Constantinescu DE, Banka VS, Tulenko TN. Lovastatin inhibits proliferation of arterial smooth muscle and endothelial cells. Indecation in atherosclerosis and prevention of restenosis. Eur Heart J. 1992;13(suppl):82(abstr)
    211. Gellman J, Ezekowitz MD, Sarembock IJ, et al. Effect of lovastatin on intimal hyperplasia after balloon angioplasty: a study in an atherosclerotic hypercholesterolemic rabbit. J Am Coll Cardiol. 1991;17:251-259
    
    212. Weintraub WS, Bocuzzi SJ, Klein JL, et al. Lack of effect of lovastatin on restenosis after coronary angioplasty. N Engl J Med. 1994;331:1331-1337
    
    213. Onaka H, Hirota Y, Kita Y, et al. The effect of pravastatin on prevention of restenosis after successful percutaneous transluminal coronary angioplasty. Jpn Circulation J(English edition). 1994;58:100-106
    
    214. Tanajura L, Cano M, Nunes G, et al. A prospective randomized trial of lovastatin for prevention of coronary restenosis. Circulation. 1995;92(suppl i):I-345(abstr)
    
    215. Leaf A: Cardiovascular effects of fish oils. Beyond the platelet. Circulation.1990;82:624-628
    
    216. Bairati I, Roy L, Meyer F. Double-blind, randomized, controlled trial of fish oil supplements in prevention of recurrence of stenosis after coronary angioplasty. Circulation. 1991;85:950-956
    
    217. Dehmer GJ, Popma JJ, van den Berg EK, et al. Reduction in the rate of early restenosis after coronary angioplasty by a diet supplemented with Omega-3 fatty acids. N Engi J Med. 1988;319:733-740
    
    218. Frazen D, Schannwell M, Oette K, et al. A prospective, randomized and double-blind trial on the effect of fish oil in the incidence of restenosis following PTCA. Cath Cardiovasc Diagn. 1993;28:301-310
    
    219. Cairns JA, Gill JB, Morton B, et al. Enoxaparine and Maxepa for the Prevention of Angioplasty Restenosis(EMPAR). Circulation. 1994;90(suppl l):651(abstr)
    
    220. Jacobs AK, Weiner BH, Raizner A, et al. The impact of fish oil on restenosis following coronary angioplasty: The Fish Oil Restenosis Rrial (FORT). J Am Coll Cardiol. 1994;23(suppl A):I-59(abstr)
    
    221. Liu MW, Roubin GS, Robinson KA, et al. Trapidil in preventing restenosis afer balloon angioplasty in the atherosclerotic rabbit. Circulation. 1990;81:1089-1093
    
    222. Okamoto S, Masaaki I, Setsuda M, et al. Effects of trapidil (triazolopyrimidine), a platelet-derived growth factor(PDGF) antagonist in preventing restenosis??after percutaneous transluminal coronary angioplasty. Am Heart J. 1992;123:1439-1444
    
    223. STARC study group. Trapidil (platelet-derived growth factor inhibitor) prevents restenosis after PTCA: results of the STARC study. Eur Heart J. 1993;14(suppl):277(abstr)
    
    224. Maresta A, Balducelli M, Cantini L, et al. Trapidil (triazolopyrimidine), a platelet- derived growth factor antagonist, reduces restenosis after percutaneous transluminal coronary angioplasty: Results of the randomized, double-blind STARC study. Circulation. 1994;90:2710-2715
    
    225. Ferns GA, Raines EW, Sprugel KH, et al. Inhibition of neointimal smooth muscle accumulation after angioplasty by an antibdy to PDGF. Science. 1991;253:1129-1132
    
    226. Lundergan C, Foegh ML, Vargas R, et al. Inhibition of myointimal proliferation of the rat carotid artery by the peptides, angiopeptin and BIM 23034. Arteriosclerosis. 1989;80:49-55
    
    227. Santoian EC, Schneider JE, Gravanis MB, et al. Angiopeptin inhibits intimal hyperplasia after angioplasty in porcine coronary arteries. Circulation. 1993;88:11-14
    
    228. Emanuellson H, Beatt KJ, Bagger JP, et al. Long-term effects of angiopeptin treatment in coronary angioplasty. Reduction of clinical events but not angiographic restenosis. Circulation. 1995;91:1689-1696
    
    229. Kent KM, Williams DO, Cassagneau B, et al. Double-blind, controlled trial of the effect of angiopeptin on coronary restenosis following balloon angioplasty. Circulation. 1993;88(suppl I):I-506(abstr)
    
    230. Kanamasa K, Ishida N, Kato H, et al. Low dose tPA infusion prevents intimal hyperplasia following balloon angioplasty in atherosclerotic rabbits. Circulation. 1993;88(suppl I):I-656 (abstr)
    
    231. Kanamasa K, Ishida N, Kato H, et al. TPA infusion for seven days prevents restenosis following balloon angioplasty in atherosclerotic rabbit. Circulation. 1992;86(suppl I): I-188 (abstr)
    232. Whitworth HB, Roubin OS, Hoilman J, et al. Effect of nifedipine on recurrent stenosis after percutaneous transluminal coronary angioplasty. J Am Coll Cardiol. 1986;8:1271-1276
    
    233. Corcos T, David PR, Val PG, et al. Failure of diltiazem to prevent restenosis after percutaneous transluminal coronary angioplasty. Am Heart J. 1985;109:926-931
    
    234. Pepine CJ, Hirshfeld JW, McDonald RG, et al. A controlled trial of corticosteroids to prevent restenosis after coronary angioplasty. Circulation. 1990;81:1753-1761
    
    235. Grines CL, Rizik D, Levine A, et al. Colchicine angioplasty restenosis trial (CART). Circulation. 1991;84:II-365(abstr)
    
    236. Cox DA, Anderson PG, Roubin GS, et al. Local delivery of heparin and methotrexate fails to inhibit in vivo smooth muscle cell proliferation. 1991;84(suppl II):71(abstr)
    
    237. De Scheerder I, Wilczek K, Van Dorpe J, et al. Angiopeptin loaded stents inhibit the neointimal reaction induced by polymer coated stents implanted in porcine coronary arteries. Circulation. 1994;90:l-597(abstr)
    
    238. Serruys PW, de Jaegere P, Kiemeneij F, et al. A comparison of balloon- expandable-stent implantation with balloon angioplasty in patients with coronary artery disease. N Engl J Med. 1994;331:489-495
    
    239. Fischman DL, Leon MB, Bairn DS, et al. A randomized comparison of coronary-stent placement and balloon angioplasty in the treatment of coronary artery disease. N Engl J Med. 1994;331:496-501
    
    240. Wolinsky H, Thung SN. Use of a perforated balloon catheter to deliver concentrated heparin into the wall of the normal canine artery. J Am Coll Cardiol. 1990;15:475-481
    
    241. Feldman LJ, Tahlil O, Steg G. Perspectives of arterial gene therapy for the prevention of restenosis. Cardiovasc Res. 1996;32:194-207
    
    242. Borrelli E, Heyman ER, Hsi M,et al. Targeting of an inducible toxic phenotype in animal cells. Proc Natl Acad Sci USA. 1988,85:7572-7576
    243. Culver KW, Ram Z, Wallvridfe S, et al. In vivo gene transfer with retroviral vector-producer cells for treatment of experimental brain tumors. Science. 1992;256:1550-1552
    
    244. Guzman RJ, Hirschowitz EA, Brody SL, et al. In vivo suppression of injury- induced vascular smooth muscle cell accumulation using adenovirus-mediated transfer of the herpes simplex virus thymidine kinase gene. Proc Natl Acad Sci USA. 1994;91:10732-10736
    
    245. Ohno T, Gordon D, San H, et al. Gene therapy for vascular smooth muscle cell proliferation after arterial injury. Science. 1994;265:781-784
    
    246. Simari RD, San H, Ohno T, et al. Regulation of cellular proliferation and intimal formation following balloon injury in hyperlipidemic rabbit arteries. Circulation.1995;92:I-501(abstr)
    
    247. Tahlil O, Branellec D, Aubailly N, et al. Reduction of restenosis after angioplasty by gene therapy with HSV-tk and ganciclovir. Results from a double injury model in the hypercholesterolemic rabbit. Circulation. 1995;92:I-295(abstr)
    
    248. Epstein SE, Speir E, Finkel T. Do antisense approaches to the problem of restenosis make sense? Circulation. 1993;88:1351-1354
    
    249. Bennett MR, Schwartz SM. Antisense therapy for angioplasty restenosis. Some critical considerations. Circulation. 1995;92:1981-1993
    
    250. Stein CA, Cohen JS. Oligodeoxynucleotides as inhibitors of gene expression: a review. Cancer Res. 1988;48:2659-2668
    
    251. Neckers L, Whitesell L, Rosolen A, et al. Antisense inhibition of oncogene expression. Crit Rev Oncogen. 1992;3:175-231
    
    252. Speir E, Epstein SE. Inhibition of smooth muscle cell proliferation by an antisense oligodeoxynucleotide targeting the mRNA encoding PCNA. Circulation. 1992;86:538-547
    
    253. Pickering G, Weir L, Jekanowski J, et al. Inhibition of proliferation of human vascular smooth muscle cells using antisense oligonucleotides to PCNA. J Am Coll Cardiol. 1992;19:165A(abstr)
    254. Biro S, Fu YM, Yu ZX, et al. Inhibitory effects of antisense oligodeoxynucleotides targeting c-myc mRNA on smooth muscle cell proliferation and migration. Proc Natl Acad Sci USA. 1993;90:654-658
    
    255. Shi Y, Hutchinson HG, Hall DJ, et al. Downregulation of c-myc expression by antisense oligonucleotides inhibits proliferation of human smooth muscle cells. Circulation. 1993;88:1190-1195
    
    256. Simons M Rosenberg RD. Antisense nonmuscle myosin heavy chain and c- myb oligonucleotides suppress smooth muscle cell proliferation in vitro. Circ Res. 1992;70:835-843
    
    257. Morishita R, Gibbons GH, Ellison KE, et al. Single intraluminal delivery of antisense cdc2 kinase and proliferating-cell nuclear antigen oligonucleotides results in chronic inhibition of neointimal hyperplasia. Proc Natl Acad Sci USA. 1993;90:8474-8478
    
    258. Simons M, Edelman ER, DeKeyser J-L, et al. Antisense c-myb oligonucleotides inhibit intimal arterial smooth muscle cell accumulation in vivo. Nature. 1992;359:67-70
    
    259. Bennett MR, Anglin S, McEwan JR, et al. Inhibition of vascular smooth muscle cell proliferation in vitro and in vivo by c-myc antisense oligodeoxynucleotides. J Clin Invest. 1994;93:820-828
    
    260. Thierry AR, Rahman A, Dritschilo A. Liposomal delivery as a new approach to transport antisense oligonuleotides. In: Erickson R, Izant JG, eds. Gene Regulatin:Biology of Antisense RNA and DNA. New York: Raven Press Ltd;1992:147-161
    
    261. Thuong NT, Asseline U, Roig V, et al. Oligo(α-deoxynucleotide)s covalently linked to intercalating agents: differential binding to ribo-and deoxyribopoly nucleotides and stability towards nuclease digestion. PNAS USA. 1987;84:5129-5133
    
    262. Wickstrom EL, Bacon TA, Gonzalez A, et al. Human promyelocytic leukemia HL-60 cell proliferation and c-myc protein expression are inhibited by an antisense pentadecadeoxynucleotide targeted against c-myc mRNA. PNAS USA. 1988;85:1028-1033263. Verspieren P, Cornelissen AWCA, Thuong NT, et al. An acridine-linked oligodeoxynucleotide targeted to the common 5' end of trypanosome mRNAs kills cultured parasites. Gene. 1987;61:307-315
    
    264. Doan TL, Perrouault L, Helene C. Targeted cleavage of polynucleotides by complementary oligonucleotides covalently linked to iron-porphyrins. Biochemistry. 1986;25:6736-6739
    
    265. Eckstein F. Investigation of enzyme mechanisms with nucleoside phosphorothioates. Annu Rev Biochem. 1985;54:367-402
    
    266. Woodworth TG, Nichols JC. Recombinant fusion toxins-a new class of targeted biologic therapeutics. Cancer Treat Res. 1993;68:145-160
    
    267. Kreitman RJ, Fitzgerald D, Pastan I. Targeting growth factor receptors with fusion toxins. Intl J Immunopharmacol. 1992;14:465-472
    
    268. Epstein SE, Speir E, Unger EF, et al. The basis of molecular strategies for treating coronary restenosis after angioplasty. J Am Coll Cardiol. 1994;23:1278-1288
    
    269. Fu YM, Mesri EA, Yu ZX, et al. Cytotoxic effects of vascular smooth muscle cells of the chimeric toxin, heparin binding TGF alpha-pseudomonas exotoxin. Cardiovasc Res. 1993;27:1691-1697
    
    270. Epstein SE, Siegall CB, Biro S, et al. Cytotoxic effects of a recombinant chimeric toxin on rapidly proliferating vascular smooth muscle cells. Circulation. 1991;84:778-787
    
    271. Biro S, Siegall CB, Fu YM, et al. In vitro effects of a recombinant toxin targeted to be fibroblast growth factor receptor on rat vascular smooth muscle and endothelial cells. Circ Res. 1992;71:640-645
    
    272. Casscells W, Lappi DA, Olwin BB, et al. Elimination of smooth muscle cells in experimental restenosis: Targeting of fibroblast growth factor receptors. Proc Natl Acad Sci USA. 1992;89:7159-7163
    
    273. Miller BB, Paige SB, Tio FO, et al. Lymphocyte/monocyte interleukin-2 receptor targeted fusion toxin therapy with DAB 486IL2 prevents proliferative post- angioplasty restenosis. Circulation. 1991;84(suppl II):II-70(abstr)
    274. Pastore C, Bacha PA, Pickering JG, et al. Local and systemic delivery of DAB 389EGF fusion toxin inhibits neointimal thickening in balloon injured rat carotid arteries. Circulation. 1993;88(suppl I):310(abstr)
    
    275. Chang MW, Barr E, Seltzer J, et al. Cytostatic gene therapy for vascular proliferative disorders with a constitutively active form of the retinoblastoma gene product. Science. 1995;267:518-522
    
    276. Garg UC, Hassid A. Nitric oxide-generating vasodilators and 8-bromo-cyclic guanosine monophosphate inhibit mitogenesis and proliferation of cultured rat vascular smooth muscle cells. J Clin Invest. 1989;83:1774-1777
    
    277. Moncada S, Higgs A. TheL-arginine-nitric oxide pathway. N Engl J Med. 1993;329:2002-2012
    
    278. von der Leyen HE, Gibbons GH, Morishita R, et al. Gene therapy inhibiting neointimal vascular lesion: in vivo transfer of endothelial cell nitric oxide synthase gene. Proc Natl Acad Sci USA. 1995;92:1137-1141
    
    279. Gorski DH, LePage DF, Patel CV, et al. Molecular cloning of a diverged homeobox gene that is rapidly down-regulated during the G0/G1 transition in vascular smooth muscle cells. Mol Cell Biol. 1993;13:3722-3733
    
    280. Weir L, Chen D, Pastore C, et al. Gax is rapidly down-regulated in rat carotid arteries following balloon injury: in vivo demonstration of a growth-arrest transcription factor. Circulation. 1994;90:l-634(abstr)
    
    281. Branellec D, Pastore C, Dedieu J-F, et al. A recombinant adenovirus encoding gax can efficiently block vascular smooth muscle cell proliferation. Circulation.1995;92:I-634(abstr)
    
    282. Zoldhelyi P, McNatt J, Xu X-M, et al. Prevention of arterial thrombosis by adenovirus-mediated transfer of cyclooxygenase gene. Circulation 1996;93:10-17
    
    283. Takeshita S, Zheng LP, Asahara T, et al. In vivo evidence of enhanced angiogenesis following direct arterial gene transfer of the plasmid encoding vascular endothelial growth factor. Circulation 1994;88:I-476(abstr)
    
    284. Asahara T, Bauters C, et al. Local delivery of vascular endothelial growth factor accelerates reendothelialization and attenuates intimal hyperplasia in balloon-injured rat carotid artery. Circulation 1995;91.2793-2801285. Zhu N, Liggitt D, Liu Y, et al. Systemic gene expression after intravenous DNA delivery into adult mice. Science. 1993;261:209-211
    
    286. Messina LM, Podrazik RM, Whitehill TA, et al. Adhesion and incorporation of lacZ-transduced endothelial cells into the intact capillary wall in the rat. Proc Natl Acad Sci USA. 1992;89:12018-12022
    
    287. Wilson JM, Birinyi LK, Salomon RN, et al. Implantation of vascular grafts lined with genetically modified endothelial cells. Science. 1989;244:1344-1346
    
    288. Plautz G, Nabel EG, Nabel GJ. Introduction of vascular smooth muscle cells expressing recombinant genes in vivo. Circulation. 1991;83:578-583
    
    289. Lynch CM, Clowes MM, Osborne WRA, et al. Long-term expression of human adenosine deaminase in vascular smooth muscle cells of rats. a model for gene therapy. Proc Natl Acad Sci USA. 1992;89:1138-1142
    
    290. Dichek DA, Neville RF, Zwiebel JA, et al. Seeding of intravascular stents with genetically engineered endothelial cells. CIRCULATION. 1989;80:1347-1353
    
    291. Nabel EG, Plautz G, Nabel GJ. Gene transfer into vascular cells. J Am Coll Cardiol. 1991;17:189B-194B
    
    292. Nabel EG, Nabel GJ. Gene transfer and cardiovascular disease. Trends Cardiovasc Med. 1991;1:12-17
    
    293. Steg PG, Feldman LJ, Scoazec JY, et al. Arterial gene transfer to rabbit endothelial and smooth muscle cells using percutaneous delivery of an adenoviral vector. Circulation. 1994;90:1648-1656
    
    294. French BA, Mazur W, Geske RS, et al. Direct in vivo gene transfer into porcine myocardium using replication-defecient adenoviral vector. Circulation. 1994;90:2414-2424
    
    295. Guzman RJ, Lemarchand P, Crystal RG, et al. Efficient and selective adenoviral-mediated gene transfer into vascular neointima. Circulation. 1993;28:2838-2848
    
    296. Lee SW, Trapnell BC, Rade JJ, et al. In vivo adenoviral vector-mediated gene transfer into balloon-injured rat carotid arteries. Circ Res. 1993;73:797-807

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700