浓度差驱动的混合蒸气Marangoni凝结传热特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蒸气的凝结现象在自然界和人类生活中普遍存在,蒸汽凝结传热也是核动力、蒸汽动力、石油化工和制冷空调等领域中所广泛遇到的相变传热过程。Marangoni凝结起因于混合蒸气凝结时液相的局部浓度差,这种凝结不同于膜状和珠状凝结,并在特定的工况条件下能获得数倍于纯水蒸气凝结传热系数的强化换热效果。本文以混合蒸气的Marangoni凝结传热过程作为研究对象,通过实验研究和理论分析,对Marangoni凝结传热特性曲线、凝结液膜形态特征及其不稳定性、液相气相热阻的变化特征以及不凝性气体对传热的影响规律等进行了研究。
     本文搭建了具有高气密性的凝结传热实验系统,可以实现在较大过冷度范围内凝结传热特性的测量和凝结过程的高速动态可视化观测与记录。对氨-水混合蒸气的凝结传热特性曲线的测定和分析表明:①凝结传热特性随表面过冷度显示出有峰值的非线性变化规律;②存在一个最优氨蒸气浓度(0.38%左右)使传热系数和热流密度达到峰值。这在以往的文献中未见报道;③在特定的过冷度范围内,非常微量的氨的添加可使水蒸气的凝结传热大大强化;④传热系数随蒸气流速的增大而增大,但其峰值点所对应的过冷度与蒸气流速无关。
     Marangoni凝结发生时,传热系数和凝结形态与混合蒸气浓度及凝结表面过冷度有紧密联系。对凝结形态图片的测量和统计结果显示液珠尺寸是一个不连续的变量,液珠的尺度分布与Rosim-Rammler分布函数符合较好。本文通过引入液膜覆盖率的概念,解释了Marangoni凝结传热特性随过冷度的非线性变化规律。
     实验表明,酒精-水二元体系的凝结传热系数要远远大于氨-水二元体系。本文通过对凝结液膜不稳定性及液相、气相热阻变化规律的研究发现,凝结液膜的不稳定性和气相扩散热阻共同决定了Marangoni凝结传热特性。通过定量计算,解释了不同二元体系的差异对浓度差Marangoni凝结传热效果的影响程度,结合可视化的实验结果,对浓度差Marangoni凝结传热的机理进行了分析。
     此外,还进行了不凝性气体对Marangoni凝结传热的影响规律和作用机制的实验研究和分析。结果表明,不凝气含量较低时,很少不凝性气体的增加就可造成凝结传热系数的大幅下降。在过冷度范围不同的区域,不凝性气体对凝结传热的影响规律不同,在传热系数的峰值点处,不凝性气体含量的增加,引起传热系数的下降最为明显。
Steam condensationexists generally in nature and human’s life, and steamcondensation heat transfer is the common phase change heat transfer process in thefields of nuclear power, steam power, petrochemical, refrigeration and airconditioning. The so-called Marangoni condensation is caused by the localconcentration gradient. Marangoni condensation is different from the filmcondensation and dropwise condensation and the heat transfer may be greatlyenhanced in certain working conditions. In this paper, the characteristic curves ofMarangoni condensation heat transfer, the shape and unstable feature of condensatefilm, thethermal resistance of condensate film and vapor film and the effect of thenon-condensable gas on heat transfer were investigated.
     A condensation heat transfer experimental system with high air tightness wasestablished to obtain the Marangoni condensation heat transfer characteristics and thecondensate images. The characteristic curves of ammonia-water Marangonicondensation heat transfer showed a nonlinear variation along with the surfacesubcooling and had peak values. There was an optimal ammonia concentration rangenear0.38%that heat transfer coefficient (HTC) and heat flux reached maximu. Incertain surface subcooling range, the addition of a vary little amount of ammonia tothe steam could greatly enhance the condensation heat transfer. The HTC increasedalong with the vapor velocity and the surface subcooling corresponding to the peakvalues of HTC had nothing to do with the vapor velocity.
     The Marangoni condensation HTC and condensate mode were influenced by theconcentration and surface subcooling. The measurement and calculation on the dropsize of the ethanol-water Marangoni condensation revealed that the drop size was adiscontinuous variable and the drop size distribution showed a good agreement withthe Rosin-Rammler model. The nonlinear feature of the Marangoni condensation heattransfer characteristic curves was explained from the point of view of the liquid filmcoverage.
     The experimental results proofed that he HTC of ethanol-water binary systemwere higher than that of the ammonia-water binary system. It could be attributed tothe difference of condensate instability and the diffusion thermal resistance between the two binary systems. Through the quantitative calculation of condensate instabilityand diffusion thermal resistance of the two binary systems, the mechanism of theMarangoni condensation caused by the concentration gradient was analysised.
     The effect of non-condensable gas on the characteristic of Marangonicondensation heat transfer was studied. The results showed that the HTC couldgreatly decreased by a little bit increase of the non-condensable gas in the range of thelow concentration of non-condensable gas. The influence of the non-condensable gason the HTC was very obvious in the peak value range of HTC.
引文
[1]中国科协学会学术部.热学新理论及其应用[M],北京:中国科学技术出版社,2010,1-3
    [2]施明恒,甘永平,马重芳.沸腾与凝结[M],北京:高等教育出版社,1995,120-122
    [3]王世学.传热学[M],北京:北京大学出版社,2011,151-153
    [4]陶文铨.传热学[M],北京:高等教育出版社,1998,207-209
    [5]Mirkovich, VV, Missen, RW. Non-filimwise condensation of binary vapors ofmiscible liquids[J]. Canadian Journal of Chemical Engineering.1961,39:86-87
    [6]Y. Utaka, S. X. Wang, Characteristic curves and the promotion effect ofethanol addition on steam condensation heat transfer[J]. InternationalJournal of Heatand Mass Transfer,2004,47:4507-4516
    [7]Thomson J. On certain curious motions observable on the surfaces of wine andother alcoholic liquours[J]. Philosophical Magazine,1855,10:330-331
    [8]Marangoni C, On the expansion of a drop of liquid floating in the surface ofanother liquid[J]. Philosophical Magazine,1865,8:45-47
    [9]Scriven L E and Sternling C V. The Marangoni Effects [J]. Nature,1960,187:186-188
    [10]沙勇,成弘,余国琮.质量、热量传递过程中的Marangoni效应[J].化学进展,2003,15(1):9-17
    [11]李震东,赵建福,秦文韬.气泡/液滴Marangoni迁移数值模拟研究[J].工程热物理学报,2010,31(6):979-982
    [12]沙勇,成弘,袁希钢,余国琮.伴有Marangoni效应的传质动力学[J].化工学报,2003,54(11):1518-1523
    [13]张志炳,耿皎,张峰. Marangoni效应与气液传质过程[J].化工学报,2003,54(4):508-513
    [14]沙勇,成弘,于艺红.降膜传质过程Marangoni效应稳定性分析[J].化工学报,2003,54(10):1362-1368
    [15]周超凡,余黎明,曾爱武.气液界面Marangoni效应对传质系数的影响[J].高校化学工程学报,2005,19(4):433-437
    [16]赵贤广,张志炳.受热液膜Marangoni效应临界状态表征[J].化工时刊,2010,24(12):1-6
    [17]Level set方法数值模拟单液滴传质中的Marangoni效应[J].中国科学,2008,38(2):150-160
    [18]沙勇,成弘,袁希钢等.双组分扩散过程中Rayleigh-Benard-Marangoni现象实验研究[J].化工学报,2002,53(9):976-979
    [19]李冬梅,贺占博. Marangoni效应与液膜振荡[J].化学进展,2003,15(1):1-7
    [20]张会书,气液传质过程中Marangoni效应的PIV实验研究[D].天津:天津大学,2010
    [21]彭璟,王明明,张峰等.液体降膜中Marangoni效应的研究进展[J].化学工程,2010,38(8):98-101
    [22]雷永平,史耀武,村川英一.熔池表面Marangoni力诱导的表面速度奇异现象[J].西安交通大学学报,1999,33(5):70-74
    [23]余黎明.气液传质过程的Marangoni效应研究[D].天津:天津大学,2005
    [24]胡国辉,周哲玮. Marangoni效应对等曲率弯曲界面凝固过程的影响[J].应用数学和力学,2008,29(2):133-139
    [25]Yaosong Chen, Yuanfeng BI and Tao Jiang.The liquid bridge withMarangoni effect.Communications in Nonlinear Science&Numerical simulation [J].1996,1(1):48-52
    [26]彭晓峰,林雪萍,王补宣.固体表面熔池内Marangoni流动产生的小扰动分析[J].工程热物理学报,1998,19(6):715-720
    [27]耿皎,洪梅,肖剑等.规整填料塔精馏的Marangoni效应[J].化工学报,2002,53(6):600-607
    [28]张璞,胡良,刘芳等.大Reynolds数液滴Marangoni迁移的空间试验装置[J].中国科学,2002,32(2):167-176
    [29]刘荣,刘秋生.两相流层的Marangoni-Benard不稳定分析[J].工程热物理学报,2005,26(2):264-267
    [30]张峰,耿皎,马少玲等. Marangoni效应对降膜加热流动的影响[J].化工学报,2005,56(9):1606-1612
    [31]赵建福,鲁仰辉,李震东.过冷核态池沸腾中的Marangoni效应[J].2008,28(2):159-164
    [32]张峰,张志炳,王志祥. Marangoni效应对降膜过程液体分布的影响[J].武汉工程大学学报,2008,30(4):1-4
    [33]彭宝宏,杨历. Marangoni效应对圆管内膜状凝结的影响[J].能源工程,2007,3:7-12
    [34]王宝和. Marangoni干燥技术[J].干燥技术与设备,2009,7(1):3-7
    [35]沙勇,江桂仙,叶李艺. Marangoni对流数值模拟[J].厦门大学学报(自然科学版),2009,48(1):95-98
    [36]沙勇,陈虹伶,李樟云.皂膜解吸Marangoni对流观察及分析[J].化学工程,2010,28(7):35-38
    [37]马斌,李莉. LBE MRT方法模拟Marangoni对流[J].中国科学,2011,56(8):556-559
    [38]朱志强,陈淑玲,刘秋生.二元工质Marangoni对流的实验研究与数值模拟[J].力学学报,2011,43(4):674-679
    [39]胡学铮. Marangoni界面不稳定现象—溶质迁移和溶剂溶解的复合影响[J].无锡轻工业学院学报,1994,13(2):129-138
    [40]代静,关于气液传质中Marangoni效应的实验研究[D].天津:天津大学,2010
    [41]张艳,郑连存,张欣欣.边界耦合的Marangoni对流边界层问题的近似解析解[J].物理学部,2009,58(8):5501-5506
    [42]彭岚,张伟,李友荣等.微重力条件下Marangoni数对分离结晶过程的影响[J].人工晶体学报,2011,40(3):556-562
    [43]杨历.重力场中绕气泡Marangoni对流的数值模拟[J].河北工业大学学报,2001,30(3):56-59
    [44]梁博,采用格子Boltzmann方法的界面对流现象模拟[D].天津:天津大学,2007
    [45]S P M艾沙,N M阿里芬,R纳扎尔.下部有常热通量加热作用时非均匀温度梯度和磁场对Marangoni对流作用的影响[J].应用数学和力学,2010,31(7):765-771
    [46]唐泽眉.微重力条件下悬浮区中的Marangoni对流[J].中国空间科学技术,1988,6:44-52
    [47]唐泽眉,李家春.微重力环境下Marangoni对流的有限元数值模拟[J].力学学报,1991,23(2):149-156
    [48]黄维章,张锁春,谢佐恒等. ADI方法在液桥Marangoni对流控制的数值模拟中的应用[J].应用数学和力学,1992,13(5):373-382
    [49]胡文瑞,游仁然.浮区Marangoni对流的浓度边界条件[J].力学学报,1993,25(3):276-283
    [50]刘秋生.多层流体的Marangoni对流[J].力学学报,2002,34(4):481-491
    [51]彭岚,李友荣,曾丹苓.流体动力学粘度对液封液桥内Marangoni对流的影响[J].重庆大学学报,2004,27(10):97-100
    [52]杨启容,吕剑锋,宋文丽等.微重力下绕气柱Marangoni对流的流场及温度场分析[J].青岛大学学报(工程技术版),2004,19(3):21-27
    [53]刘秋生,王安.高频振动影响下双层Marangoni-Benard对流稳定性研究[J].北京交通大学学报,2006,30(4):6-12
    [54]赵思诚,刘秋生.纵向非均匀多孔介质Marangoni对流不稳定性[J].空间科学学报,2008,28(1):33-38
    [55]J. Ford and R. Missen. On the conditions for stability of falling films subjectto surface tension disturbance: the condensation of binary vapors[J]. Canadian Journalof Chemistry Engineering.1968,48:309-312
    [56]Shixue Wang, Promotion of steam condensation heat transfer by using solutalMarangoni phenomenon[D]. Japan;Yokohama National University,2002
    [57]V. Mirkovich and R. Missen. A study of the condensation of binary vapors ofmiscible liquids[J]. Canadian Journal of Chemistry Engineering,1961,39:73-78
    [58]J.Ford, Non-filmwise condensation of binary vapors: mechanism and dropletsizes[J]. Canadian Journal of Chemistry Engineering,1971,49:157-158
    [59]Domingo N, Chen F C and Murphy R W, Ammonia water mixtureexperiments. Internal report[R].Oak Ridge National Laboratory, TN,1992
    [60]Fujii T, Koyama S and Shimizu Y. Gravity controlled condensation of anethanol and water mixture on a horizontal tube [J]. Transactions of JSME, Series B,1989,55(509):210-215
    [61]Fujii T, Osa N and Koyama S. Free convection condensation of binary vapormixtures on a smooth horizontal tube: condensing mode and heat transfer coefficientof condensate[C]. Proc. US Eng. Found. Conf. Florida: St. Augustine,1993:171-182
    [62]Yoshio Utaka. Measurement of condensation characteristic curves for binarymixture of steam and ethanol vapor [J]. Heat transfer-Japanese Research,1995,24(1):57-67
    [63]Deans J and Morrison J N A. Augmentation of steam condensation heattransfer by addition of ammonia [J]. International Journal of Heat and Mass Transfer,1997,40(4):765-772
    [64]Morrison J N A and Deans J. Augmentation of steam condensation heattransfer by addition of methylamine [J]. International Journal of Heat and MassTransfer,1998,41:3679-3683
    [65]Kim K J, Lefsaker AM, Razani A and Stone A. The effective use of heattransfer additives for steam condensation [J]. Applied Thermal Engineering,2001,21:1863-1874
    [66]Philpott C and Deans J. The condensation of ammonia-water mixture in ahorizontal shell and tube condenser[J]. ASME Journal of Heat Transfer,2004,126:527-534
    [67]Philpott C and Deans J. The enhancement of steam condensation heat transferin ahorizontal shell and tube condenser by addition of ammonia[J]. InternationalJournal of Heat and Mass Transfer,2004,47:3683-3693
    [68]Shixue Wang and Yoshio Utaka. An experimental study of non-condensablegas for solutal marangoni condensation heat transfer [J]. Experimental Heat Transfer,2005,18:61-69
    [69]Murase T, Wang H S and Rose J W. Marangoni condensation ofsteam-ethanol mixtures on a horizontal tube[J]. International Journal of Heat andMass transfer,2007,50:3774-3779
    [70]Jinshi Wang and Junjie Yan. Experimental investigation of Marangonicondensation of ethanol-water mixture vapors on vertical tube [J]. Heat Mass Transfer,2009,12:1533-1541
    [71]Jinshi Wang and Junjie Yan.Marangoni condensation heat transfer ofwater-ethanol mixtures on a vertical surface with temperature gradients [J].International Journal of Heat and Mass Transfer,2009,52,2324-2334
    [72]Hijikata K, Fukasaku Y and Nakabeppu O. Theoretical and experimentalstudies on pseudo-dropwise condensation of a binary vapor mixture [J]. Transactionsof ASME,1996,118:140-147
    [73]Utaka Y. Kenmotsu T, Yokoyama S, A study on Marangoni condensation(measurement and observation for water and ethanol vapor mixture)[C]. In: Proc11thInt Heat Transfer Conf,1998,6:397-402
    [74]Yoshio Utaka and Tetsuji Nishikawa. An investigation of liquid filmthickness during solutal marangoni condensation using a laser absorption method:Absorption property and examination of measuring method [J]. Heat transfer-AsianResearch,2003,32(8):700-711
    [75]Joe Deans and Serhan Kucuka. The formation of banded condensation filmsin weak ammonia-water mixtures [J]. Journal of Heat Transfer,2011,133:101505-1-101505-10
    [76]Yang Li and Junjie Yan, A semi-empirical model for condensation heattransfer coefficient of mixed ethanol-water vapors [J]. Journal of Heat Transfer,2011,133:061501-1-061501-11
    [77]Xuehu Ma and Zhong Lan. Effect of surface free energy difference onsteam-ethanol mixture condensation heat transfer [J]. International Journal of Heatand Mass Transfer,2012,55:531-537
    [78]Vemuri S, Kim K J, Kang Y T, A study on effective use of heat transferadditives in the process of steam condensation. International Journal of Refrigeration,2006,29:724-734
    [79]赵镇南.传热学[M],北京:高等教育出版社,2008,306-307
    [80]Baker E M, Mueller A C. Condensation of vapors on a horizontal tube [J].Trans. AICHE,1937,33:531-558,
    [81]S B. Memory, J W. Rose. Free convection laminar film condensation on ahorizontal tube with variable wall temperature [J]. Int. J Heat Mass Transfer.1991,34(11).2775-2778
    [82]Y Q. Zhou, J W. Rose.Effect of two-dimensional conduction in thecondensation film on laminar film condensation on a horizontal tube with variablewall temperature [J].1996,39(15):3187-3191
    [83]刘明言.功能氧化物薄膜液相沉积制备及应用研究进展[J].化工进展,2009,28(2):272-277
    [84]P. J. Marto. Film condensation heat transfer measurements on horizontaltubes:problems and progress[J]. Experimental thermal and fluid science,1992,5:556-569
    [85]Rose JW. Further aspects of dropwise condensation theory [J]. InternationalJournal of Heat and Mass Transfer,1976,19:1363-1370.
    [86]丁正生.概率论与数理统计应用[M],西安:西北工业大学出版社,2003
    [87]Macias G A,Cuerda C E M,Diaz D M.Application of theRosin-Rammlerand Gates-Gaudin-Schuhmann models to the particlesize distribution analysis ofagglomerated cork [J].MaterialsCharacterization,2004,52(2):159-164.
    [88]T Fujii.Theory of laminar film condensation [M].New York: Springer-Verlag,1991
    [89]King, H. H., J. L. Hall, G. C. Ware.A study of the density surface tension andadsorption in the water ammonia system [J].J. Amer. Chem. Soc.,1930,52:5128-5135
    [90]Straub, J., N. Rosner, U. Grigull.Oberflachespannung von leichten undschweren wasser [J].Warme-und Stoffubertragung,1980,13:241-252
    [91]The international association for the properties of water and steam. IAPWSrelease on surface tension of ordinary water substance [M]. London, IAPWS,1994
    [92]童景山.流体热物性学—基本理论与计算[M],北京:中国石化出版社,2008,236-238
    [93]Chang S T, Velev O D. Evaporation-induced particle microseparations insidedroplets [J]. Langmuir,2006,22:1459-1468
    [94]Pearson J R A. On convection cells induced by surface tension [J]. J. FluidMech.,1958,4:489-500
    [95]Palmer H J. The hydrodynamic stability of rapidly evaporating liquids atreduced pressure[J]. J. Fluid Mech,1976,75:487-511
    [96]ShixueWang and Yoshio Utaka.Effect of non-condensable gas mass fractionon condensationheat transfer for water-ethanol vapor mixture [J].Jsme InternationalJournal,2004,47(2):162-167
    [97]宋永吉,张东昌,林纪方.珠状凝结传热的机理研究[J].化工学报,1990,41(6):683-687
    [98]Graham C, Griff ith P. Drop size distributions and heat transfer in dropwisecondensation [J]. International Journal of Heat and Mass Transfer,1973,16,337-346
    [99]高世桥,刘海鹏.毛细力学[M],北京:科学出版社,2010
    [100]周兴东,马学虎,兰忠等.冷凝液运动行为强化含有不凝气的蒸汽冷凝过程研究[J].高校化学工程学报,2007,21(5):740-747
    [101]马学虎,王琳,陈嘉宾等.表面分割方式对滴膜共存冷凝传热特性的实验研究[J].高校化学工程学报,2003,17(1):31-37
    [102]周兴东,马学虎,兰忠等.滴状冷凝强化含不凝气的蒸气冷凝传热机制[J].化工学报,2007,58(7):1619-1626
    [103]马学虎,宋天一,兰忠等,分割表面对蒸汽滴状冷凝传热特性的影响[J].过程工程学报,2007,7(3):473-477
    [104]马学虎,陈晓峰.固液界面接触角对膜状冷凝传热强化的初步分析[J].化工学报,2003,54(6):850-854
    [105]马学虎,宋天一,兰忠等.固液界面能差效应与冷凝传热强化研究进展[J].化工学报,2006,57(8):1763-1776
    [106]尹铭,陈嘉宾,马学虎.水平管内低压蒸气的冷凝[J].化工学报,2003,54(7):913-918
    [107]吴大诚.表面、界面和胶体[M].北京:化学工业出版社,2005
    [108]傅献彩,沈文霞,姚天扬.物理化学(第四版)[M].北京:高等教育出版社
    [109]黄晓波.表面张力驱动对流的实验研究[J].力学进展,1989,19:353-356
    [110]王补宣,杜小泽.表面张力对低下细竖管内流动凝结的影响[J].自然科学进展,1999,9(8):8-11
    [111]S Vemuri and K J Kim.An experimental and theoretical study on theconcept of dropwise condensation [J].International Journal of Heat and Mass Transfer.2006,49:649-657
    [112]S Vemuri and K J Kim. Cost-effective techniques for enhancing heattransfer rate in steam condensation. Journal of Thermophysics and Heat Transfer [J].2005,19(1):101-108
    [113]Y D Jun, K J Kim and J M Kennedy. Dynamic surface tension of heattransfer additives suitable for use in steam condensers and absorbers [J]. InternationalJournal of Refrigeration.2010,33:428-434
    [114]Y T Kang and T Kashiwagi.Heat transfer enhancement by Marangoniconvection in the ammonia-water absorption process [J].International Journal ofRefrigeration.2002,25:780-788
    [115]Y T Kang and T Kashiwagi.Visualization and model development ofMarangoni convection in ammonia-water system [J].International Journal ofRefrigeration.1999,22:640-649
    [116]J W Rose. Condensation heat transfer fundamentals [J]. Trans IChemE.1998,76:143-150
    [117]JW Rose. Condensation heat transfer [J]. Heat and Mass Transfer.1999,35:479-485
    [118]J W Rose. Effect of pressure gradient in forced convection filmcondensation on a horizontal tube [J]. International Journal of Heat and Mass Transfer.1984,27(1):39-47
    [119]J W Rose. Surface tension effects and enhancement of condensation heattransfer [J]. Chemical Engineering Research and Design.2004,82:419-429
    [120]Xuehu Ma, J W Rose and Dunqi XU. Advances in dropwise condensationheat transfer:Chinese research [J]. Chemical Engineering Journal.2000,78:87-93
    [121]周兴东,马学虎,张宇.含有不凝性气体的蒸气滴状冷凝传热实验研究[J].工程热物理学报,2004,25(6):1001-1003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700