以叶酸-BSA为载体的靶向性钆造影剂的制备及其体外弛豫和细胞摄取研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着肿瘤病例的极速增加,肿瘤的早期诊断就变得尤为重要。磁共振成像技术就是一种临床上常用的肿瘤诊断技术。目前,临床上应用的大部分磁共振造影剂(包括常用的钆类造影剂)对肿瘤组织并无特异性的靶向作用,因而降低了造影效果。因此,磁共振成像技术应用于肿瘤诊断的关键在于研发靶向性的磁共振造影剂以提高肿瘤定位能力,并增强检测的灵敏性和准确性。叶酸-叶酸受体靶向就是近来备受关注的新型抗肿瘤机制,它是利用叶酸受体在某些肿瘤部位过度表达、而在正常组织中低水平表达的特征而实现叶酸偶联药物的靶向输送。基于叶酸受体的表达特征和叶酸配体的独特优势,叶酸受体已成为肿瘤诊断和治疗的理想靶点。
     本文结合叶酸介导靶向输送的理念和磁共振造影成像的安全性与灵敏性,设计合成了叶酸介导的靶向性钆造影剂—叶酸-BSA- (Gd-DTPA)n。首先运用正交设计实验优化了牛血清白蛋白(BSA)与二乙三胺五乙酸环酸酐(cDTPAA)的偶联条件。接着在最佳条件的反应介质中,叶酸活化酯与BSA反应生成叶酸-白蛋白偶联物,该偶联物再与DTPA的酸酐反应,最后与氯化钆进行螯合并经Sephadex G-25分离纯化制得叶酸-BSA-(Gd-DTPA)n。通过紫外光谱法对造影剂的结构进行了鉴定,并定量测定了造影剂中叶酸、Gd-DTPA对BSA的偶联率。通过测定造影剂的体外弛豫时间T1,进一步分析其弛豫性能R1。
     用异硫氰酸荧光素(FITC)对造影剂进行荧光标记,以叶酸受体阳性的KB、HeLa细胞和叶酸受体阴性的A549细胞为模型细胞,通过倒置荧光显微镜定性观察,研究了细胞对造影剂的特异性摄取作用;同时也通过钆含量的测定来分析细胞的摄取情况。
     结果表明,叶酸-BSA-(Gd-DTPA)n造影剂中,叶酸对BSA的偶联比约为5,Gd-DTPA的偶联比随着酸酐投量的增加而增大;体外弛豫性能R1约为6×10-3 L·mmol-1ms-1,与未偶联叶酸的BSA-(Gd-DTPA)n的弛豫性能无显著性差异,但比小分子Gd-DTPA的弛豫性能提高了2倍左右。在细胞摄取实验中,荧光标记的叶酸-BSA-(Gd-DTPA)n在叶酸受体阳性细胞KB和HeLa的胞浆内有明亮的荧光,荧光强度随着加入的游离叶酸浓度的增大而减弱,而在叶酸受体阴性的A549细胞中荧光很弱;未偶联叶酸的BSA-(Gd-DTPA)n在三种细胞中荧光都很弱。在细胞摄取的影响因素实验中发现,随着培养时间的延长、给药浓度的增大,KB细胞中的荧光强度增强,但有饱和性;当蛋白上偶联的Gd-DTPA数目过大时,会因结合位阻增大而荧光减弱。钆含量的测定结果也初步显示了KB细胞与偶联叶酸的造影剂之间的特异性作用。
     总之,本文制备的大分子造影剂—叶酸-BSA-(Gd-DTPA)n具有高弛豫性能和靶向叶酸受体阳性细胞的特异性。
The early diagnosis of cancer is becoming more and more important with the rapid increase of cancer cases. Magnetic resonance imaging (MRI) is one of the effective tumor diagnostic techniques in clinical use. But most of MR contrast agents (including Gd3+ contrast agents) could not specifically localize in tumor tissues, so the critical importance of the field is the development of targeted contrast agents which can localize to cancer cells through a passive or active mechanism. Among all those researches, targeted drug via the folate receptor (FR), based on the fact that folate receptor can be over-expressed on the surface of some kinds of tumor cells, but scarcely expressed on normal cells, has drawn great attentions by researchers. Based on specificity of FR expression and distinctive advantages of folate, folate receptor has become an ideal target of tumor diagnosis and therapy.
     Based on the theory of folate-mediated delivery and the reliability and sensitivity of MRI, we have designed and prepared a new folate-mediated targeting Gd3+ contrast agent—“Folate-BSA-(Gd-DTPA)n”. First, we optimized the reacting conditions of conjugation of BSA and DTPA (Diethylene triamine pentaacetic dianhydride) anhydride. Then under the optimal condition, BSA was reacted with the activated folate; after that, the conjugates were coupled with DTPA anhydride to form Folate-BSA-DTPA; finally, these coupled compounds were chelated with GdCl3. All complexes were characterized by UV, the ratios of folate and Gd-DTPA to BSA were determined by UV and ICP-AES methods respectively.
     The spin-lattice relaxivity of the Gd complexes in vitro were analyzed by T1-weighted magnetic resonance images.
     The contrast agents were labeled with fluorescein isothiocyanate (FITC) under weak base. Using KB (FR+), HeLa (FR+) and A549 (FR-) cells as model cells, the intracelluar uptake of contrast agents was observed under inverted fluorescent microscope. Besides, intracelluar uptake of contrast agents was also detected by assay of Gd3+.
     As a result, the ratio of folate to BSA was about 5 in every molecular of Folate-BSA-(Gd-DTPA)n , and the relaxivity was about 6×10-3 L·mmol-1ms-1 enhanced twice compared to the small molecular Gd-DTPA, though there was no difference in relaxivity between Folate-BSA-(Gd-DTPA)n and BSA-(Gd-DTPA)n. The investigation of the specific cellular uptake showed that there was a greater fluorescence intensity when FITC-labelled Folate-BSA-(Gd-DTPA)n were incubated with KB and HeLa cells than FITC-labelled BSA-(Gd-DTPA)n, and the intracellular uptake of folate complexes in KB and HeLa cells could be blocked by free folate; but there was weak fluorescent in A549 cells incubated folate-conjugated or non-conjugated contrast agents. In the test of influent factors of KB cellular uptake incubated with FITC-labelled Folate-BSA-(Gd-DTPA)n, the result showed that the intensity of cell-associated fluorescence increased with time and concentration, and decreased with ratio of Gd-DTPA to BSA. And the result of ICP-AES assay of Gd3+ also indicated that the specific cellular uptake of FR(+) with folate-conjugated contrast agents.
     In all, Folate-BSA-(Gd-DTPA)n thus obtained had high relaxivity and potential for targeting FR-positive tumor.
引文
[1] Morawski AM., Lanza GA., Wickline. Targeted contrast agent s for magnetic resonance imaging and ultrasound [J]. Current Opinion in Biotechnology, 2005,16(1):89-92.
    [2]俞开潮,王国平,丁尚武,等.用于磁共振成像对比增强的造影剂的研发进展[J].波谱学杂志,2004,21(4):505-525.
    [3] U.Schmiedl, M.Ogan, H.Paajanen, et al. Albumin labeled with Gd-DTPA as an intravascular, blood pool-enhancing agent for MR imaging: Biodistribution and imaging studies [J]. Radiology, 1987, 162(1): 205-210.
    [4] Artemov D. Molecular Magnetic Resonance Imaging With Targeted Contrast Agents [J]. Journal of Cellular Biochemistry, 2003, 90(3):518-524.
    [5]许乙凯.磁共振造影剂及临床应用[M].第一版,北京:人民卫生出版社, 2003, 9, 37-51.
    [6] Parker N., Turl MJ., Westrick E , et al. Folate receptor expression in carcinomas and normal tissues determined by a quantitative radioligand binding assay[J]. Analytical Biochemistry, 2005,338(2):284-293.
    [7] Barjor Gimi, Arvind P. Pathak, Ellen Ackerstaff, et al. Molecular imaging of cancer: Application of Magnetic Resonance Methods [J]. Proceedings of the IEE, 2005, 93(4): 784-799.
    [8] Andrew R. Hilgenbrik, Philip S Low. Folate Receptor-Mediated Drug Targeting: From Therapeutics to diagnostics [J]. J. of Pharmaceutical Sciences, 2005, 94(100): 2135-2146
    [9]丁建辉,曾蒙苏,薛琼.叶酸受体型MR对比剂在荷人胃癌裸鼠诊断价值的实验研究[J].中华放射学杂志, 2005, 39(8):882-886.
    [10] Konda SD, Aref M, Brechbiel M, et al. Development of a tumor-targeting MR contrast agent using the high-affinity folate receptor: Work in progress[J]. Invest Radiol, 2000, 35(1):50–57.
    [11]罗丽,郑书展,张世平,等.磁共振成像造影剂的研究进展[J/OL].西北大学学报(自然科学网络版), 2004, 2(11).
    [12] AIME S, BOTTA M, CRICH S G, et al. Towards MRI contrast agent of improved efficacy NMR relaxo-metric investigations of the binding interaction HSA of a novel heptadentate macrocyclic triphosphonate Gd3+ complex[J]. J Biol Inorg Chem, 1997, 2 (4):470-474.
    [13] Wanlong Ma, Karl J. Hwang, Vincent H. L. Lee. A fluorenscence quenching method for estimating chelating groups in chelate-conjugated macromolecules [J]. Pharmaceutical research, 1993,10(2):204-207.
    [14] Spanoghe M, Lanens D, Dommisse R, et al. Proton relaxation enhancement by means of serum albumin and poly-L-lysine labeled with DTPA-Gd3+: relaxivities as a function of molecular weight and conjugation efficiency[J]. Magn Reson Imaging, 1992, 10(6):913-917.
    [15]刘岘,许乙凯,黄其鎏,等.新型磁共振靶向对比剂Gd-DTPA-链霉亲和素的制备及其反应条件的实验研究[J].第一军医大学学报, 2004, 24(1):15-17.
    [16]王雨青.顺磁性造影剂钆喷酸葡胺脂质体的研究[D/硕士学位论文].沈阳药科大学图书馆,2003.
    [17]刘宁,金建南,莫尚武,等. 211At通过DTPA酸酐标记IgG[J].核化学与放射化学, 1998, 20(3):158-163.
    [18]陈来,庄道玲,李贵平等. 153SM标记DTPA-蛋白的研究[J].同位素, 1998, 1(4): 228-231.
    [19]蔡武成,袁厚积.生物物质常用化学分析法[M].北京,科学出版社, 1982: 93-99.
    [20] Gasparov VS, Degtiar VG. Protein determination by binding with the dye Coomassie brilliant blue G-250 [J]. Biokhimiia,1994, 59(6)∶763.
    [21] NANCY G, JOHN E, PARKS ET. Rapid Spectrophotometric Determination of Diethylenetriaminepentaacetic Acid (DTPA) in Urine[J]. BIOCHEMICAL MEDICINE, 1975,14(2):220-229.
    [22] BARBARA STELLA, SILVIA ARBICCO. Design of folic acid-conjugated nanoparticles for drug targeting[J]. Journal of Pharmaceutical Sciences, 2000, 89 (11):1452-1464.
    [23] Zhang Q, Xiang G, Zhang Y, et al. Increase of doxorubicin sensitivity for folate receptor positive cells when given as the prodrug N-(phenylacetyl) doxorubicin in combination with folate-conjugated PGA[J]. J Pharm Sci, 2006, 95(10): 2266-75.
    [24]李铁福,刘晶莹,王雨青,等. MRI顺磁性造影剂Gd-DTPA的合成[J].化学试剂, 2004, 26(3):190-191.
    [25] Yingjuan Lu, Philip S.Low. Folate-mediated delivery of macromolecular anticancer therapeutic agents [J]. Adanced Drug Delivery Reviews, 2002, 54(5):675-693.
    [26] Fong-Yu Cheng, Chi-Hao Su, Yu-Sheng Yang, et al. Characterization of aqueous dispersions of Fe3O4 nanoparticles and their biomedical applications[J]. Biomaterials, 2005, 26(7): 729–738.
    [27]傅雁军,卓仁禧.肝靶向性磁共振成像造影剂-含D-半乳糖基的DTPA双酰胺钆造影剂的研究[J].高等学校化学学报, 1997, 18(7):1072-1079.
    [28] Leamon CP, Low PS. Delivery of macromolecules into living cells: A method that exploits folate receptor endocytosis[J]. Proc Natl Acad Sci USA, 1991, 88(13):5572–5576.
    [29]陈中举,张燕玲,黄金瑛.荧光标记生物大分子及其应用[J].国外医学生物医学工程分册, 2004, 27(6):348-352.
    [30] Cristina Müller, P. August Schubiger, Roger Schibli. In vitro and in vivo targeting of different folate receptor-positive cancer cell lines with a novel 99mTc-radio folate tracer[J]. Eur J Nucl Med Mol Imaging, 2006, 33(10): 1162-1170.
    [31] Hyuk Sang Yoo, Tae Gwan Park. Folate-receptor-targeted delivery of doxorubicin nano-aggregates stabilized by doxorubicin–PEG–folate conjugate [J]. Journal of Controlled Release, 2004, 100(2) : 247–256.
    [32] Moses O. Oyewumia, Robert A. Yokela, Michael Jaya, et al. Comparison of celluptake, biodistribution and tumor retention of folate-coated and PEG-coated gadolinium nanoparticles in tumor-bearing mice[J]. Journal of Controlled Release, 2004, 95(3): 613– 626.
    [33] Tomonori Shiokawa, Yoshiyuki Hattori, Kumi Kawano, et al. Effect of Polyethylene Glycol Linker Chain Length of Folate-Linked Microemulsions Loading Aclacinomycin A on Targeting Ability and Antitumor Effect In vitro and In vivo[J]. Clinical Cancer Research, 2005, 11(5): 2018–2025.
    [34] Min Liu, Wen Xu, Ling-jie Xu, et al. Synthesis and Biological Evaluation of Diethylenetriamine Pentaacetic acid-Polyethylene Glycol-Folate: A New Folate-Derived, 99mTc-Based Radiopharmaceutica[J]. Bioconjugate Chem, 2005, 16(5): 1126-1132.
    [35] Matthew J. Allen, Keith W. MacRenaris, P.N.Venkatasubramanian, et al.Cellular delivery of MRI contrast agents [J]. Chemstry and biology, 2004, 11(3):301-307.
    [36] Bjo¨rn Gustafsson, Susan Youens, Angelique Y. Louie. Development of Contrast Agents Targeted to Macrophage Scavenger Receptors for MRI of Vascular Inflammation[J]. Bioconjugate Chem, 2006, 17(2), 538-547.
    [37] N. Nitin, L. E. W. LaConte, O. Zurkiya, et al. Functionalization and peptide-based delivery of magnetic nanoparticles as an intracellular MRI contrast agent[J]. J Biol Inorg Chem, 2004, 9(6): 706–712.
    [38] Hagit Dafni, Assaf Gilead, Nava Nevo, et al. Modulation of the Pharmacokinetics of Macromolecular Contrast Material by Avidin Chase: MRI, Optical, and Inductively Coupled Plasma Mass Spectrometry Tracking of Triply Labeled Albumin [J]. Magnetic Resonance in Medicine, 2003, 50(5):904–914.
    [39]Ketan B. Ghaghada, Justin Sauld, Jayaganesh V. Natarajan, et al. Folate targeting of drug carriers: A mathematical model[J]. Journal of Controlled Release, 2005, 104(1):113-28.
    [1] Yingjuan Lu, Philip S.Low. Folate-mediated delivery of macromolecular anticancer therapeutic agents[J]. Adanced Drug Delivery Reviews, 2002, 54:675-693.
    [2] Aronov O, Horowitz AT, Gabizon A, et al. Folate-targeted PEG as a potential carrier for Carboplatin analogs. Synthesis and in vitro studies [J]. Bioconjug Chem, 2003, 14(3): 563-574.
    [3] Saul JM, Annapragada A, Natarajan JV, et al. Controlled targeting of liposomal doxorubicin via the folate receptor in vitro[J]. J Control Release, 2003, 92:49-67.
    [4] Chan P, Kurisawa M, Chung JE, et al. Synthesis and characterization of chitosan-g-poly(ethylene glycol)-folate as a non-viral carrier for tumor-targeted gene delivery[J]. Biomaterials, 2007,28(3):540-9.
    [5] Leamon CP, Low PS. Delivery of macromolecules into living cells: A method that exploits folate receptor endocytosis[J]. Proc Natl Acad Sci USA, 1991, 88:5572–5576.
    [6] Weitman SD, Weinberg AG, Coney LR, et al. Cellular localization of the folate receptor: potential role in drug toxicity and folate homeostasis[J]. Cancer Res, 1992, 52: 6708-6711.
    [7] BagnoliM, Canevari S, FiginiM, et al. A step further in understanding the biology of the folate receptor in ovarian carcinoma[J]. Gynecol Oncol, 2003, 88:S 140-144.
    [8]高晓宁,唐锁勤.叶酸受体及其在介导药物靶向肿瘤细胞治疗中的应用[J].中国实验血液学杂质, 2005, 13(5): 911-914.
    [9] Reddy JA, Haneline LS, Srour EF, et a l. Expression and functional characterization of theβ-isoform of the folate receptor on CD34 + cells[J]. Blood, 1999, 93: 3940- 3948.
    [10] C.P. Leamon, J.A. Reddy. Folate-targeted chemotherapy[J]. Advanced DrugDelivery Reviews, 2004, 56:1127-1141.
    [11] Younsoo Bae, Woo-Dong Jang, Nobuhiro Nishiyama,et al. Multifunctional polymeric micelles with folate-mediated cancer cell targeting and pH-triggered drug releasing properties for active intracellular drug delivery[J]. Mol. BioSyst., 2005, 1, 242-250.
    [12] Antony AC. The biological chemistry of folate receptors[J]. Blood, 1992, 79: 2807-2820.
    [13] Kamen BA, Capdevila A. Receptor-mediated folate accumulation is regulated by the cellular folate content[J]. Proc Natl Acad Sci USA,1986, 83:5983-5987.
    [14] Jansen G. Receptor-, and carrier-mediated transport systems for folates, and anti- folates[J]. Antifolate drugs in cancer therapy. Totowa NJ: Humana Press, 1999, 293-321.
    [15] Cristina Müller, P. August Schubiger, Roger Schibli. In vitro and in vivo targeting of different folate receptor-positive cancer cell lines with a novel 99mTc-radio folate tracer[J]. Eur J Nucl Med Mol Imaging, 2006, 33(10): 1162-1170.
    [16] Sudimack J, Lee RJ . Targeted drug delivery via the folate receptor[J]. Adv Drug Deliv Rev, 2000, 41 (2):147-162.
    [17] M.A. Kane, P.C. Elwood, R.M. Portillo, et al. Influence on immunoreactive folate-binding proteins of extracellular folate concentration in cultured human cells[J]. J Clin Invest, 1988, 81:1398-1406.
    [18] M. McHugh, Y.C. Cheng. Demonstration of a high affinity folate binder in human cell membranes and its characterization in cultured human KB cells[J]. J Biol Chem, 1979, 254:11312-11318.
    [19] X.L. Sun, A.C. Antony. Evidence that a specific interaction between an 18-base cis-element in the 5V-untranslated region of human folate receptor-alpha mRNA and a 46-kDa cytosolic trans-factor is critical for translation[J]. J Biol Chem, 1996, 271 25539-25547.
    [20] C.T. Hsueh, B.J. Dolnick. Altered folate-binding protein mRNA stability in KB cells grown in folate-deficient medium[J]. Biochem. Pharmacol, 1993, 45:2537-2545.
    [21] L.H. Matherly, D.I. Goldman. Membrane transport of folates[J]. Vitam Horm, 2003, 66:403-456.
    [22] K.M. Kelley, B.G. Rowan, M. Ratnam. Modulation of the folate receptor alpha gene by the estrogen receptor: mechanism and implications in tumor targeting[J]. Cancer Res, 2003, 63:2820-2828.
    [23] Thuyet Tran, Aymen Shatnawi, Xuan Zheng, et al. Enhancement of folate receptor alpha expression in tumor cells through the glucocorticoid receptor: a promising means to improved tumor detection and targeting[J]. Cancer Res, 2005, 65(10):4431-41.
    [24] X.Q. Pan, X. Zheng, G. Shi, H. Wang, et al. Strategy for the treatment of acute myelogenous leukemia based on folate receptor beta-targeted liposomal doxorubicin combined with receptor induction using all-trans retinoic acid[J]. Blood, 2002,100:594- 602.
    [25] R.B. Orr, A.R. Kreisler, B.A. Kamen. Similarity of folate receptor expression in UMSCC 38 cells to squamous cell carcinoma differentiation markers[J]. J Natl Cancer Inst, 1995, 87:299-303.
    [26] J.A. Bolton, S.A. Wood, D. Kennedy, et al. Retinoic acid-dependent upregulation of mouse folate receptor-alpha expression in embryonic stem cells, and conservation of alternative splicing patterns[J]. Gene, 1999, 230:215-224.
    [27] H. Elnakat, M. Ratnam. Distribution, functionality and gene regulation of folate receptor isoforms implications in targeted therapy: Implications in targeted therapy[J]. Advanced Drug Delivery Reviews, 2004,56:1067-1084.
    [28] Walter A. Henne, Derek D. Doorneweerd, Andrew R. Hilgenbrink, et al. Synthesis and activity of a folate peptide camptothecin prodrug[J]. Bioorganic &Medicinal Chemistry Letters, 2006, 16:5350-5355.
    [29] Zhang Q, Xiang G, Zhang Y, et al. Increase of doxorubicin sensitivity for folate receptor positive cells when given as the prodrug N-(phenylacetyl) doxorubicin in combination with folate-conjugated PGA[J]. J Pharm Sci, 2006, 95(10): 2266-75.
    [30] Reddy JA, Abburi C, Hofland H, et al. Folate-targeted, cationic liposome- mediated gene transfer into disseminated peritoneal tumors [J]. Gene Ther, 2002, 9(22): 1542-1550.
    [31] Gabizon A, Horowitz A, Goren D, et al. Targeting folate receptor with folate linked to extremities of poly(ethylene glycol)-grafted liposomes: in vitro studies[J]. Bioconjug Chem, 1999, 10:289-98.
    [32] Pan XQ, Wang H, Lee RJ. Boron delivery to a murine lung carcinoma using folate receptor-targeted liposomes[J]. Anticancer Res, 2002, 22: 1629-1633.
    [33] Pan X, Wang H, Shukla S, et al. Boron-containing folate receptortargeted liposomes as potential delivery agents for neutron capture therapy[J]. Bioconjug Chem 2002,13:435-442.
    [34] J.M. Saul, A. Annapragada, J.V. Natarajan, et al. Controlled targeting of liposomal doxorubicin via the folate receptor in vitro[J]. J Control Release, 2003, 92:49- 67.
    [35] M.M. Doucette, V.L. Stevens. Folate receptor function is regulated in response to different cellular growth rates in cultured mammalian cells[J]. J Nutr, 2001, 131:2819- 2825.
    [36] Cristina Müller, Alexander Hohn, P. Preclinical evaluation of novel organometallic 99mTc-folate and 99mTc-pteroate radiotracers for folate receptor-positive tumour targeting[J]. Eur Jour Nuclear Medicine and Molecular Imaging, 2006, 33(9):1007-1016.
    [37] Dhruba J. Bharali, Derrick W. Lucey, Paras N. Prasad, et al. Folate-Receptor-Mediated Delivery of InP Quantum Dots for Bioimaging Using Confocal and Two-Photon Microscopy[J]. J AM CHEM SOC, 2005, 127:1364-11371.
    [38] Nikki Parkera, Mary Jo Turkb, Christopher P. Folate receptor expression in carcinomas and normal tissues determined by a quantitative radioligand binding assay Leamon[J]. Analytical Biochemistry, 2005, 338:284-293.
    [39] Jun Wu, Qing Liu, Robert J. Lee. A folate receptor-targeted liposomal formulation for paclitaxel[J]. International Journal of Pharmaceutics, 2006, 316:148-153.
    [40] Robert J. Lee and Philip S. Low.Delivery of Liposomes into Cultured KB Cells via Folate Receptor-mediated Endocytosis[J]. The Journal of biological chemistry, 1994, 269(5): 3198-3204.
    [41] Olivier Z, Francis C, Szoka J. Intracellular distribution and mechanism of delivery of oligonucleotides mediated by cationiclipids [J] . Pharm Res, 1996, 13 (9):1367-1372.
    [42] Sun Hwa Kim, Hyejung Mok, Tae Gwan Park, et al. Comparative Evaluation of Target-Specific GFP Gene Silencing Efficiencies for Antisense ODN, Synthetic siRNA, and siRNA Plasmid Complexed with PEI-PEG-FOL Conjugate[J]. Bioconjugate Chem, 2006, 17:241-244.
    [43] Ward CM, Pechar M, Oupicky D, et al. Modification of PLL/DNA complexes with a multivalent hydrophilic polymer permits folate-mediated targeting in vitro and prolonged plasma circulation in vivo[J]. J Gene Med, 2002, 4(5): 536-47.
    [44] Zhao XB, Lee RJ. Tumor-selective targeted delivery of genes and antisense oligodeoxyribonucleotides via the folate receptor[J]. Adv Drug Deliv Rev, 2004, 56(8): 1193-1204.
    [45] Gosselin MA, Guo W, Lee RJ. Incorporation of reversibly cross-linked polyplexes into LPDII vectors for gene delivery[J]. Bioconjug Chem, 2002, 13(5):1044-53.
    [46] Olivier Z, Lisa SU , Lee GB , et al . Effect of serum components on the physico chemical properties of cationic lipid/oligonucleotide complexes and on theirinteractions with cells [J] . Biochim Biophys Acta, 1998, 1390 (2): 119-133.
    [47] Ki Hyun Bae, Yuhan Lee, Tae Gwan Park , et al. Oil-Encapsulating PEO-PPO-PEO/PEG Shell Cross-Linked Nanocapsules for Target-Specific Delivery of Paclitaxel[J]. Biomacromolecules, 2007, 8:650-656.
    [48] Sun Hwa Kim, Ji Hoon Jeong, Ki Woo Chun, et al. Target-Specific Cellular Uptake of PLGA Nanoparticles Coated with Poly(L-lysine)-Poly(ethylene glycol) -Folate Conjugate[J]. Langmuir, 2005, 21: 8852-8857.
    [49]Tomonori Shiokawa, Yoshiyuki Hattori, Kumi Kawano, et al. Effect of Polyethylene Glycol Linker Chain Length of Folate-Linked Microemulsions Loading Aclacinomycin A on Targeting Ability and Antitumor Effect In vitro and In vivo[J]. Clinical Cancer Research, 2005, 11: 2018–2025.
    [50] Ketan B. Ghaghada, Justin Sauld, Jayaganesh V. Natarajan, et al. Folate targeting of drug carriers: A mathematical model[J]. Journal of Controlled Release, 2005, 104(1):113-28.
    [51]葛泉波,何淑兰,毛津淑,等.生物材料与细胞相互作用及表面修饰[J].化学通报,2005,1: 43-48.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700