基于虚拟流体方法的水下爆炸计算研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水下爆炸的计算研究在军事领域、工程领域有广泛的应用前景。在军事领域,水雷和深水炸弹的研制需要对相应的水下爆炸波传播和超压峰值进行计算研究。在工程领域,港口航道的建设需要对水下爆炸进行计算研究。水下爆炸的计算研究可以为实验研究提供参考,特别是在实验条件不具备的情况下,更是可以为水下兵器的研制和工程爆破的设计提供理论指导并具备重要的参考意义。而对水下爆炸计算方法的研究和改进也具有重要的学术价值。目前,关于水下爆炸的计算研究,方法有有限元方法、SPH方法(Smoothed Particle Hydrodynamics)、边界元方法、GFM(Ghost Fluid Method)以及一些欧拉-拉格朗日耦合类的方法。其中,GFM又包括OGFM(Original GFM),NGFM(New Version of GFM),MGFM (Modified GFM),RGFM(Real GFM)和SMGFM(Solid MGFM)等等。目前,国内用GFM对水下爆炸进行的计算研究仍然很少。本文选用GFM对水下爆炸进行计算研究。本文根据不同的问题和计算条件选用不同的GFM子方法进行数值模拟。本文主要对水下爆炸的爆炸波传播进行数值模拟、对水下爆轰流场的超压峰值进行数值计算以及针对水下爆炸的数值计算改进GFM中的计算步骤。
     本文的主要研究内容和创新性工作如下:
     1)对柱形装药水下爆炸问题利用Level set方法完成了精确的三维数值模拟,提高了计算精度。柱形装药在水下爆炸中较为常见。对于三维圆柱问题的数值模拟一般是在计算域可以切割成二维轴对称区域的情况下,将三维问题做为二维轴对称问题处理。但是一些较复杂的计算域并不能切割成二维轴对称问题处理,这时就需要求解三维情况下的Level set函数初值。以往对初始时刻Level set函数的定义使用的是重新初始化技术,该技术会造成界面位置的误差。本文通过计算域分块定义的方法,对三维柱形装药水下爆炸数值模拟中的Level set函数初值进行精确求解,避免了使用重新初始化技术,从而减小了数值模拟结果的误差。
     2)本文将插值法耦合进ARPS(Approximate Riemann Problem Solver),从而减小计算误差。用ARPS预估界面状态是GFM中的一个重要步骤。原有的ARPS在用于多维问题时,使用最小夹角法则来选择界面两侧的网格节点,而最小夹角法则会造成较大的数值误差。本文用插值法替代最小夹角法则,减小了计算误差,并将耦合方法的计算结果同原有ARPS的计算结果进行对比分析。对比表明,耦合插值法的ARPS比原有的ARPS计算精度更高。
     3)本文用两种不同的方法数值模拟复杂计算域的爆炸波传播,并通过对比研究分析和总结了各自的优缺点。一是在贴体坐标网格下使用任意坐标系方法。二是在规则笛卡尔网格使用NGFM。研究结果表明,在规则笛卡尔网格中使用NGFM可以得到较稳定的计算结果;但是无法刚好得到壁面上网格节点的压力值,在实际计算中只能用紧邻壁面的网格节点的压力值做为壁面压力值的参考,不过计算结果表明在加密网格的情况下,壁面内侧网格节点的压力值和壁面压力值非常接近。相比较而言,在贴体坐标网格中使用任意坐标系方法,可以得到壁面网格节点的压力值;但是利用Tait方程作为水的状态方程时,流场常常会会出现较大范围的数值振荡,另一方面,网格导数的引入会影响计算结果的精度。
     4)本文推导了一个基于Euler-弹性动力学基本方程的流固ARPS,从而扩大了原有SMGFM的适用范围。用流固ARPS预估流固界面状态,是SMGFM中一个重要步骤。原有的流固ARPS的缺点在于是用Euler方程和Naviers方程推导的,而Naviers方程对固体的数值计算而言应用起来效果并不太好。本文用弹性动力学基本方程描述固体,推导一个基于Euler-弹性动力学基本方程的流固ARPS,并将计算结果同文献中刚壁计算结果、可压缩固体计算结果进行了对比分析。数值计算的结果表明本文推导的ARPS是正确的。同时,数值计算的结果也表明线弹性假设得到的流体一侧爆炸波传播结果和可压缩固体假设得到的结果相近,壁面的压力动态响应也较好地吻合。
The numerical research on UWE (underwater explosion) has a wide application prospect in military realm and engineering field. In the region of military, it is necessary to simulate the propagation of underwater blast wave and compute the peak pressure for the development of torpedo and depth charge. In the region of engineering, it is important to do numerical study for the development of port and shipping lane. The numerical simulation of UWE can provide references for experimental research. It can also point out especial theoretical direction and has very important referential significances when the experiment cannot be implemented, In addition, the research and improvement on computational method of UWE has important academic significances. The current approaches to numerical simulation of UWE include Finite Element Method, Smoothed Particle Hydrodynamics, Boundary Element Method, GFM (Ghost Fluid Method) and some Euler-Lagrange combination methods. One of these methods, GFM, has been divided into some kinds such as OGFM (Original GFM), NGFM (New Version GFM), MGFM (Modified GFM), RGFM (Real GFM) and SMGFM (Solid MGFM) etc. In GFM, to solve one medium, the domain on the other side of material interface is supposed to be the same ghost medium and defined to be with appropriate flows states for the nodal points. Hence, the status at the grid nodes next to material interface can be solved. Since ghost assumption can simplify complicated problem, GFM has a more widely application for simulation complicated problem than other methods. GFM is employed to do numerical research for UWE in this thesis because of the lack of literatures on numerical study on UWE using GFM by so far. For different specific problems of UWE, different kinds of GFM algorithm are used. This dissertation presents the numerical simulation of the propagation of underwater blast wave, the calculation on peak pressure of the flow field of UWE and also provides improvements on some steps of GFM for numerical simulation of UWE.
     The main research contents and innovation work of this dissertation include:
     1) This thesis presents a more accurate numerical simulation of column charge UWE by Level set method and some improvements on numerical accuracy. Column charge is common in UWE.Three-dimensional cylindrical problem is often cut into2D axis problem on the condition that the computational region can be cut into a2D axis domain. However, this approach is not applicable in some complex computational region. Thus, we need to solve initial values of Level set function. By far, the re-initial technique is always used to define initial values of Level set function. This technique can lead to non-physical movement of material interface. In this thesis, an accurate method based on dividing and respectively solving computational region is developed to solved the initial values of Level set function to reduce the numerical error.
     2) In this thesis, the interpolation method is coupled into ARPS (Approximate Riemann Problem Solver) to reduce the numerical error. Predicting the interfacial status using ARPS is an important step of GFM. For original ARPS, minimum angle algorithm is used to select two relative grid nodes just bordering interface. The minimum angle algorithm always leads to large numerical errors. In this thesis, we replace the minimum angle algorithm by interpolation method and compare the differences between the results by the way coupled and original ARPS. It is verified that combination of ARPS and interpolation method has the property of reducing numerical errors by comparing to the results without the employment of interpolation method.
     3) This thesis presents the numerical simulation of underwater blast wave in complex computational region by two different methods and comparison between the respective results. One method is using arbitrary coordinate system method in body-fitted grids. The other is using NGFM in uniform Cartesian grids. The research demonstrates that NGFM can present more stable results and its weakness is incapability on computing the pressure of grid nodes on rigid wall. In calculation, we need to use the pressure of grid nodes just bordering the rigid wall. The results show that the pressure of grid nodes just next to the rigid wall is very close to the value of grid nodes on the wall if the grid size is very small. In contrast, using arbitrary in uniform grid can present the pressure on the rigid wall. Nevertheless, the numerical oscillation often occurs in large area of flow field because Tait equation is used to describe water. On the other side, since we need to solve the grid derivative, the numerical result is not accurate.
     4) This thesis presents a fluid-solid ARPS based on Euler equations and fundamental equations of elastodynamics to expand the application range of SMGFM. Predicting the flows states via fluid-solid ARPS is an important process in SMGFM. The present fluid-solid ARPS is deduced based on Euler-Naviers equations with respective employment of Euler equation to solve flow field and Naviers equation to solve the grid nodes of solid medium. Nevertheless, Naviers equation cannot work efficiently when applied in simulation of solid. In this dissertation, a fluid-solid ARPS is deduced based on Euler-basic elastodynamics equations. The comparison among the results by new ARPS, rigid wall assumption and compressible assumption is also presented. The numerical results demonstrate the correctness of the deduced ARPS. Meanwhile, the numerical results show that there is little discrepancy between the respective results of blast wave propagation of flow field and pressure history by different approach abovementioned are very close to each other.
引文
[1]Brinkley SR and Kirkwood JG. 1947. Theory of the propagation of shock waves[J]. Physical Review,71:606-611.
    [2]Brinkley SR and Kirkwood JG 1947. Theory of the propagation of shock waves from infinite cylinders of explosives[J]. Physical Review,72:1109-1113.
    [3]Taylor GI. 1946. The air wave surrounding an expanding sphere[J]. Proceedings of the Royal Society of London Series A:Mathematical and Physical Sciences.186:273-292.
    [4]Cole H.1948. Underwater Explosions[M]. Princeton, New Jersey, Princeton Univ. Press.
    [5]Say HG. 1957. Hydrodynamics of underwater explosions[M]. National Academy of Sciences., Publication.
    [6]Blake JR, Gibson D C.1981. Growth and collapse of a vapour cavity near a free surface[J]. Fluid Mech.,111:123-140.
    [7]Vernon Thomas A.1986. Whipping response of ship hulls from underwater explosion bubble loading[R]. AD-A178096.
    [8]Plesset MS.1999. The dynamics of cavitation bubbles [J]. J. App. Mech.,16:277-282.
    [9]Klaseboer E, Khoo BC.2006. A modified Rayleigh-Plesset model for a non-spherically symmetric oscillating bubble with applications to boundary integral methods[J]. Engineering Analysis with Boundary Elements,32:1857-1877.
    [10]Brian Thomas Van Lear.2008. Underwater explosions with fluid-structural interactions[D]. The University of Minnesota.
    [11]Kwon YW, Fox PK.1993. Underwater shock response of a cylinder subjected to a side-on explosion[J]. Computers & Structures,48:637-646.
    [12]Mouritz AP, Saunders DS, Buckley S.1994. The damage and failure of GRP laminates by underwater explosion shock loading[J]. Composites,25:431-437.
    [13]Menon S, Lal M.1997. On the dynamics and instability of bubbles formed during underwater explosions[J]. Experimental Thermal and Fluid Science,16:305-321.
    [14]Chambers G, Sandusky H, Zerilli F, et al.1997. Pressure measurements on a deforming surface in response to an underwater explosion[A]. Compression of Condensed Matter-1997, 429:397-400.
    [15]Rajendran R, Narasimhan K.2001. Linear elastic shock response of plane plates subjected to underwater explosion[J]. International Journal of Impact Engineering,25:493-506.
    [16]Iyama H, Kira A, Fujita M, et al.2001. An investigation on underwater explosive bonding process. Journal of Pressure Vessel Technology-Transactions of the ASME[J].123:486-492.
    [17]Geers TL and Hunter KS.2002. An integrated wave-effects model for an underwater explosion bubble[J]. J. Acoust. Soc. Am.111:1584-1601.
    [18]Klaseboer E, Hung KC, Wang C, et al.2005. Experimental and numerical investigation of the dynamics of an underwater explosion bubble near a resilient/rigid structure[J]. Journal of Fluid Mechanics,537:387-413.
    [19]Hung CF, Hsu PY, Hwang-Fuu JJ.2005. Elastic shock response of an air-backed plated to underwater explosion[J]. International Journal of Impact Engineering,31:151-168.
    [20]Hung CF, Lin BJ, Hwang-Fuu JJ.2009. Dynamic response of cylindrical shell structures subjected to underwater explosion[J]. Ocean Engineering,36:544-577.
    [21]Berry RA, Willamson RL.1983. Some applications of the moving finite element method to fluid flow and related problems[A]. Advances in Reactor Computations. Proceedings of a Topical Meeting,1:433-445.
    [22]Geers TL.1987. Doubly asymptotic approximations for transient motions of submerged structures[J]. The Journal of the Acoustical Society of America,64:1500-1508.
    [23]Deruntz J A.1989. The underwater shock analysis code and its applications[R]. Proceedings of the 60th Shock and Vibration Symposium I,89-107.
    [24]Frost DL, Lee JHS, Thibault P.1994. Numerical computation of underwater explosions due to fuel coolant interactions[A]. Nuclear Engineering and Design,146:165-179.
    [25]Brett JM, Reid WD.1996. Modelling of target response to underwater explosions:the response of an air backed plate to near field shock loading[A].Military Government and Aerospace Simulation. Proceeding of the 1996 Simulation Multiconference,110-115
    [26]Giglio M.1997. Spherical Vessel Subjected to Explosive Detonation Loading[J]. International Journal of Vessels and Piping,74:83-88.
    [27]Kwon YW, Cunningham RE.1998. Comparison of USA-DYNA finite element models for a stiffened shell subject to underwater shock[J]. Computers & Structures,66:127-144.
    [28]Shibue T, Nakayama E, Manabe H.1999. A numerical simulation method of dynamic response for marine structures under an explosive load[A]. Proceedings of the Ninth (1999) International Offshore and Polar Engineering Conference,4:490-495.
    [29]Hammond L, Grzebieta R.2000. The requirement for hydrostatic initialization in LS-DYNA/USA finite element models[J]. Shock and Vibration,7:57-65.
    [30]Mahmdi K, Itoh S, Hamada T.2004. Numerical studies of wave generation using spiral detonating cord[A]. Explosion, Shock Wave and Hypervelocity Phenomena in Materials, 465-466:439-444.
    [31]Motta AD, Ebecken NFF.2004. Steel structures optimization to resist underwater shock waves-explosive charges optimization[A]. Structures Under Shock And Impact Ⅷ, 15:121-128.
    [32]Sprague MA, Geers IL.2004. A spectral-element method for modelling cavitation in transient fluid-structure interaction[J]. International Journal for Numerical Methods in Engineering,60:2467-2499.
    [33]Tong ZP, Wang Y, Chen Y.2005. Dynamic response of ship model with shock protective layer subjected to underwater explosion[A]. International Conference on Mechanical Engineering and Mechanics,1:946-950.
    [34]O Daniel JL, Koudela KL, Krauthammer T.2005. Numerical simulation and validation of distributed impact events. International Journal of Impact Engineering,31:1013-1038.
    [35]Imakita A, Yasuda A.2007. Development of assessment method for bending strength of hull girder subjected to a close-in underwater explosion[J]. Mitsui Zosen Technical Review,192:25-31
    [36]Kalavalapally R, Penmetsa Ravi, Grandni, R.2009. Configuration design of a lightweight torpedo subjected to an underwater explosion[J]. International Journal of Impact Engineering,36:341-351.
    [37]Langrand B, Leconte N, Menegazzi A.2009. Submarine hull integrity under blast loading[J]. International Journal of Impact Engineering,36:1070-1078.
    [38]Huabei Liu.2009. Dynamic analysis of subway structures under blast loading[J]. Geotechnical and Geological Engineering,27:699-711.
    [39]Gupta NK, Kumar P, Hegde S.2010. On deformation and tearing of stiffened and un-stiffened square plates subjected to underwater explosion-a numerical study[J]. International Journal of Mechanical Sciences,52:733-744.
    [40]Geffroy A-G, Longere P, Lebie B.2011. Fracture analysis and constitutive modelling of ship structure steel behaviour regarding explosion[J]. Engineering Failure Analysis, 18:670-681.
    [41]Panahi B, Ghavanloo E, Daneshmand F.2011. Transient response of a submerged cylindrical foam core sandwich panel subjected to shock loading[J]. Materials & Design, 32:2611-2620.
    [42]Wang K, Rallu A, Gerbeau J-F.2011. Algorithms for interface treatment and load computation in embedded boundary methods for fluid and fluid-structure interaction problems[J]. International Journal for Numerical Methods in Fluids,67:1175-1206.
    [43]Jiang J. Olson MD.1996. Non-linear transient analysis of submerged circular plates subjected to underwater explosions[J]. Computer methods in applied mechanics and engineering,134:163-179.
    [44]Hamdan FH.1998. Modelling of unbounded media for fluid-structure interaction applications-a review[J]. Strain,34:51-58.
    [45]Zhang YL, Yeo KS, Khoo BC, et al.2001.3D jet impact and toroidal bubbles[J]. J. Comput. Phys.,166:336-360.
    [46]Pearson EC, Blake JR.2004. Bubble interactions near a free surface[J]. Engineering Analysis with Boundary Elements,28:295-313.
    [47]Wang C, Khoo BC.2004. An indirect boundary element method for three-dimensional explosion bubbles[J]. J. Comput. Phys.,194:451-480
    [48]Khoo BC, Adikhari D, Fong SW.2009. Multiple spark-generated bubble interactions.2nd International Symposium on Physics of Fluids[J]. Modern Physics Letters B,23:229-232.
    [49]Fong SW, Adhikari D, Klaseboer E.2009. Interactions of multiple spark-generated bubbles with phase differences[J]. Experiments in Fluids,46:705-724.
    [50]Arami M, Kakinouchi T, Shibue T.2001. Structural response of a thin plate by underwater explosion[A]. ISOPE-2001. International Offshore and Polar Engineering Conference Proceedings,4:331-336.
    [51]Gong SW, Lam Ky.2006. On attenuation of floating structure response to underwater shock[J]. International Journal of Impact Engineering,32:1857-1877.
    [52]Gong SW, Lam KY.2011. Functionally graded shells subjected to underwater shock[A].7th Biennial Conference of the Americal-Physical-Society-Topical-Group on Shock Compression of Condensed Matter. Shock Compression of Condensed Matter-2011,1426.
    [53]Wang C, Khoo BC, Yeo KS.2003. Elastic mesh technique for 3D BIM simulation with an application to underwater explosion bubble dynamics[J]. Computers and fluids, 32:1195-1212.
    [54]Swegle JW, Attaway SW.1995. On the feasibility of using smoothed particle hydrodynamics for underwater explosion calculations[J]. Computational Mechanics, 17:151-168.
    [55]Plimpton S, Attaway S, Hendrickson, B.1998. Parallel transient dynamics simulations: Algorithms for contact detection and smoothed particle hydrodynamics[J]. Journal of Parallel and Distributed Computing,50:104-122.
    [56]Liu MB, Liu CR, Zong Z, et al.2000. Numerical simulation of underwater explosion by SPH[J]. Advan. Comput. Eng. Sci.,2000:1475-1480.
    [57]Liu MB, Liu GR, Lam KY.2001. A new technique to treat material interfaces for smoothed particle hydrodynamics[A]. Computational Mechanics, Proceedings:New Frontiers For The New Millennium,1-2:977-982.
    [58]Liu MB, Liu GR, Lam KY.2002. Investigations into water mitigation using a meshless particle method[J]. Shock Waves,12:181-195.
    [59]Liu MB, Liu GR, Lam KY.2003. Smoothed particle hydrodynamics for numerical simulation of underwater explosion[J]. Computational Mechanics,30:106-118.
    [60]Liu MB, Liu GR, Lam KY.2003. Meshfree particle simulation of the detonation process for high explosives in shaped charge unlined cavity configurations[J]. Shock Waves, 12:509-520.
    [61]Liu MB, Liu CR, Lam KY.2003. A one dimensional mesh free particle formulation for simulating shock waves [J]. Shock Waves,13:201-211
    [62]Liu MB, Liu CR, Zong Z, et al.2003, Computer simulation of the high explosive explosion using smoothed particle hydrodynamics methodology [J]. Computers & Fluids,32:305-322.
    [63]Liu MB, Liu GR, Lam KY.2006. Adaptive smoothed particle hydrodynamics for high strain hydrodynamics with material strength[J]. Shock Waves,15:21-29.
    [64]Liu Mb, Liu Gr, Zong Z.2008. An Overview On Smoothed Particle Hydrodynamics[J]. International Journal Of Computational Methods,5:135-188.
    [65]Wataru, K, Akiko M.2006. Explosion simulation by Smoothed Particle Hydrodynamics[A]. Computational Methods,1-2:1397-1403.
    [66]Ostad H, Mohammadi S.2009. Analysis of shock wave reflection from fixed and moving boundaries using a stabilized particle method[J]. Particuology,7:373-383.
    [67]Fedkiw Ronald, Aslam Tariq, Merriman Barry, et al.1999. A Non-oscillatory Eulerian Approach to Interfaces in Multimaterial Flows (the Ghost Fluid Method)[J]. Journal of Computational Physics,152:457-492.
    [68]Fedkiw Ronald, Marquina Antonio, Merriman Barry.1999. An Isobaric Fix for the Overheating Problem in Multimaterial Compressible Flows[J]. Journal of Computational Physics,148:545-578.
    [69]Haas JF, Sturtevant B.1987. Interactions of weak shock waves with cylindrical and spherical gas inhomogeneities[J], Journal of Fluid Mechanics,181:41-76.
    [70]Liu TG, Khoo BC, Yeo KS.2001. The simulation of compressible multi-medium flow. Part I: a new methodology with test applications to ID gas-gas and gas-water cases[J]. Computers & Fluids,30:291-314.
    [71]Liu TG, Khoo BC, Yeo KS.2001. The simulation of compressible multi-medium flow. Part II:applications to 2D underwater shock refraction[J]. Computers & Fluids,30:315-337.
    [72]Liu TG, Khoo BC, Yeo KS.2003. Ghost fluid method for strong shock impacting on Mmterial interface[J]. Journal of Computational Physics,190:651-681.
    [73]Wang CW, Liu TG, Khoo BC.2005. A real ghost fluid method for the simulation of multimedium compressible flow[J]. J. Sci.Comput,128:278-232.
    [74]Liu TG, Khoo BC, Xie WF.2006. The modified ghost fluid method as applied to extreme fluid-Structure interaction in the presence of cavitation[J]. Communication in Computational Physics,1:898-919.
    [75]Liu TG, Ho JY, Khoo BC, et al.2008. Numerical simulation of fluid-structure interaction using modified ghost fluid method and Naviers equations[J]. J. Sci. Comput.,36:45-68.
    [76]Liu TG, Xie WF, Khoo BC.2005. Ghost fluid method applied to compressible multi-phase flows[A]. Modern Physics Letters B,19:1475-1478.
    [77]Xie WF, Young YL, Liu TG.2008. Multiphase modeling of dynamic fluid-structure interaction during close-in explosion[A]. Int. J. Numer. Meth. Engng; 74:1019-1043.
    [78]Liu TG, Xie WF, Turangan C.2009. The modified ghost fluid method for shock-structure interaction in the presence of cavitaion[A]. Shock Waves,2:1059-1064
    [79]Liu T, Chowdhury AW, Khoo BC.2011. The modified ghost fluid method applied to fluid-elastic structure interaction[J]. Advances in Applied Mathematics and Mechanics, 3:611:632.
    [80]Fedkiw R.2002. Coupling an Eulerian fluid calculation to a Lagrangian solid calculation with the ghost fluid method[J]. J. Comput. Phys.,175:200-224.
    [81]Kira A, Fujita M, Itoh S.1999. Underwater explosion of spherical explosives[J]. Journal of Materials Processing Thchnology,85:64-68.
    [82]Aquele N, Souli M.2005. Explicit coupling methods in hydrodynamic impacts[A]. Proceedings of the ASME Pressure Vessels and Piping Conference 2005,4:257-266.
    [83]Pishevar AR, Aminifar R.2010. An adaptive ALE method for underwater explosion simulation including cavitation. Shock Waves,20:425:439.
    [84]Barras G, Souli M, Aquelet N.2012. Numerical simulation of underwater explosions using an ALE method[J]. The pulsating bubble phenomena. Ocean Engineering,41:53-66.
    [85]Jun S, Liu WK, Belytschko T.1998. Explicit reproducing kernel particle methods for large deformation problems[J]. Journal for Numerical methods in Engineering,41:137-166.
    [86]Sukky Jun, Wing KL, Belytschko T,1998. Explicit reproducing kernel particle methods for large deformation problems[J]. International Journal for Numerical Methods in Engineering, 41:137-166.
    [87]Hirt CW, Nichols BD.1981. Volume of fluid (VOF) method of the dynamics of free boundaries[J]. Journal of Computational Physics,39:201-225.
    [88]Osher S, Sethian JA.1988. Fronts propagating with curvature-dependent speed:Algorithms Based on Hamilton-Jacobi Formulations[J]. Journal of Computational Physics,79:12-49.
    [89]Liu TG, Khoo BC, Yeo KS, et al.2003. Underwater shock-free surface-structure interaction[J]. Int.J. Numer. Meth. Eng.,58:609-630.
    [90]Chen Y, Heister SD, A numerical treatment for attached cavitation[J]. J. Fluid Eng., 116:613-618.
    [91]Deshpande M, Feng J, Merkle CL.1994. Cavity flow predictions based on the Euler equations[J], J. Fluid Eng.,116:36-44.
    [92]Deshpande M, Feng J, Merkle CL.1997. Numerical modeling of the thermodynamic effects of cavitation[J]. J. Fluid Eng.,119:420-427.
    [93]Delannoy Y, Kueny JL.1990. Two phase flow approach in unsteady cavitationmodeling[J]. Cavitation Multiphase Flow Forum,98:152-158.
    [94]Kunz RF, Boger DA, Stinebring DR, et al.2000. A preconditioned Navier-Stokes method for two-phase flows with application to cavitation prediction[J], Compters & Fluids, 29:849-875.
    [95]Ventikos Y, Tzabiras G 2000. A numerical method for the simulation of steady and unsteady cavitating flows[J]. Computers & Fluids,29:63-88.
    [96]Saurel R, Lemetayer O.2001. A multiphase model for compressible flows with interfaces, shocks, detonation waves and cavitation[J]. J. Fluid Mech.,431:239-271.
    [97]Aanhold JE, Meijer GJ, Lemmen PPM.1998. Underwater shock response analysis on a floating vessel[J]. Shock Vibr.,5:53-59.
    [98]Wardlaw AB, Luton JA.2000. Fluid-structure interaction mechanisms for close-in explosions[J]. Shock Vibr.,7:265-275.
    [99]Kubota A, Kato H, Yamaguchi H.1992. A new modelling of cavitating flows:a numerical study of unsteady cavitation on a hydrofoil section[J]. J. Fluid Mech.,240:59-96.
    [100]Tang HS, Huang D.1996. A second-order accurate capturing scheme for ID inviscid flows of gas and water with vacuum zones[J]. J. Comput. Phys.,128:301-318.
    [101]Schmidt DP, Rutland CE, Corradini ML.1999. A fully compressible, two-dimensional model of small, high speed, cavitating nozzles[J]. Atomization Sprays,9:255-276.
    [102]Qin JR, Yu STJ, Lai M-C.1999. Direct calculations of cavitating flows in fuel delivery pipe by the Space-Time CE/SE method[R]. Society of Automotive Engineer, 1999-01-3554.
    [103]Xie WF, Liu TQ Khoo BC.2006. Application of a one-fluid model for large scale homogeneous unsteady cavitation:the modified Schmidt's model[J]. Computers & Fluids, 35:1177-1192.
    [104]Liu TG, Khoo BC, Xie WF.2004. Isentropic one-fluid modelling of unsteady cavitating flow[J] Journal of Computational Physics,201:80-108.
    [105]库尔著.罗耀杰,韩润泽,官信等译.1960.水下爆炸[M].北京:国防工业出版社.
    [106]加尔基等著.水下爆破工程[M].王中黔等译.1992.北京:人民交通出版社.
    [107]杨光煦.1992.水下工程爆破[M].北京:海洋出版社.
    [108]高建华,陆林,何洋扬.2010.浅水中爆炸及其破坏效应[M].国防工业出版社.
    [109]姚熊亮,张阿漫.2012.水下爆炸气泡动力学[M].哈尔滨工业大学出版社.
    [110]恽寿榕,赵衡阳.2005.爆炸力学[M].北京:国防工业出版社.
    [111]李泽华.1999.水中爆炸能量分布及振动效应研究[D].北京理工大学.
    [112]Zong Z..2005. A hydroplastic analysis of a free-free beam floating on water subjected to an underwater explosion[J]. Journal of fluids and structures,20:359-372.
    [113]姚熊亮,张阿漫.2006.简单Green函数法模拟三维水下爆炸气泡运动[J].力学学报,36:749-759.
    [114]张阿漫,姚熊亮.2008.近壁面气泡运动规律研究[J].物理学报,57:1662-1670.
    [115]李健,荣吉利,雷旺.2010.水下爆炸气泡运动的理论研究[J].应用力学学报,27:119-124.
    [116]李健,荣吉利,项大林.2011.近自由面水下爆炸气泡运动的数值计算研究[J].工程力学,28:200-205.
    [117]Li Yu-jie, Pan Jiang-qiang, Li Guo-hua, et al.2001. Experimental study of ship whipping induced by underwater explosive bubble[J]. Journal of Ship Mechanics,5:75-83.
    [118]潘正伟,刘平香.2003.水下爆炸对鱼雷毁伤的实验研究[J].舰船科学技术,25:52-55.
    [119]周俊祥,于国辉,李澎等.2005.RDX/A1含铝炸药水下爆炸实验研究[J].爆破,22:4-6.
    [120]张振华,王乘,黄玉盈等.2007.舰船底部液舱结构在水下爆炸作用下的动态响应实验研究[J].爆炸与冲击,27:431-437.
    [121]樊自建,沈兆武,廖学燕等.2008.圆柱形水下爆炸实验容器壁部强度设计研究[J].高压物理学报,22:402-408.
    [122]荣吉利,李健,杨荣杰等.2008.水下爆炸气泡脉动的实验及数值模拟[J].北京理工大学学报,28:1035-1038.
    [123]张德俊,汪承灏.1966.单一空化气泡运动的高速摄影的实验研究[J].声学学报,3:14-20.
    [124]黄晓明,朱锡,牟金磊.2011.近距水下爆炸作用下箱形梁模型中垂破坏试验研究[J].振动与冲击,30:19-23.
    [125]Zhao Yinglong, He Lin, Lv Zhiqiang.2005. Shock analysis and design method of vibration isolating system in the time domain[A]. Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference,1:A-C.
    [126]Liang CC, Tai YS.2006. Shock responses of a surface ship subjected to noncontact underwater explosions[J]. Ocean Engineering,33:748-772.
    [127]Lu JP, Chung M, Kennedy DL.2007. Simulation of underwater sympathetic reaction tests[A]. Theory and Practice of Energetic Materials,4:666-671.
    [128]Zhang J, Shi XH, Xu DH.2008. Destroy probability of ship defensive structure subjected to underwater contact explosions[A]. Materials and Product Technologies,44-46:297-301.
    [129]Zhang AM, Yao XL, Li J.2008. The interaction of an underwater explosion bubble and an elastic-plastic structure[J]. Applied Ocean Research,30:159-171.
    [130]Jen CY.2009. Coupled acoustic-structural response of optimized ring-stiffened hull for scaled down submerged vehicle subject to underwaterexplosion[J]. Theoretical and Applied Fracture Mechanics,52:96-110.
    [131]Jen Chan-Yung, Tai Yuh-Shiou.2010. Deformation behavior of a stiffened panel subjected to underwater shock loading using the non-linear finite element method[J]. Materials & Design,31:325-335.
    [132]Li Liangjun, Jiang Weikang.2011. A new method to predict the permanent deformation of rectangular plates based on shock energy compensation[J]. Journal of Vibration and Control,17:615-622.
    [133]Yuan J, Zhu X.2011. Dynamic Response of a Ring-stiffened Cylindrical Shell Subjected to Underwater Explosive Loading[A]. Vibration, Structural Engineering and Measurement, 105-107:931-936.
    [134]Gong SW, Lam KY.2011. Functionally Graded Shells Subjected to Underwater Shock[A]. Shock Compression of Condensed Matter-2011,1426.
    [135]Salimi H, Saranjam B, Fard AH.2012. Use of Genetic Algorithms for Optimal Design of Sandwich Panels Subjected to Underwater Shock Loading[J]. Strojniski Vestnik-Journal of Mechanical Engineering,58:156-164.
    [136]Zhang A-man, Yao Xiong-liang.2008. Interaction of underwater explosion bubble with complex elastic-plastic structure[J]. Applied Mathematics and Mechanics-English Edition, 29:89-100.
    [137]Zhang AM, Yao XL, Li J.2008. The interaction of an underwater explosion bubble and an elastic-plastic structure[J]. Applied Ocean Research,30:159-171.
    [138]张阿漫,姚熊亮.2008.水下爆炸气泡与海底相互作用研究[J].振动与冲击.27:93-98
    [149]Zhang AM, Yao XL, Yu XB.2008. The dynamics of three-dimensional underwater explosion bubble[J]. Journal of Sound and Vibration,311:1196-1212.
    [140]Zhang A-man, Ren Shao-fei, Li Qing.2012.3D numerical simulation on fluid structure interaction subjected to underwater explosion with cavitation[J]. Applied Mathematics and Mechanics-English Edition,33:1191-1206
    [141]Zhang AM, Wang SP, Wu GX.2013. Simulation of bubble motion in a compressible liquid based on the three dimensional wave equation[J]. Engineering Analysis with Boundary Elements,37:1179-1188.
    [142]Miao Hongyu, Gracewski Sheryl M.2008. Coupled FEM and BEM code for simulating acoustically excited bubbles near deformable structures[J]. Computational Mechanics, 42:95-106.
    [143]Liu Yun-Long, Zhang A-Man, Wang Shi-Ping.2012. Research on interaction between bubble and surface waves based on BEM[J]. ACTA Physica Sinica,61.
    [144]Li Zhang-Rui, Sun Lei, Zong Zhi.2012. A boundary element method for the simulation of non-spherical bubbles and their interactions near a free surface[J]. ACTA Mechanical Sinica,28:51-65.
    [145]Li J, Rong JL.2012. Experimental and numerical investigation of the dynamic response of structures subjected to underwater explosion[J]. European Journal of Mechanics'B-Fluids, 32:59-69.
    [146]杨刚,韩旭,龙述尧.2008.应用SPH模拟近水面爆炸[J].工程力学,25:204-213.
    [147]Gang Y, Xu H, Hu D.2011. Computer simulation of two-dimensional linear-shaped charge jet using smoothed particle hydrodynamics[J]. Engineering Computations,28:58-75.
    [148]Zhang A-man, Yang Wen-shan, Yao Xiong-liang.2012. Numerical simulation of underwater contact explosion[J]. Applied Ocean Research,34:10-20.
    [149]Shao JR, Li HQ, Liu GR.2012. An improved SPH method for modeling liquid sloshing dynamics[J]. Computers & Structures,100:L18-26.
    [150]Qiu Jianxian, Liu Tiegang, Khoo Boo Cheong.2008. Simulation of compressible two-medium flow by Runge-Kutta discontinuous Galerkin methods with Ghost Fluid
    [151]Xu Liang, Liu Tiegang.2011. Accuracies and conservation errors of various ghost fluid methods for multi-medium Riemann problem. J. Comput. Phys.,2011,230:4975-4990
    [152]张志江,徐更光.2008.高能炸药水中爆炸能量输出特性数值分析[J].含能材料,16:171-174
    [153]许亮,刘铁钢.2010.修正的虚拟介质方法用于水下爆炸冲击薄板的模拟[A].CCCM2010.
    [154]许亮,刘铁钢.2011.修正的虚拟介质方法用于水下爆炸冲击薄板的模拟[J].计算力学学报,28:49-59
    [155]任少飞.2012.基于间断迦辽金法的舰船水下及空中爆炸模拟[D].哈尔滨工业大学.
    [156]Liang Lihua, Xun Panpan, Wan Chen.2011. Study on underwater explosion shock characteristic of rudder based on ALE method[A].2011 International Conference on System Science, Engineering Design and Manufacturing Informatization,2:114-117.
    [157]Zhang A-Man, Yang Wen-Shan, Huang Chao, et al.2013. Numerical simulation of column charge underwater explosion based on SPH and BEM combination[J].Computers & Fluids, 71:169-178.
    [158]顾文彬,苏青笠,刘建青.2004.水下平面爆炸冲击作用下空化区域形成及其特征[J].爆破,21:8-11.
    [159]张振华,朱锡,冯刚等.2004.关于圆柱壳在水下爆炸冲击波作用下二次加载现象的数值模拟研究[J].海军工程大学学报,6:93-96.
    [160]李海涛,朱锡,牟金磊.2008.水下近距爆炸作用下弹性钢板处的空化特性研究[J].海军工程大学学报,20:21-24.
    [161]李海涛,朱锡,黄晓明等.2008.水下爆炸冲击波作用下空化区域形成的特性研究[J].高压物理学报,22:181-186.
    [162]刘铁钢,谢文峰,王成等.2010.界面曲率对空化的演变及结构载荷的影响[J].力学学报,42:1156-1163.
    [163]王诗平,张阿曼,曾令玉等.2011.计入能量损失的气泡运动三维数值模拟[J].中国造船,52:15-24.
    [164]叶帆,宗智,李海涛.2011.水下爆炸冲击波产生的区域空化效应二次加载的并行数值研究[J].舰船科学技术,33:11-17.
    [165]陈高杰,贾则,陈素秋等.2012.考虑空化效应的舰艇水下爆炸仿真研究[J].爆破,29:1-3.
    [166]Zong Zhi, Zhao Yanjie, Ye Fan et al.2012. Parallel Computing of the Underwater Explosion Cavitation Effects on Full-scale Ship Structures[J]. J. Marine. Sci. Appl.,11: 469-477.
    [167]陈高杰,贾则,陈素秋等.2012.考虑空化效应的舰艇水下爆炸仿真研究[J].爆破,29:1-3.
    [168]Wardlaw A.1998. Underwater Explosion Test Cases[R]. IHTR-2069.
    [169]Russo G, Smereka P.2000. A remark on computing distance functions[J]. J. Comput. Phys., 163:51-67.
    [170]Aslam T.2004. A partial differential equation approach to multidimensional extrapolation[J]. J. Comput. Phys.,193:349-355.
    [171]Lin Xiao.1996. Numerical computation of stress waves in solids[M]. Akademie, Berlin.
    [172]Sussman M, Smereka P, Osher S.1994. A level set approach for computing solutions to incompressible two-phase flow[J]. J. Comput. Phys.,114:146-159.
    [173]Peng D, Merriman B, Osher S.1999. A PDE-based fast local level set method[J]. J. Comput. Phys.,155:410-438.
    [174]Rouy E, Tourin A.1992. A viscosity solutions approach to Shape-From-Shading[J]. SIAM J. Num. Anal.,29:867-884.
    [175]Adalsteinsson D, Sethian J.1999. The fast construction of extension velocities in level set methods[J]. J. Comput. Phys.,148:2-22.
    [176]Osher S., Fedkiw R..2002. Level set methods and dynamic implicit surfaces[M]. Springer.
    [177]E. Lee, M. Finger, W. Collins.1973. JWL Equation of State Coefficients for High Explosives[R]. Lawrence Uvermore Laboratory, UCID-16189.
    [178]Tang HS, Sotiropoulos F.1999. A second-order Godunov method for wave problems in coupled solid-water-gas systems[J]. Journal of Computational Physics,151:790-815.
    [179]Harten A.1983. High resolution schemes for hyperbolic conservation laws[J]. J. Comput. Phy.,49:357-393.
    [180]Shu C-W.1997. Essentially Non-Oscillatory and Weighted Essentially Non-Oscillatory Schemes for Hyperbolic Conservation Laws[R]. ICASE Report 97-65.
    [181]Jiang G-S, Peng D.2000. Weighted ENO schemes for Hamilton Jacobi equations[J]. SIAM J. Sci. Comput.,21:2126-2143.
    [182]傅德薰,马延文.2002.计算流体力学[M].高等教育出版社.
    [183]Shu C-W, Osher S.1988. Efficient implementation of essentially non-oscillatory shock capturing schemes [J]. J. Comput. Phys.,77:439-471.
    [184]Clifton RJ.1967. A difference method for plane problems in dynamic elasticity[J]. Quarterly of Applied Mathematics,25:97-116.
    [185]Lin X, Ballman J.1995. Improved bicharacteristic schemes for two-dimensional elastody-namic equations[J]. Quarterly of Applied Mathematics,53:383-398.
    [186]炸药理论编写组.1982.炸药理论[M].国防工业出版社.
    [187]张宝平,张庆明,黄风雷.2001.爆轰物理学[M].北京:兵器工业出版社.
    [188]Swisdak MM.1978.ADA0516694[R].NSWC/wol TR76-116.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700