基于表面等离子体调控的拉曼与荧光角度分辨光谱的研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
表面等离子体光子学(plasmonics)由于其在亚波长尺度内对光波有卓越的调控能力而引起了人们极大地研究兴趣,近年来发展迅速。表面等离子体(SPs)可以作为一个连接宏观的光场与微纳尺度的局域光场(或者说远场与近场)的媒介,可将光限域在亚波长尺度范围内,因此实现对衍射极限尺寸下光场的控制。SPs不仅广泛用于制备纳米光学器件,在增强光谱领域也有广泛的应用,如表面增强拉曼(SERS),表面等离子控制的荧光等。通过SPs的共振和限域作用,分子所在的局域电磁场强度会得到极大地提高,因此分子的拉曼信号等光谱信号会得到几个数量级的提高。由SPs与光的耦合机理可知,SPs尤其是传播型SPs的激发与发射具有方向性,因此借助SPs还可实现对光发射方向性的控制。对SPs增强光谱的方向性进行研究可以实现高效的激发,增强信号强度,更为重要的是可实现定向的光谱信号发射,从而提高收集效率。此外,借助SPs我们还可以对光束方向(如荧光,透射光束等)进行调控,可实现在微纳尺度下光束控制等问题,这在微纳光学和光电领域都有很大的研究价值。在本文中,我们围绕SPs调控光谱学中与方向相关的问题,利用自行搭建的角度分辨的光谱检测平台,研究了以下一些问题:
     1.研究了SERS的定向发射问题。基于电磁场增强的原理,SERS的增强因子最高可达109-1010,然而却无法达到单分子检测所需要的1014左右,因此SERS要达到更高灵敏度只能借助其他增强途径,如共振增强,电荷转移等,而化学增强对分子种类依赖性很强,并不是一种普适的增强方法。因而任何有助于额外增强SERS的途径都受到了人们的重视。最近研究者们注意到,由于SERS的发射方向一般是分散的而导致SERS在的收集效率很低,如果能实现将SERS定向发射,则可以极大地提高收集效率,进而提高SERS的检测灵敏度。我们研究了在kretschmann棱镜结构和周期纳米井阵列结构下的传播型SPs的定向的耦合发射。用传播型SPs耦合SERS,可以实现SERS的定向发射,引入纳米粒子的局域SPs共振现象可提高局域电磁场强度,我们将两种SPs组合在一起可以实现高增强倍数的SERS的定向发射。我们通过基地优化结构参数,如光栅周期等,使发射方向与基片法线方向垂直,从而有助于提高SERS的收集效率,详细内容见第二章。
     2.开发了一些面向特殊检测需求的拉曼光谱检测平台。商品化的设备无法满足一些特殊的检测对象的测量要求,借助自行研制的新型检测仪器可以率先在新的研究领域展开研究,因而研发新型检测平台对提高团队科研水平有重大意义。为满足特殊测量需求及特殊样品的光谱检测,结合本课题的研究成果,我们开发了多种新型拉曼检测仪器和检测平台:针对SERS的基底制备和检测过程复杂、重现性低的问题,结合上述的SERS定向发射现象,我们开发了便携式SERS检测仪,具有较高灵敏度和使用方便性,是一种很有应用潜力的拉曼检测仪器;针对拉曼光谱仪在微流控芯片领域应用的困难和局限性,开发了便于在微流控芯片上使用的小型微流控拉曼分析仪,对在微流控芯片上的拉曼光谱研究提供了便利;针对普通拉曼无法观察和定位透明生物组织和亚波长尺寸的样品,将拉曼检测与荧光成像和暗场成像技术联用,可以方便的在透明生物组织及纳米结构下的用成像方法找到感兴趣的位置,然后用拉曼光谱进行分析,是一种非常灵活、功能强大的综合光谱检测平台。这些自行开发的仪器和检测平台,为课题组开展更加具有挑战性的科研项目提供了必要的硬件基础。详细内容见第三章。
     3.利用电信号实现对光发射方向的调控。用电信号来调控光信号一直以来都是光电研究领域的一个热点和难点,尤其是在微纳尺度上的器件上。由于SPs在微纳尺度下对光有卓越的调控能力,而且由于SPs对环境折射率变化十分敏感,可利用该性质在微纳器件上实现对光的调控。液晶材料是一种具有电光效应的典型的超分子材料,其折射率随外界电场改变,因此可以用液晶材料实现用电信号实现对SPs的调控,进而实现在微纳器件上对光的调控。基于以上想法,我们分别在kretschmann棱镜结构和周期纳米井阵列结构下的荧光发射的方向和波长进行了用电信号的调控,证明该方法是一种非常实用的调制手段,具有可连续地、可逆的、快速地(响应速度为毫秒量级)调控光谱的优点。详细内容见第四章。我们又基于SPs引起的光的异常透过现象,用电信号实现了光束透射方向的控制,该方案具有器件结构简单、光束强度较高、光束方向性好、透射方向可控等优点,该研究成果可以用于三维立体显示领域。详细见第五章。
Plasmonics have been received much attentions due to their excellent ability tocontrol light in subwavelength range. Surface plasmons (SPs), which could be as thebridge to link the far field and near filed of light, could control light beyond thediffraction limit. Therefore SPs have wide applications in the development andpreparation of the nano-sized optical elements. SPs are also important to surfaceenhanced spectroscopy, such as surface enhanced Raman (SERS) and surfacePlasmon controlled fluorescence. Due to the SPs resonance effect, the localelectric-magnetic fields could be effectively enhanced, thus the spectrum signals (e.g.Raman scattering) could be improved for several orders. Besides, the coupling of SPsand light wave is usually directional, thus the emission direction of light could betuned by SPs. In this work, we studied some issues about the directional spectroscopyby means the self-built angle-resolved spectrometer:
     1.We studied the directional emission of SERS. The SERS enhancement factorcould reach109-1010according the electric-magnetic (EM) enhancement mechanismof SERS. It is not strong enough to detect the SERS signal of single molecule (>1014).To achieve the single molecule SERS, other enhance approach should be employedsuch as the resonance enhancement and charge transfer effect. However thesechemical enhancement methods which strongly depend on the species of themolecules are not universial methods. Thus any way to provide extra enhancement issignificant to SERS. The collection efficiency of SERS is usually very low due to theemanative nature of scattering. The SERS sensitivity could be efficiently improved ifthe SERS collection efficiency is improved. We studied the propagating SPs couplingemission on kretschmann configuration and periodical nano-well array. The directional SERS was achieved. Even the emission direction of SERS could along thenormal line of substrate after optimizing the parameters of the structure. We believe itis beneficial to improve the collection efficiency of SERS. The details could be foundin chapter2.
     2.We developed some Raman detection platform to match some special detectionrequirements. The commercial device could match the most detection requirements,however some special samples could not be detected, therefore the development ofnew detection devices is very important to improve the quality of the scientificresearch.1. We developed several novel Raman spectrometers based our previousresearch results: we developed a portable SERS spectrometer based on the directionalSERS phenomenon. The SERS spectrometer has a high sensitivity and accessibility;2.We built a compact microfluidics Raman spectrometer which is convenient to detectRaman on chips to solve the problem that the traditional Raman spectrometer is notsuitable to detect Raman spectra on microfluidic chips,;3. We integrated fluorescenceimage and dark field image with Raman spectrometer. We can fast locate theinterested samples of transparent biological samples or nanoparticles usingfluorescence image and dark field image, and then analyzed the components of thesample by Raman spectra. These self-built detection platforms has more flexiblefunctions comparing the commercial instruments, which is the hardware basics toresearch the challenging projects in our research group. The details could be found inchapter3.
     3.The control of light emission directions using electric signals. Since SPs is verysensitivity to the refractive index (RI) of surrounding, and the RI of liquid crystalscould be tuned by electric signals, we could tune the plasmonic devices by voltagesignals based on this. We achieved the electric control of the wavelength and emissiondirections of fluorescence on kretschmann configuration and nanograting structure. Itwas proved that the modulation method using liquid crystals was very efficiently. Thedetails could be found in chapter4. In additions, we tuned the light beam transmissiondirections based on SPs induced extraordinary optical emission. A liquid crystals layerwas added on the thick Ag film with nanograting pattern, and the beam transmissiondirections could be tuned. It is a very simple, but very efficiently method to modulate the beam directions. This research achievement could be using in three-dimensionaldisplay fields. The details could be found in chapter5.
引文
1Barnes, W. L.; Dereux, A.; Ebbesen, T. W. Surface plasmon subwavelength optics.Nature2003,424,824-830
    2Homola, J.; Yee, S. S.; Gauglitz, G. Surface plasmon resonance sensors: review.Sens. Actuators, B1999,54,3-15
    3Ozbay, E. Plasmonics: Merging photonics and electronics at nanoscale dimensions.Science2006,311,189-193.
    4Maier, S. A.; Kik, P. G.; Atwater, H. A.; Meltzer, S.; Harel, E.; Koel, B. E.;Requicha A. A. G. Local detection of electromagnetic energy transport below thediffraction limit in metal nanoparticle plasmon waveguides. Nat. Mater.2003,2,229–232.
    5Gramotnev, D. K.; Bozhevolnyi, S. Plasmonics beyond the diffraction limit. Nat.Photonics2010,4,83-91.
    6Dionne, J. A.; Sweatlock, L. A.; Atwater, H. A. Plasmon slot waveguides: Towardschip-scale propagation with subwavelength-scale localization. Phys. Rev. B2006,73,035407.
    7L Willets, K. A.; Van Duyne, R. P. Localized surface plasmon resonancespectroscopy and sensing. Annu. Rev. Phys. Chem.2007,58,267-297
    8S Michaels, A. M.; Nirmal, M.; Brus, L. E. Surface enhanced Raman spectroscopyof individual rhodamine6G molecules on large Ag nanocrystals. J. Am. Chem. Soc.1999,121,9932-9939.
    9Tian, Z. Q.; Ren, B.; Wu, D. Y. Surface-enhanced Raman scattering: From noble totransition metals and from rough surfaces to ordered nanostructures. J. Phys. Chem.B2002,106,9463-9483.
    10Stiles, P. L.; Dieringer, J. A.; Shah, N. C.; Van Duyne, R. P. Surface-enhancedRaman spectroscopy. Annu. Rev. Phys. Chem.2008,1,601-626.
    11Xu, H.; Aizpurua, J.; Kall, M.; Apell, P. Electromagnetic contributions tosingle-molecule sensitivity in surface-enhanced Raman scattering. Phys. Rev. E:Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top.2000,62,4318–4324.
    12Ko, H.; Singamaneni, S.; Tsukruk, V. V. Nanostructured Surfaces and Assembliesas SERS Media. Small2008,4,1576-1599.
    13Lakowicz, J. R.; Ray, K.; Chowdhury, M.; Szmacinski, H.; Fu, Y.; Zhang J.;Nowaczyk K. Plasmon-controlled fluorescence: a new paradigm in fluorescencespectroscopy. Analyst2008,133,1308–1346.
    14Calander, N. Theory and Simulation of Surface Plasmon-Coupled DirectionalEmission from Fluorophores at Planar Structures. Anal. Chem.2004,76,2168-2173.
    15Toma, M.; Toma, K.; Adam, P.; Homola, J.; Knoll, W.; Dostálek, J. Surfaceplasmon-coupled emission on plasmonic Bragg gratings. Opt. Express2012,20,14042.
    16Futamata, M. Application of attenuated total reflection surface-plasmon-polaritonRaman spectroscopy to gold and copper. Appl. Opt.,1997,36,364-371.
    17Meyer, S. A.; Le Ru, E. C.; Etchegoin, P. G. Combining surface plasmonresonance (SPR) spectroscopy with surface-enhanced Raman scattering (SERS).Anal. Chem.2011,83,2337-2344.
    18Baumberg, J. J.; Kelf, T. A.; Sugawara, Y.; Cintra, S.; Abdelsalam, M. E.; Bartlett;P. N.; Russell, A. E.; Angle-resolved surface-enhanced Raman scattering onmetallic nanostructured plasmonic crystals. Nano Lett.,2005,5,2262-2267.
    19Pendry, J. B.; Martin-Moreno, L.; Garcia-Vidal, F. J. Mimicking surface plasmonswith structured surfaces. Science2004,305,847-848.
    20Raether, H. Surface plasmons on smooth and rough surfaces and on gratings;Springer-Verlag: Hamburger, Germany,1986
    21Wood, R. W. On a remarkable case of uneven distribution of light in a diffractiongrating spectrum. Phil. Magm.1902,4,396-402.
    22Kelly, K. L.; Coronado, E.; Zhao, L. L. The optical properties of metalnanoparticles: The influence of size, shape, and dielectric environment. J. Phys.Chem. B2003,107,668-677.
    23Otto, A. Exitation of nonradiative surface plasma waves in silver by the method offrustrated total reflection. Z. Phys.1968,216,398.
    24Kretschmann, E.; Raether, H. Radiative decay of nonradiative surface plasmonsexcited by light. Z. Naturforsch. A1968,23,2135–2136.
    25Park, S.; Won, H. S.; Lee, G.; Song, S. H.; Oh, C. H.; Kim, P. S. Grating-assistedemission of surface plasmons. J. Korean Phys. Soc.2005,46,492-497
    26Ritchie, R. H.; Arakawa, E. T.; Cowan, J. J.; Hamm, R. N. Surface-plasmonresonance effect in grating diffraction. Phys. Rev. Lett.1968,21,1530-1533.
    27Salomon, L.; Bassou, G.; Dufour, J. P.; de Fornel, F.; Zayats, A. V. Localexcitation of surface plasmon polaritons at discontinuities of a metal film:Theoretical analysis and optical near-field measurements. Phys. Rev. B2002,65,125409.
    28Zayats, A. V.; Smolyaninov, I. I.; Maradudin, A. A. Nano-optics of surfaceplasmon polaritons. Phys. Rep.2005,408,131–314.
    29Calander N. Theory and Simulation of Surface plasmon-coupled directionalemission from fluorophores at planar structures. Anal. Chem.2004,76,2168-2173.
    30Lakowicz J. R. Radiative decay engineering3. Surface plasmon-coupleddirectional emission. Anal. Biochem.2004,324,153–169.
    31Range owa-Jankowska, S.; Jankowski, D.; Bogdanowicz, R.; Grobelna, B.;Bojarski, P. Surface plasmon-coupled emission of rhodamine110aggregates in asilica nanolayer. J. Phys. Chem. Lett.2012,3,3626-3631
    32Toma, M.; Toma, K.; Adam, P.; Homola, J.; Knoll, W.; Dostálek, J. Surfaceplasmon-coupled emission on plasmonic Bragg gratings. Opt. Express2012,20,14042.
    33Lakowicz, J. R.; Ray, K.; Chowdhury, M.; Szmacinski, H.; Fu, Y.; Zhang J.;Nowaczyk K. Plasmon-controlled fluorescence: a new paradigm in fluorescencespectroscopy. Analyst2008,133,1308-1346.
    34Ko, H.; Singamaneni, S.; Tsukruk, V. V. Nanostructured surfaces and assembliesas SERS media. Small2008,4,1576-1599.
    35Maier, S. A.; Atwater, H. A. Plasmonics: Localization and guiding ofelectromagnetic energy in metal/dielectric structures. J. Appl. Phys.2005,98,011101.
    36Lu, X. M.; Rycenga, M.; Skrabalak, S. E.; Wiley, B.; Xia, Y. N. Chemicalsynthesis of novel plasmonic nanoparticles. Annu. Rev. Phys. Chem.2009,60,167-192.
    37Mock, J. J.; Barbic, M.; Smith, D. R.; Schultz, D. A.; Schultz, S. Shape effects inplasmon resonance of individual colloidal silver nanoparticles. J. Chem. Phys.2002,116,6755–6759.
    38Wang, B.; Wang, G. P. Metal heterowaveguides for nanometric focusing of light.Appl. Phys. Lett.2004,85,3599-3601
    39Bozhevolnyi, S. I.; Volkov, V. S.; Devaux, E.; Ebbesen, T. W. Channelplasmon-polariton guiding by subwavelength metal grooves. Phys. Rev. Lett.2005,95,046802.
    40Bozhevolnyi, S. I.; Volkov, V. S.; Devaux, E.; Laluet, J.-Y.; Ebbesen, T. W.Channel plasmon subwavelength waveguide components includinginterferometers and ring resonators. Nature2006,440,508-511.
    41Zhang, J. X.; Zhang, L. D.; Xu, W. Surface plasmon polaritons: physics andapplications, J. Phys. D: Appl. Phys.2012,45,113001.
    42Kurokawa, Y.; Miyazaki, H. T. Metal-insulator-metal plasmon nanocavities:Analysis of optical properties. Phys. Rev. B2007,75,035411.
    43Quail, J. C.; Rako, J. G.; Simon H. J. Long-range surface-plasmon modes in silverand aluminum films. Opt. Lett.1983,8,377-379.
    44Yang, F.; Bradberry, G. W.; Sambles J. R. Long-range surface mode supported byvery thin silver films. Phys. Rev. Lett.1991,66,2030-2032.
    45Hecht, B.; Bielefeldt, H.; Novotny, L.; Inouye, Y.; Pohl, D. W. Local excitation,scattering, and interference of surface plasmons. Phys. Rev. Lett.1996,77,1889-1892.
    46Pendry, J. Playing tricks with light. Science1999,285,1687–1688.
    47Gordon, J.G.; Ernst, S. Surface plasmons as a probe of the electrochemicalinterface. Surface Sci.1980,101,499-506.
    48J nsson, U.; F gerstam, L.; Ivarsson, B. et al. Real-time biospecifc interactionanalysis using surface plasmon resonance and a sensor chip technology.Biotechniques1991,11,620-627.
    49Homola, J.; Koudela, I.; Yee S. S. Surface plasmon resonance sensors based ondiffraction gratings and prism couplers: sensitivity comparison. Sens. Actuators, B1999,54,16–24.
    50李海波,徐抒平,刘钰,菅晓光,徐蔚青波长型SPR检测仪的灵敏度探讨,高等学校化学学报,2010,11,2157.
    51Homola, J.; Yee, S. S.; Gauglitz, G. Surface plasmon resonance sensors: review.Sens. Actuators, B1999,54,3-15.
    52Hutter, E.; Fendler, J. H. Exploitation of localized surface plasmon resonance. Adv.Mater.2004,16,1685-1706.
    53Anker, J. N.; Hall, W. P.; Lyandres, O. Biosensing with plasmonic nanosensors.Nature Mater.2008,7,442-453
    54Krasavin A. V.; Zheludev, N. I. Active plasmonics: Controlling signals in Au/Gawaveguide using nanoscale structural transformations. Appl. Phys. Lett.2004,84,1416-1418.
    55Pala, R. A.; Shimizu, K. T.; Melosh, N. A.; Brongersma, M. L. A Nonvolatileplasmonic switch employing photochromic molecules. Nano Lett.2008,8,1506-1510.
    56MacDonald, K. F.; Sámson, Z. L.; Stockman, M. I.; Zheludev, N. I. Ultrafastactive plasmonics. Nat. Photonics2009,3,55-58.
    57Khatua, S.; Chang, W.-S.; Swanglap, P.; Olson, J.; Link S. Active modulation ofnanorod plasmons. Nano Lett.2011,11,3797-3802.
    58Liu, Y. J.; Leong, E. S. P.; Wang, B.; Teng, J. H. Optical Transmissionenhancement and tuning by overylaying liquid crystals on a gold film withpatterned nanoholes. Plasmonics2011,6,659–664.
    59Jun, Y. C.; Huang, K. C. Y.; Brongersma, M. L. Plasmonic beaming and activecontrol over fluorescent emission. Nat. Commun.2011,2,283
    60Kauranen, M.; Zayats, A. V. Nonlinear plasmonics. Nat. Photonics2012,6,737-748.
    61Liu, H. Y.; Chen, D.; Li, L. L.; Liu, T. L.; Tan, L. F.; Wu, X. L.; Tang, F. Q.Multifunctional gold nanoshells on silica nanorattles: a platform for thecombination of photothermal therapy and chemotherapy with low systemictoxicity. Angew. Chem. Int. Edit.2011,50,891-895.
    62Tang, B.; Wang, J. F.; Xu, S. P.; Afrin, T.; Tao, J. L.; Xu, W. Q.; Sun, L.; Wang X.G. Function improvement of wool fabric based on surface assembly of silica andsilver nanoparticles. Chem. Eng. J.2012,15,366-373.
    63Hsu, C. W.; Zhen, B.; Qiu, W. J.; Shapira, O.; DeLacy, B. G.; Joannopoulos J. D.;Solja i, M. Transparent displays enabled by resonant nanoparticle scattering.Nature Commun.2014,5,3152.
    64Ebbesen, T. W.; Lezec, H. J.; Ghaemi, H. F.; Thio, T.; Wolff, P. A. Extraordinaryoptical transmission through sub-wavelength hole arrays. Nature,1998,391,667-669.
    65Krasnok, A. E.; Maksymov, I. S.; Denisyuk, A. I.; Belov, P. A.; Miroshnichenko, A.E.; Simovski, C. R.; Kivshar, Y. S. Optical nanoantennas. Physics-Uspekhi2013,56,539-564.
    66Kosako, T.; Kadoya, Y.; Hofmann, H. F. Directional control of light by anano-optical Yagi-Uda antenna. Nat. Photonics2010,4,312-315.
    67Bergman, D. J.; Stockman, M. I. Can We Make a Nanoscopic Laser? LaserPhysics,2004,14,409-411.
    68Stockman, M. I. Spasers explained. Nat. photonics2008,2,327-329
    69Ropers, C.; Neacsu, C. C.; Elsaesser, T.; Albrecht, M.; Raschke, M. B.; Lienau, C.Grating-coupling of surface plasmons onto metallic tips: A nanoconfined lightsource Nano Lett.2007,7,2784-2788.
    70Modern Raman spectroscopy-a practical approach, Ewen Smith Geoffrey Dent,2005John Wiley&Sons, England.
    71刘钰.基于消失场激发的表面等离子体场增强拉曼散射的研究吉林大学,物理化学,2011,博士.
    72Fleischmann, M.; Hill, I. R.; In comprehensive treatise of electrochemistry. White,R. E.; Bockris, J. OM.; Conway, B. E.; Yeager, E., Eds.; Plenum Press: New York,1984,8,373.
    73Fleischmann, M.; Hendra, P. J.; Mcquillan, A. J. Raman spectra from electrodesurfaces. J. Chem. Soc., Chem. Commun.1973,80-81.
    74Kneipp K., Wang Y., Kneipp H., Perelman L. T., Itzkan I., Dasari R. R. and FeldM. S. Single molecule detection using surface-enhanced Raman scattering (SERS).Phys. Rev. Lett.,1997,78,1667–1670.
    75Nie S. and Emory S. R. Surface-enhanced Raman scattering nanoparticles.Science,1997,275,1102–1106.
    76Kneipp K., Kneipp H., Itzkan I., Dasari R. R., Feld M. S. Ultrasensitive chemicalanalysis by Raman spectroscopy. Chem. Rev.1999,99,2957
    77Moskovits, M. Surface-enhanced spectroscopy. ReV. Mod. Phys.1985,57,783.
    78Sun G. G. Surface-enhanced Raman spectroscopy investigation of surfaces andinterfaces in thin films on metals. PhD thesis of the Ruhr-University Bochum,2007.
    79Campion A. Surface-enhanced Raman scattering. Chem. Soc. Rev.1998,4,241
    80Xu H., Aizpurua J., Kall M. and Apell P. Electromagnetic contributions tosingle-molecule sensitivity in surface-enhanced Raman scattering. Phys. Rev. E:Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top.,2000,62,4318-4324.
    81Free-Standing Optical Gold Bowtie Nanoantenna with Variable Gap Size forEnhanced Raman Spectroscopy Hatab, N. A.; Hsueh, C.-H.; Gaddis, A. L.;Retterer, S. T.; Li, J.-H.; Eres, G.; Zhang, Z.; Gu, B. Nano Lett.,2010,10,4952–4955.
    82Pettinger B. Light scattering by adsorbates at Ag particles: Quantum-mechanicalapproach for energy transfer induced interfacial optical processes involvingsurface plasmons, multipoles, and electron-hole pairs J. Chem. Phys.1986,85,7442-7451.
    83Itoh, T.; Yoshida, K.; Biju, V.; Kikkawa, Y.; Ishikawa, M.; Ozaki Y. Secondenhancement in surface-enhanced resonance Raman scattering revealed by ananalysis of anti-Stokes and Stokes Raman spectra. Phys. Rev. B2007,76,085405.
    84Yoshida, K.; Itoh, T.; Tamaru, H.; Biju, V.; Ishikawa, M.; Ozaki, Y. Quantitativeevaluation of electromagnetic enhancement in surface-enhanced resonance Ramanscattering from plasmonic properties and morphologies of individual Agnanostructures. Phys. Rev. B,2010,81,115406.
    85McFarland, A. D.; Young, M. A.; Dieringer, J. A.; Van Duyne, R. P.Wavelength-scanned surface-enhanced Raman excitation spectroscopy. J. Phys.Chem. B,2005,109,11279.
    86Banholzer, M. J.; Millstone, J. E.; Qin, L.; Mirkin, C. A. Rationally designednanostructures for surface-enhanced Raman spectroscopy. Chem Soc Rev.2008,37,885-97.
    87Rohr, T. E.; Cotton, T.; Fan, N.; Tarcha, P. J. Immunoassay employingsurface-enhanced Raman spectroscopy. Anal. Biochem.,1989,182,388–398.
    88Qian, X.M.; Peng, X. H.; Ansari, D. O.; Yin-Goen, Q.; Chen, G. Z.; Shin, D.;Yang, M. L.; Young, A. N.; Wang, M. D.; Nie, S. M. In vivo tumor targeting andspectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat.Biotechnol.,2008,26,83–90.
    89Li, J. F.; Huang, Y. F.; Ding, Y.; Yang, Z. L.; Li, S. B.; Zhou, X. S.; Fan, F. R.;Zhang, W.; Zhou, Z. Y.; Wu, D. Y.; Ren, B.; Wang, Z. L.; Tian, Z. Q.Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature,2010,464,392–395.
    90Zhang, R.; Zhang, Y.; Dong, Z. C.; Jiang, S.; Zhang, C.; Chen, L. G.; Zhang, L.;Liao, Y.; Aizpurua, J.; Luo, Y.; Yang, J. L.; Hou, J. G. Chemical mapping of asingle molecule by plasmon-enhanced Raman scattering. Nature2013,498,82–86.
    91King, N. S.; Li, Y.; Ayala-Orozco, C.; Brannan, T.; Nordlander, P.; Halas, N. J.Angle-and spectral-dependent light scattering from plasmonic nanocups. ACSNano,2011,5,7254–7262.
    92Futamata, M.; Borthen, P.; Thomassen, J.; Schumacher, D.; Otto, A. Applicationof an ATR Method in Raman Spectroscopy. Appl. Spectrosc1994,48,252-260.
    93Liu, Y.; Xu, S. P.; Li, H. B.; Jian, X. G.; Xu, W. Q. Localized and propagatingsurface plasmon co-enhanced Raman spectroscopy based on evanescent fieldexcitation. Chem. Commun.,2011,47,3784.
    94Liu, Y.; Xu, S. P.; Tang, B.; Wang, Y.; Zhou, J.; Zheng, X. L.; Zhao, B.; Xu, W. Q.Note: Simultaneous measurement of surface plasmon resonance andsurface-enhanced Raman scattering. Rev. Sci. Instrum.2010,81,036105.
    95Ushioda S. and Sasaki Y. Raman scattering mediated by surface-plasmon polaritonresonance. Phys. Rev. B1983,27,1401-1404
    96Li, H. B.; Gu, Y. J.; Guo, H. Y.; Wang, X. N.; Liu, Y.; Xu, W. Q.; Xu, S. P. Tunableplasmons in shallow silver nanowell arrays for directional surface-enhancedRaman scattering. J. Phys. Chem. C,2012,116,23608-23615
    97Wang, D.; Yang, T.; Crozier, K. B. Optical antennas integrated with concentricring gratings: electric field enhancement and directional radiation. Opt. Express2011,19,2148-2157.
    98Chu, Y.; Zhu, W.; Wang, D.; Crozier, K. B. Beamed Raman: directional excitationand emission enhancement in a plasmonic crystal double resonance SERSsubstrate. Opt. Express2011,19,20054-20068.
    99Lezec, H. J.; Degiron, A.; Devaux, E.; Linke, R. A.; Martin-Moreno, L.;Garcia-Vidal, F. J.; Ebbesen, T. W. Beaming light from a subwavelength aperture.Science2002,297,820-822.
    100Kelf, T. A.; Sugawara, Y.; Cole, R. M.; Baumberg, J. J. Localized and delocalizedplasmons in metallic nanovoids. Phys. Rev. B2006,74,245415.
    101Giannini, V.; Fernandez-Dom nguez, A. I.; Heck, S. C.; Maier, S. A. PlasmonicNanoantennas: Fundamentals and Their Use in Controlling the RadiativeProperties of Nanoemitters. Chem. Rev.,2011,111,3888.
    102nMSueonared-rafnrieealrmd, Wurof.t hbEyo.,w TAtio.ew; oaSprctdhi ucncaakl n,no amP. noeJate.;nr t-Cesnconanaleles. oy,Np atNinc.oa lRL p.;eh ttoF. tr2oo0lmi0t6hm,o,6g,rD a. P.; Kino, G. S.;3p5h5y–:36u0ti.lizing the
    103Li, H. B.; Chen, G.; Zhang, Y. X.; Geng, Y. J.; Gu, Y. J.; Wang, H. L.; Xu, S. P.;Xu, W. Q. Note: Mobile micro-Raman analyzer integrated with a lab-on-a-chip.Rev. Sci. Instrum.2013,84,056105.
    104Choi, N.; Lee, K.; Lim, D.-W.; Lee, E.-K.; Chang, S.-I.; Oh, K.W.; Choo, J.Simultaneous detection of duplex DNA oligonucleotides using a SERS-basedmicro-network gradient chip. Lab Chip2012,12,5160.
    105Whitesides, G.-M. Overview The origins and the future of microfluidics. Nature(London)2006,442,368.
    106Nicu, L.; Leichle, T. Biosensors and tools for surface functionalization from themacro-to the nanoscale: The way forward. J. Appl. Phys.2008,104,111101.
    107Trietsch, S.-J.; Hankemeier, T.; van der Linden, H.-J. Lab-on-a-chip technologiesfor massive parallel data generation in the life sciences: A review. Chemom.Intell. Lab. Syst.2011,108,64.
    108Huh, Y.-S.; Chung, A.-J.; Erickson, D. Surface enhanced Raman spectroscopyand its application to molecular and cellular analysis. Microfluid. Nanofluid.2009,6,285..
    109Quang, L.-X.; Lim, C.; Seong, G.-H.; Choo, J.; Do, K.-J.; Yoo, S.-K. A portablesurface-enhanced Raman scattering sensor integrated with a lab-on-a-chip forfield analysis. Lab Chip2008,8,2214.
    110Wang, G.; Lim, C.; Chen, L.; Chon, H.; Choo, J.; Hong, J.; deMello, A.-J.Surface-enhanced Raman scattering in nanoliter droplets: towardshigh-sensitivity detection of mercury (II) ions. Anal. Bioanal. Chem.2009,394,1827.
    111Gao, X. H.; Cui, Y. Y.; Levenson, R. M.; Chung, L. W.; Nie, S. M. In vivo cancertargeting and imaging with semiconductor quantum dots. Nat. Biotechnol.2004,22,969-976.
    112Chin, W. W.; Thong, P. S.; Bhuvaneswari, R.; Soo, K. C.; Heng, P. W.; Olivo, M.In-vivo optical detection of cancer using chlorine e6-polyvinylpyrrolidoneinduced fluorescence imaging and spectroscopy. BMC Med. Imaging2009,9,1.
    113Graves, E. E.; Weissleder, R.; Ntziachristos, V. Fluorescence molecular imagingof small animal tumor models. Curr. Mol. Med.2004,4,419-430.
    114Jiang, L.; Qian, J.; Cai, F. H.; He, S. L. Raman reporter-coated gold nanorodsand their applications in multimodal optical imaging of cancer cells. AnalBioanal Chem2011,400,2793–2800.
    115MacLaughlin, C. M.; Parker, E. P.; Walker, G. C.; Wang, C. Evaluation of SERSlabeling of CD20on CLL cells using optical microscopy and fluorescence flowcytometry. Nanomedicine2013,9,55-64.
    116Laurent, G.; Félidj, N.; Grand, J.; Aubard, J.; Lévi G. Raman scattering imagesand spectra of gold ring arrays. Phys. Rev. B2006,73,245417.
    117Yang, J.; Wang, Z. Y.; Zong, S. F.; Chen, H.; Zhang, R. Z.; Cui, Y. P. Dual-modetracking of tumor-cell-specifc drug delivery using fuorescence and label-freeSERS techniques. Biosens. Bioelectron.2014,51,82–89.
    118Wang, Y. Q.; Chen, L. X.; Liu, P. Biocompatible triplex Ag@SiO2@mTiO2core–shell nanoparticles for simultaneous fluorescence-sers bimodal imaging anddrug delivery. Chem. Eur. J.2012,18,5935-5943.
    119Dregely, D.; Taubert, R.; Dorfmüller, J.; Vogelgesang, R.; Kern, K.; Giessen, H.3D optical Yagi–Uda nanoantenna array. Nat. Commun.2011,2,267.
    120Xu, T.; Wu, Y. K.; Luo, X.; Guo, L. J. Plasmonic nanoresonators forhigh-resolution colour filtering and spectral imaging. Nat. Commun.2010,1,59.
    121Dickson, W.; Wurtz, G. A.; Evans, P. R.; Pollard, R. J.; Zayats, A. V.Electronically controlled surface plasmon dispersion and optical transmissionthrough metallic hole arrays using liquid crystal. Nano Lett.2008,8,281-286.
    122Caldwell, M. E.; Yeatman, E. M. Surface-plasmon spatial light modulators basedon liquid crystal. Appl. Opt.1992,31,3880-3891.
    123Chu, K. C.; Chao, C. Y.; Chen, Y. F.; Wu, Y. C.; Chen, C. C. Electricallycontrolled surface plasmon resonance frequency of gold nanorods. Appl. Phys.Lett.2006,89,103107.
    124Evans, P. R.; Wurtz, G. A.; Hendren, W. R.; Atkinson, R.; Dickson, W.; Zayats, A.V.; Pollard, R. J. Electrically switchable nonreciprocal transmission of plasmonicnanorods with liquid crystal. Appl. Phys. Lett.2007,91,043101.
    125Hao, F.; Nordlander, P.; Sonnefraud, Y.; Dorpe, P. V.; Maier, S. A. Tunability ofsubradiant dipolar and fano-type plasmon resonances in metallic ring/diskcavities: implications for nanoscale optical sensing. ACS Nano2009,3,643.
    126Khatua, S.; Chang, W. S.; Swanglap, P.; Olson, J.; Link, S. Active modulation ofnanorod plasmons. Nano Lett.2011,11,3797–3802
    127Xie, J.; Zhang, X. M.; Peng, Z. H.; Wang, Z. H.; Wang, T. Q.; Zhu, S. J.; Wang,Z. Y.; Zhang, L.; Zhang, J. H.; Yang, B. Low electric field intensity andthermotropic tuning surface plasmon band shift of gold island film by liquidcrystals. J. Phys. Chem. C2012,116,27202727.
    128Li, H. B.; Xu, S. P.; Gu, Y. J.; Wang, K.; Xu, W. Q. Active modulation ofwavelength and radiation direction of fluorescence via liquid crystal-tunedsurface plasmons. Appl. Phys. Lett.2013,102,051107.
    129Gryczynski, I.; Malicka, J.; Gryczynski, Z.; Lakowicz, J. R. Radiative decayengineering4. Experimental studies of surface plasmon-coupled directionalemission. Anal. Biochem.2004,324,170–182.
    130Gryczynski, I.; Malicka, J.; Gryczynski, Z.; Lakowicz, J. R. Surfaceplasmon-coupled emission with gold films. J. Phys. Chem. B2004,108,12568-12574.
    131Li, J.; Ma, Y.; Gu, Y.; Khoo, I.; Gong, Q. Large spectral tunability of narrowgeometric resonances of periodic arrays of metallic nanoparticles in a nematicliquid crystal. Appl. Phys. Lett.2011,98,213101.
    132Daly, K. R.; Abbott, S.; Alessandro, G. D.; Smith, D. C.; Kaczmarek, M. Theoryof hybrid photorefractive plasmonic liquid crystal cells. J. Opt. Soc. Am. B2011,28,1874.
    133Li, H. B.; Xu, S. P.; Gu, Y. J.; Wang, H. L.; Ma, R. P.; Lombardi, J. R.; Xu, W. Q.Active plasmonic nanoantennas for controlling fluorescence beams. J. Phys.Chem. C2013,117,1915419159.
    134Wedge S.; Barnes, W. L. Surface plasmon-polariton mediated light emissionthrough thin metal films. Opt. Express2004,12,3673-3685.
    135Ebbesen, T. W.; Lezec, H. J.; Ghaemi, H. F.; Thio, T.; Wolff, P. A. Extraordinaryoptical transmission through sub-wavelength hole arrays. Nature,1998,391,667-669.
    136Garcia-Vidal, F. J.; Martin-Moreno, L.; Ebbesen, T. W.; Kuipers, L. Lightpassing through subwavelength apertures. Rev. Mod. Phys.2010,82,729-787.
    137Genet, C.; Ebbesen, T. W. Light in tiny holes. Nature2007,445,39-46.
    138Barnes, W. L.; Murray, W. A.; Dintinger, J.; Devaux, E.; Ebbesen, T.W. Surfaceplasmon polaritons and their role in the enhanced transmission of light throughperiodic arrays of subwavelength holes in a metal film. Phys. Rev. Lett.2004,92,107401.
    139Urey, H.; Erden, E. State of the Art in Stereoscopic and AutostereoscopicDisplays. Proc. of the IEEE201199,540-555.
    140Geng, J. Three-dimensional display technologies. Adv. Opt. Photonics2013,5,456–535.
    141Takaki, Y. High-Density directional display for generating naturalthree-dimensional images. Proc. of the IEEE2006,94,654-663.
    142Aoki, Y.; Horimai, H.; Lim, P. B.; Watanabe K.; Inoue, M. Directional LightScanning3-D Display. SPIE-OSA-IEEE7635,76350M
    143Dolev, I.; Epstein, I.; Arie, A. Surface-plasmon holographic beam shaping, Phys.Rev. Lett.2012,109,203903.
    144Zhang, M. H.; Zheng, J. H.; Gui, K.; Wang, K. N.; Guo, C. H.; Wei, X. P.;Zhuang, S. L. Electro-optical characteristics of holographic polymer dispersedliquid crystal gratings doped with nanosilver. Appl. Opt.2013,52,7411-7418.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700