丹参酮ⅡA诱导肾细胞癌细胞凋亡及其分子机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
【研究背景】
     肾细胞癌(renal cell carcinoma,RCC)是最为普遍肾实质肿瘤,其具有高致死率,并且发生率也持续升高。目前,临床治疗肾细胞癌主要采取手术治疗、免疫治疗以及疫苗治疗等方法,然而肾细胞癌病人的预后仍然较差;因此,新药物及其机制研发仍十分迫切。传统中药由于具有低毒,特异性等特征,在肿瘤的治疗方面备受关注。丹参酮ⅡA为传统中草药丹参(Salvia miltiorrhiza BUNGE)根部中提取物,传统药理公认其具有抗氧化以及抗衰老功效。近来研究表明:丹参酮ⅡA能够发挥抗肿瘤活性,成为研究热点。然而,关于丹参酮ⅡA是否对肾细胞癌有抗肿瘤作用效果其分子机制如何尚待明确。
     【研究目的】
     研究丹参酮ⅡA诱导肾细胞癌786-O细胞凋亡及其分子机制。具体来说,明确丹参酮ⅡA处理786-O细胞后,对786-O细胞生长活力的影响;探讨丹参酮ⅡA诱导786-O细胞周期阻滞和细胞凋亡的信号通路及其分子机制。
     【研究方法】
     首先,采用不同浓度的丹参酮ⅡA(0μg/mL,1μg/mL,2μg/mL,4μg/mL,8μg/mL)处理24h的肾细胞癌786-O细胞后,用MTT方法检测786-O细胞活力的影响。同时,采用不同浓度的丹参酮ⅡA(0μg/mL,1μg/mL,2μg/mL,4μg/mL,8μg/mL,10μg/mL,20μg/mL,30μg/mL和40μg/mL)处理24h的正常肾细胞293A细胞后,同样应用MTT方法检测丹参酮ⅡA处理24h的293A细胞活力。随后,应用流式细胞技术(PI单染色)分析不同浓度丹参酮ⅡA处理前后786-O细胞周期分布变化,以明确丹参酮ⅡA对786-O细胞生长影响。再采用western blot检测细胞周期阻滞相关靶蛋白cyclin A的表达水平,来印证786-O细胞的周期阻滞。为进一步探讨周期阻滞的分子机制,用western blot检测p21和p53的表达水平。然后,用流式细胞术(AnnexinV-FITC/PI双染色)检测丹参酮ⅡA处理786-O细胞后,细胞凋亡的情况。并用western blot检测p53下游靶基因(Fas和bax)和凋亡效应蛋白caspase-3表达水平。最后,采用western blot实验检测MDM2的表达,以确定MDM2是否影响了p53的上调。还通过构建GFP-NPM质粒,以GFP-NPM转染786-O细胞后,应用激光共聚焦显微镜观察GFP-NPM细胞定位情况;并且用免疫共沉淀技术验证53与NPM是否发生物理相互作用,来确定p53是否受NPM正向调控。
     【研究结果】
     (1) MTT实验表明丹参酮ⅡA处理24小时对786-O细胞的半数抑制浓度IC50约为2μg/mL;而丹参酮ⅡA处理24小时对人胚肾293A细胞的半数抑制浓度IC50约为8μg/mL。
     (2)应用浓度分别为0,2,4和8μg/mL的丹参酮ⅡA处理肾细胞癌786-O细胞24小时后,流式细胞术PI单染色法检测出细胞周期处于S期的细胞所占百分比分别为10.0%,11.5%,20.4%和23.3%。western blot表明细胞周期S期的标志性蛋白cyclin A表达呈药物浓度梯度提高。丹参酮ⅡA处理引起p21蛋白表达显著升高,并呈药物浓度依赖方式上调。p53蛋白表达显著升高,并且呈现药物浓度依赖关系。
     (3)流式细胞术AnnexinV-FITC/PI染色检测细胞凋亡的结果表明,当用不同浓度丹参酮ⅡA(2,4和8μg/mL)处理肾细胞癌786-O细胞24小时后,早期凋亡细胞数量从8.6%(对照组)分别增加到27.2%,27.8%和28.8%;晚期凋亡细胞从对照组的2.9%分别增加到9.2%,12.5%和13.9%。凋亡细胞百分率则从对照组的11.5%分别增加到36.4%,40.3%和42.7%,作用效果与丹参酮ⅡA药物浓度呈正比。western blot显示丹参酮ⅡA处理Fas表达没有变化,且丹参酮ⅡA处理引起bax蛋白表达显著升高,呈现药物浓度依赖关系。还显示了caspase-3表达升高,表明caspase-3被激活。
     (4) western blot结果显示p53负性调节子MDM2表达水平没有变化。激光共聚焦显微镜观察到GFP-NPM从核仁移位到核浆中。免疫共沉淀实验表明NPM能和p53发生相互作用。
     【结论】
     (1)丹参酮ⅡA能够以浓度依赖方式显著抑制786-O细胞生长活力;丹参酮ⅡA对肾细胞癌786-O细胞有显著的抑制作用,但对正常的人胚肾293A细胞没有明显的细胞毒性作用。
     (2)丹参酮ⅡA可诱导肾细胞癌786-O细胞周期S期阻滞。其分子机制为:丹参酮ⅡA诱导肾细胞癌786-O细胞p53及其转录调控靶基因p21上调,且p53通过转录上调p21蛋白表达水平,参与介导丹参酮ⅡA诱导肾细胞癌786-O细胞周期S期阻滞。
     (3)丹参酮ⅡA可进一步诱导肾细胞癌786-O细胞凋亡。在此过程中,p53转录下游靶基因Fas没有变化,而bax上调,凋亡效应蛋白caspase-3上调,表明bax参与丹参酮ⅡA诱导的肾细胞癌786-O细胞凋亡,丹参酮ⅡA诱导的肾细胞癌786-O细胞凋亡是通过线粒体途径,而非循Fas通道。
     (4)丹参酮ⅡA处理肾细胞癌786-O细胞,可使其核仁蛋白NPM从核仁穿梭到核浆,且NPM和p53发生相互作用,表明NPM参与p53翻译后调控,维持了p53的稳定性,从而使p21蛋白表达水平上调。
     本研究不但证明了丹参酮ⅡA可有效地抑制肾细胞癌786-O细胞生长增殖,并诱导细胞发生周期阻滞以至凋亡,还通过分子实验数据揭示了丹参酮ⅡA处理肾细胞癌786-O细胞通过驱动NPM从细胞核仁穿梭到核浆,使与核浆定位的p53发生共定位,进而增强NPM和p53相互作用,促进p53稳定性,继而转录激活其下游靶基因p21和bax蛋白水平上调的抑癌作用机制。并通过对正常人胚肾293A细胞的作用研究,证明丹参酮ⅡA可在基本不影响正常细胞情况下起肿瘤抑制作用,对有关肿瘤治疗的研究可起重要指导作用。
[Background]
     Renal cell carcinoma (RCC), the most common cancer arising from the renalparenchyma, causes prevalent deaths worldwide and its incidence continues to rise. Althoughseveral therapeutic approaches have been applied to the treatment of RCC, including surgery,immunological therapies and vaccine treatment, further improvements are still needed.Therefore, it is extremely necessary to explore and develop new anti-cancer drugs. Notably,Traditional Chinese Medicine (TCM) draws much attention due to its dramatic roles in cancertherapy with the characteristics of low-toxicity and specificity, etc. Tanshinone ⅡA (Tan ⅡA),one of the phytochemical compounds isolated from the Chinese medicinal herb Danshen (rootof Salvia miltiorrhiza Bunge), possesses antioxidant and anti-aging properties. At present, TanⅡA has become a research hotspot, because it’s anti-cancer activity. However, the effect ofTan ⅡA on human RCC and its molecular mechanism need to be clarified.
     [Objective]
     Therefore, we aim to investigate the apoptotic effect of Tan ⅡA on human RCC786-Ocells and unveil the molecular mechanism by which it functions. Specifically, the viability of786-O cells following Tan ⅡA treatment was examined at first. Further, we delved into thesignaling pathways plus molecular mechanism by which Tan ⅡA induced786-O cell cyclearrest and apoptosis.
     [Methods]
     The viability of the786-O cells treated with Tan ⅡA (0μg/mL,1μg/mL,2μg/mL,4μg/mL and8μg/mL) was measured by MTT assay. As a comparison, human embryonickidney (HEK)293A cells were also treated with Tan ⅡA(0μg/mL,1μg/mL,2μg/mL,4μg/mL,8μg/mL,10μg/mL,20μg/mL,30μg/mL and40μg/mL)for24h and then subjectedto MTT assay. To demonstrate the growth inhibition of786-O cells induced by Tan ⅡA, thecell cycle distribution of786-O cells treated with and without Tan ⅡA was analyzed usingFlow cytometry (PI staining). To confirm cell cycle profile, the level of cyclin A proteinwhich is active in the S phase was subjected to western blot (WB). Moreover, to illustrate the molecular mechanism underlying cell cycle arrest, the expression levels of p21and p53whichare related with cell cycle checkpoints were determined by WB. On the other hand, TanⅡA-induced apoptosis was assessed through Flow cytometry (Annevin V/PI staining).Thereafter, the expression levels apoptosis-related molecules including Fas and bax which aretranscriptionally activated by p53and caspase-3which is an apoptotic executor wereexamined by WB. In order to reveal the molecular mechanism of p53up-regulation, the levelof MDM2protein which is a p53negative regulator was tested by WB. At last, a plasmidcontaining GFP-tagged NPM was constructed, and its sub-cellular localization was checkedby confocal microscope after its transfection in786-O cells. The physical interaction betweenNPM and p53was confirmed via co-immnunoprecipitation.
     [Results]
     (1) The MTT assay indicated that Tan ⅡA treatment for24h induced a marked inhibition ofthe growth of786-O cells. The half maximal inhibitory concentration (IC50) value forTan ⅡA treated786-O were estimated to be2μg/mL, whereas that for the Tan ⅡAtreated293A was8μg/mL.
     (2) When786-O cells were treated with Tan ⅡA (0,2,4and8μg/ml) for24h, Flowcytometry analysis (PI stain) showed that the percentages of786-O cells in S-phasewere10.0%,11.5%,20.4%and23.3%, respectively. WB indicated that Tan ⅡA induceda dose-dependent upregulation of cyclin A. At the same time, p53and its downstreamgene p21were also increased in Tan ⅡA treated786-O cells, in a dose-dependentmanner.
     (3) Following the treatment of786-O cells for24h with Tan ⅡA (2,4and8μg/mL), thenumber of early apoptotic cells increased from8.6(control) to27.2,27.8and28.8%,respectively. While the number of late apoptotic cells respectively increased from2.9(control) to9.2,12.5and13.9%. The total percentage of apoptotic cells was directlyrelated to the Tan ⅡA concentration, increased from11.5%(control) to36.4,40.3and42.7%. Tan ⅡA treatment resulted in a significant dose-dependent increase in the levelof bax and caspase-3.
     (4) WB showed no change in the level of MDM2protein which is a negative regulator ofp53. Confocal microscopy showed that Tan ⅡA treatment resulted in a nucleoplasmictranslocation of GFP-tagged NPM from nucleolus. Co-immunoprecipitation tested thatthere was physical interaction between NPM and p53.
     [Conclusion]
     (1) Tan ⅡA treatment can cause significant dose-dependent inhibition of786-O cell growth,while Tan ⅡA treatment results in minor cytotoxicity on293A cells.
     (2) Tan ⅡA treatment can induce S phase cell cycle arrest of786-O cells. The molecularmechanism can be illustrated by the upregulation of p53and its transcriptional targetgene p21, which are involved in S phase cell cycle arrest of786-O cells induced by TanⅡA treatment.
     (3) Tan ⅡA treatment can further induce human RCC786-O cell apoptosis. In the apoptotic786-O cells treated with Tan ⅡA, the level of Fas proteins expression shows no change,in contrast, the expression level of bax protein increases. As a result, there is anupregulation of the apoptotic executor caspase-3. These data indicate that bax isinvolved in Tan ⅡA-induced cell apoptosis; Tan ⅡA-induced apoptosis is through amitochondrial pathway rather than Fas pathway.
     (4) The translocation of Nucleolar protein NPM from nucleolus to nucleoplasm in786-Ocells after Tan ⅡA treatment and the physical interaction between NPM and p53indicates that NPM may be involved in the regulation of p53stability at apost-translational level, and ensuing upregulation of p21.
     Our present study demonstrates that Tan ⅡA treatment can cause an effective growthinhibition and cell cycle arrest followed by apoptosis in human RCC786-O cells. Tan ⅡAtreatment can also trigger the translocation of NPM from nucleolus to nucleoplasm.Subsequently, Nucleoplasmic NPM can enhance p53stability via direct interaction betweenthe two, as a result, the downstream targeted genes including p21and bax are upregulated. Itis remarkable that Tan ⅡA has reduced cycotoxicity on HEK293A cells comparing with786-O cells, which suggests that Tan ⅡA has mild side effect on normal cells. Our researchwill provide promising guideline for the tumor therapy.
引文
[1] JEMAL A, SIEGEL R, WARD E, et al. Cancer statistics,2006[J]. CA Cancer J Clin,2006,56(2):106-30.
    [2] FERLAY J, SHIN H R, BRAY F, et al. Estimates of worldwide burden of cancer in2008:GLOBOCAN2008[J]. Int J Cancer,127(12):2893-917.
    [3] CHIU B C, LYNCH C F, CERHAN J R, et al. Cigarette smoking and risk of bladder,pancreas, kidney, and colorectal cancers in Iowa [J]. Ann Epidemiol,2001,11(1):28-37.
    [4] CHOW W H, GRIDLEY G, FRAUMENI J F, JR., et al. Obesity, hypertension, and therisk of kidney cancer in men [J]. N Engl J Med,2000,343(18):1305-11.
    [5] BERGSTROM A, HSIEH C C, LINDBLAD P, et al. Obesity and renal cell cancer--aquantitative review [J]. Br J Cancer,2001,85(7):984-90.
    [6] RENEHAN A G, TYSON M, EGGER M, et al. Body-mass index and incidence of cancer:a systematic review and meta-analysis of prospective observational studies [J]. Lancet,2008,371(9612):569-78.
    [7] FLAHERTY K T, FUCHS C S, COLDITZ G A, et al. A prospective study of body massindex, hypertension, and smoking and the risk of renal cell carcinoma (United States)[J].Cancer Causes Control,2005,16(9):1099-106.
    [8] SETIAWAN V W, PIKE M C, KOLONEL L N, et al. Racial/ethnic differences inendometrial cancer risk: the multiethnic cohort study [J]. Am J Epidemiol,2007,165(3):262-70.
    [9] ESCUDIER B, BELLMUNT J, NEGRIER S, et al. Phase III trial of bevacizumab plusinterferon alfa-2a in patients with metastatic renal cell carcinoma (AVOREN): finalanalysis of overall survival [J]. J Clin Oncol,2010,28(13):2144-50.
    [10] CHOUEIRI T K, PLANTADE A, ELSON P, et al. Efficacy of sunitinib and sorafenib inmetastatic papillary and chromophobe renal cell carcinoma [J]. J Clin Oncol,2008,26(1):127-31.
    [11] DE BENEDETTI A, GRAFF J R. eIF-4E expression and its role in malignancies andmetastases [J]. Oncogene,2004,23(18):3189-99.
    [12] CANTLEY L C. The phosphoinositide3-kinase pathway [J]. Science,2002,296(5573):1655-7.
    [13] PENNACCHIETTI S, MICHIELI P, GALLUZZO M, et al. Hypoxia promotes invasivegrowth by transcriptional activation of the met protooncogene [J]. Cancer Cell,2003,3(4):347-61.
    [14] GORDAN J D, LAL P, DONDETI V R, et al. HIF-alpha effects on c-Myc distinguishtwo subtypes of sporadic VHL-deficient clear cell renal carcinoma [J]. Cancer Cell,2008,14(6):435-46.
    [15] LIN H, LIU J, ZHANG Y. Developments in cancer prevention and treatment usingtraditional Chinese medicine [J]. Front Med,2011,5(2):127-33.
    [16] GAO W. Research development on Chinese herbs of anticancer [J]. Med J Liaoning(Liaoning Yi Yao),1977,6(29-33.
    [17] HAN Y, FENG P, WEN Z. Research development on Chineseherbs of anticancer [J]. JBeijing TCM (Beijing Zhong Yi),2003,2(45-8.
    [18] TIAN J Z H. Pharmacological classification and clinical significance of anti-cancerChinese herbs [J]. J Shandong College Tradit Chin Med (Shandong Zhong Yi Xue YuanXue Bao),1986,10(2):16-9.
    [19] ZHANG D Z H, XU J D, ET A L. Clinical and experimental researches on improvingradiation sensibility for lung cancer patients by “Fu Zheng Zeng Xiao”(FZ)[J]. Chin JSurg of Integr Tradit West Med (Zhongguo Zhong Xi Yi Jie He Wai Ke Za Zhi)1998,4(2):71-5.
    [20] LIU J X, XU Z Y, SHI Z M, et al. Prospective study on Fuzheng treatment in122advanced non-small cell lung cancer patients [J]. China J Tradit Chin MedPharm(Zhongguo Yi Yao Xue Bao),1987,2(1):12-6.
    [21] FANG X X, WANG S H H, LI L Q, et al. Observation of treatmentwith integrativemedicine to reduce chemotherapy-induced leukocyteand platelet in168patients [J]. JClin Oncol (Lin Chuang Zhong Liu Xue Za Zhi),1997,2(3):56.
    [22] SUN G Z H, WANG G M, CHEN C H H, et al. Clinical and experimental studyontreatment of advanced gastrointestinal carcinoma with Fuzheng-Fangai oral liquidcombined with chemotherapy [J]. Chin J Surg ofIntegr Tradit West Med(ZhongguoZhong Xi Yi Jie He Wai Ke ZaZhi),1995,1(5):266-70.
    [23] HATCHER H, PLANALP R, CHO J, et al. Curcumin: from ancient medicine to currentclinical trials [J]. Cell Mol Life Sci,2008,65(11):1631-52.
    [24] OKAZAKI Y, IQBAL M, OKADA S. Suppressive effects of dietary curcumin on theincreased activity of renal ornithine decarboxylase in mice treated with a renalcarcinogen, ferric nitrilotriacetate [J]. Biochim Biophys Acta,2005,1740(3):357-66.
    [25] JUNG E M, LIM J H, LEE T J, et al. Curcumin sensitizes tumor necrosis factor-relatedapoptosis-inducing ligand (TRAIL)-induced apoptosis through reactive oxygenspecies-mediated upregulation of death receptor5(DR5)[J]. Carcinogenesis,2005,26(11):1905-13.
    [26] WOO J H, KIM Y H, CHOI Y J, et al. Molecular mechanisms of curcumin-inducedcytotoxicity: induction of apoptosis through generation of reactive oxygen species,down-regulation of Bcl-XL and IAP, the release of cytochrome c and inhibition of Akt [J].Carcinogenesis,2003,24(7):1199-208.
    [27] YANG R, ZHANG H, ZHU L. Inhibitory effect of resveratrol on the expression of theVEGF gene and proliferation in renal cancer cells [J]. Mol Med Report,2011,4(5):981-3.
    [28] CLARKE D M, ROBILOTTO A T, RHEE E, et al. Cryoablation of renal cancer:variables involved in freezing-induced cell death [J]. Technol Cancer Res Treat,2007,6(2):69-79.
    [29] PERABO F G, LANDWEHRS G, FROSSLER C, et al. Antiproliferative and apoptosisinducing effects of indirubin-3'-monoxime in renal cell cancer cells [J]. Urol Oncol,2011,29(6):815-20.
    [30] KIM S A, KIM Y C, KIM S W, et al. Antitumor activity of novel indirubin derivatives inrat tumor model [J]. Clin Cancer Res,2007,13(1):253-9.
    [31] HU K, YAO X. Protodioscin (NSC-698796): its spectrum of cytotoxicity against sixtyhuman cancer cell lines in an anticancer drug screen panel [J]. Planta Med,2002,68(4):297-301.
    [32] JIANG J, HU C. Evodiamine: a novel anti-cancer alkaloid from Evodia rutaecarpa [J].Molecules,2009,14(5):1852-9.
    [33] WANG J W, WU J Y. Tanshinone biosynthesis in Salvia miltiorrhiza and production inplant tissue cultures [J]. Appl Microbiol Biotechnol,2010,88(2):437-49.
    [34] YUAN S L, WANG X J, WEI Y Q.[Anticancer effect of tanshinone and its mechanisms][J]. Ai Zheng,2003,22(12):1363-6.
    [35] LIU C, LI J, WANG L, et al. Analysis of tanshinone IIA induced cellular apoptosis inleukemia cells by genome-wide expression profiling [J]. BMC Complement Altern Med,2012,12(5):1-10.
    [36] LEE C Y, SHER H F, CHEN H W, et al. Anticancer effects of tanshinone I in humannon-small cell lung cancer [J]. Mol Cancer Ther,2008,7(11):3527-38.
    [37] LEE W Y, CHIU L C, YEUNG J H. Cytotoxicity of major tanshinones isolated fromDanshen (Salvia miltiorrhiza) on HepG2cells in relation to glutathione perturbation [J].Food Chem Toxicol,2008,46(1):328-38.
    [38] PAN T L, HUNG Y C, WANG P W, et al. Functional proteomic and structural insightsinto molecular targets related to the growth inhibitory effect of tanshinone IIA on HeLacells [J]. Proteomics,2010,10(5):914-29.
    [39] GONG Y, LI Y, LU Y, et al. Bioactive tanshinones in Salvia miltiorrhiza inhibit thegrowth of prostate cancer cells in vitro and in mice [J]. Int J Cancer,2011,129(5):1042-52.
    [40] CHE X H, PARK E J, ZHAO Y Z, et al. Tanshinone II A induces apoptosis and S phasecell cycle arrest in activated rat hepatic stellate cells [J]. Basic Clin Pharmacol Toxicol,2010,106(1):30-7.
    [41] ZHOU L, CHAN W K, XU N, et al. Tanshinone IIA, an isolated compound from Salviamiltiorrhiza Bunge, induces apoptosis in HeLa cells through mitotic arrest [J]. Life Sci,2008,83(11-12):394-403.
    [42] WANG J, WANG X, JIANG S, et al. Growth inhibition and induction of apoptosis anddifferentiation of tanshinone IIA in human glioma cells [J]. J Neurooncol,2007,82(1):11-21.
    [43] YUAN S, HUANG G, WANG X.[The differentiation-inducing effect of tanshinone andretinoic acid on human cervical carcinoma cell line in vitro][J]. Zhonghua Zhong Liu ZaZhi,1995,17(6):422-4.
    [44] WU Y, YANG Y, MENG W, et al.[Study on the differentiation of K562cell-line inducedby Tanshinone II A][J]. Hua Xi Yi Ke Da Xue Xue Bao,2002,33(1):80-3.
    [45] LIAO H F, SHYU S Y, KUO Y H, et al. Compound278E, structurally modified fromtanshinone, induces monocytic differentiation and regulates proto-oncogene expression inhuman leukemic HL-60cells [J]. Anticancer Drugs,2005,16(2):175-83.
    [46] KYPRIANOU N, MARTIKAINEN P, DAVIS L, et al. Programmed cell death as a newtarget for prostatic cancer therapy [J]. Cancer Surv,1991,11(265-77.
    [47] KYPRIANOU N, BAINS A K, JACOBS S C. Induction of apoptosis inandrogen-independent human prostate cancer cells undergoing thymineless death [J].Prostate,1994,25(2):66-75.
    [48] TAO W, SOUTH V J, ZHANG Y, et al. Induction of apoptosis by an inhibitor of themitotic kinesin KSP requires both activation of the spindle assembly checkpoint andmitotic slippage [J]. Cancer Cell,2005,8(1):49-59.
    [49] YANG L J, JENG C J, KUNG H N, et al. Tanshinone IIA isolated from Salviamiltiorrhiza elicits the cell death of human endothelial cells [J]. J Biomed Sci,2005,12(2):347-61.
    [50] TANG C, XUE H L, HUANG H B, et al. Tanshinone IIA inhibits constitutive STAT3activation, suppresses proliferation, and induces apoptosis in rat C6glioma cells [J].Neurosci Lett,2010,470(2):126-9.
    [51] WON S H, LEE H J, JEONG S J, et al. Tanshinone IIA induces mitochondria dependentapoptosis in prostate cancer cells in association with an inhibition of phosphoinositide3-kinase/AKT pathway [J]. Biol Pharm Bull,2010,33(11):1828-34.
    [52] SU C C, CHEN G W, KANG J C, et al. Growth inhibition and apoptosis induction bytanshinone IIA in human colon adenocarcinoma cells [J]. Planta Med,2008,74(11):1357-62.
    [53] SU C C, LIN Y H. Tanshinone IIA down-regulates the protein expression of ErbB-2andup-regulates TNF-alpha in colon cancer cells in vitro and in vivo [J]. Int J Mol Med,2008,22(6):847-51.
    [54] WANG X, WEI Y, YUAN S, et al. Potential anticancer activity of tanshinone IIA againsthuman breast cancer [J]. Int J Cancer,2005,116(5):799-807.
    [55] LU Q, ZHANG P, ZHANG X, et al. Experimental study of the anti-cancer mechanism oftanshinone IIA against human breast cancer [J]. Int J Mol Med,2009,24(6):773-80.
    [56] GRANA X, REDDY E P. Cell cycle control in mammalian cells: role of cyclins, cyclindependent kinases (CDKs), growth suppressor genes and cyclin-dependent kinaseinhibitors (CKIs)[J]. Oncogene,1995,11(2):211-9.
    [57] JOHNSON D G, WALKER C L. Cyclins and cell cycle checkpoints [J]. Annu RevPharmacol Toxicol,1999,39(295-312.
    [58] SCHWARTZ G K, SHAH M A. Targeting the cell cycle: a new approach to cancertherapy [J]. J Clin Oncol,2005,23(36):9408-21.
    [59] KALDIS P, RUSSO A A, CHOU H S, et al. Human and yeast cdk-activating kinases(CAKs) display distinct substrate specificities [J]. Mol Biol Cell,1998,9(9):2545-60.
    [60] MONDELLO C, SCOVASSI A I. Apoptosis: a way to maintain healthy individuals [J].Subcell Biochem,2010,50(307-23.
    [61] THOMPSON C B. Apoptosis in the pathogenesis and treatment of disease [J]. Science,1995,267(5203):1456-62.
    [62] MAJNO G, JORIS I. Apoptosis, oncosis, and necrosis. An overview of cell death [J]. AmJ Pathol,1995,146(1):3-15.
    [63] SARASTE A, PULKKI K. Morphologic and biochemical hallmarks of apoptosis [J].Cardiovasc Res,2000,45(3):528-37.
    [64] NATHAN C, DING A. Nonresolving inflammation [J]. Cell,2010,140(6):871-82.
    [65] MONTAGUE J W, CIDLOWSKI J A. Cellular catabolism in apoptosis: DNAdegradation and endonuclease activation [J]. Experientia,1996,52(10-11):957-62.
    [66] MATTSON M P, CHAN S L. Calcium orchestrates apoptosis [J]. Nat Cell Biol,2003,5(12):1041-3.
    [67] HOETELMANS R W, VAHRMEIJER A L, VAN VLIERBERGHE R L, et al. The role ofvarious Bcl-2domains in the anti-proliferative effect and modulation of cellularglutathione levels: a prominent role for the BH4domain [J]. Cell Prolif,2003,36(1):
    [68] K35I-S4C4H.KEL F C, LAWRENCE D A, CHUNTHARAPAI A, et al.Apo2L/TRAIL-dependent recruitment of endogenous FADD and caspase-8to deathreceptors4and5[J]. Immunity,2000,12(6):611-20.
    [69] EVAN G I, WYLLIE A H, GILBERT C S, et al. Induction of apoptosis in fibroblasts byc-myc protein [J]. Cell,1992,69(1):119-28.
    [70] LACASSE E C, BAIRD S, KORNELUK R G, et al. The inhibitors of apoptosis (IAPs)and their emerging role in cancer [J]. Oncogene,1998,17(25):3247-59.
    [71] ALSAFADI S, TOURPIN S, ANDRE F, et al. P53family: at the crossroads in cancertherapy [J]. Curr Med Chem,2009,16(32):4328-44.
    [72] DUBREZ-DALOZ L, DUPOUX A, CARTIER J. IAPs: more than just inhibitors ofapoptosis proteins [J]. Cell Cycle,2008,7(8):1036-46.
    [73] JANICKE R U, NG P, SPRENGART M L, et al. Caspase-3is required for alpha-fodrincleavage but dispensable for cleavage of other death substrates in apoptosis [J]. J BiolChem,1998,273(25):15540-5.
    [74] RUCHAUD S, KORFALI N, VILLA P, et al. Caspase-6gene disruption reveals arequirement for lamin A cleavage in apoptotic chromatin condensation [J]. EMBO J,2002,21(8):1967-77.
    [75] GERSHONI M, TEMPLETON A R, MISHMAR D. Mitochondrial bioenergetics as amajor motive force of speciation [J]. Bioessays,2009,31(6):642-50.
    [76] BRECKENRIDGE D G, GERMAIN M, MATHAI J P, et al. Regulation of apoptosis byendoplasmic reticulum pathways [J]. Oncogene,2003,22(53):8608-18.
    [77] ORRENIUS S, MCCABE M J, JR., NICOTERA P. Ca(2+)-dependent mechanisms ofcytotoxicity and programmed cell death [J]. Toxicol Lett,1992,64-65Spec No(357-64.
    [78] HAUPT Y, MAYA R, KAZAZ A, et al. Mdm2promotes the rapid degradation of p53[J].Nature,1997,387(6630):296-9.
    [79] KLUCK R M, BOSSY-WETZEL E, GREEN D R, et al. The release of cytochrome cfrom mitochondria: a primary site for Bcl-2regulation of apoptosis [J]. Science,1997,275(5303):1132-6.
    [80] JOZA N, SUSIN S A, DAUGAS E, et al. Essential role of the mitochondrialapoptosis-inducing factor in programmed cell death [J]. Nature,2001,410(6828):549-54.
    [81] LI P, NIJHAWAN D, BUDIHARDJO I, et al. Cytochrome c and dATP-dependentformation of Apaf-1/caspase-9complex initiates an apoptotic protease cascade [J]. Cell,1997,91(4):479-89.
    [82] ENARI M, SAKAHIRA H, YOKOYAMA H, et al. A caspase-activated DNase thatdegrades DNA during apoptosis, and its inhibitor ICAD [J]. Nature,1998,391(6662):43-50.
    [83] OKINAGA T, KASAI H, TSUJISAWA T, et al. Role of caspases in cleavage of laminA/C and PARP during apoptosis in macrophages infected with a periodontopathicbacterium [J]. J Med Microbiol,2007,56(Pt10):1399-404.
    [84] BOULARES A H, YAKOVLEV A G, IVANOVA V, et al. Role of poly(ADP-ribose)polymerase (PARP) cleavage in apoptosis. Caspase3-resistant PARP mutant increasesrates of apoptosis in transfected cells [J]. J Biol Chem,1999,274(33):22932-40.
    [85] BHARTI A C, TAKADA Y, AGGARWAL B B. PARP cleavage and caspase activity toassess chemosensitivity [J]. Methods Mol Med,2005,111(69-78.
    [86] DEGLI-ESPOSTI M. To die or not to die--the quest of the TRAIL receptors [J]. J LeukocBiol,1999,65(5):535-42.
    [87] PAN G, O'ROURKE K, CHINNAIYAN A M, et al. The receptor for the cytotoxic ligandTRAIL [J]. Science,1997,276(5309):111-3.
    [88] FRIESEN C, HERR I, KRAMMER P H, et al. Involvement of the CD95(APO-1/FAS)receptor/ligand system in drug-induced apoptosis in leukemia cells [J]. Nat Med,1996,2(5):574-7.
    [89] COLLISON A, FOSTER P S, MATTES J. Emerging role of tumour necrosisfactor-related apoptosis-inducing ligand (TRAIL) as a key regulator of inflammatoryresponses [J]. Clin Exp Pharmacol Physiol,2009,36(11):1049-53.
    [90] WANG C, YOULE R J. The role of mitochondria in apoptosis*[J]. Annu Rev Genet,2009,43(95-118.
    [91] JEONG S Y, SEOL D W. The role of mitochondria in apoptosis [J]. BMB Rep,2008,41(1):11-22.
    [92] BURLACU A. Regulation of apoptosis by Bcl-2family proteins [J]. J Cell Mol Med,2003,7(3):249-57.
    [93] NECHUSHTAN A, SMITH C L, HSU Y T, et al. Conformation of the Bax C-terminusregulates subcellular location and cell death [J]. EMBO J,1999,18(9):2330-41.
    [94] SHIMIZU S, IDE T, YANAGIDA T, et al. Electrophysiological study of a novel largepore formed by Bax and the voltage-dependent anion channel that is permeable tocytochrome c [J]. J Biol Chem,2000,275(16):12321-5.
    [95] SHIMIZU S, NARITA M, TSUJIMOTO Y. Bcl-2family proteins regulate the release ofapoptogenic cytochrome c by the mitochondrial channel VDAC [J]. Nature,1999,399(6735):483-7.
    [96] CHIU T L, SU C C. Tanshinone IIA induces apoptosis in human lung cancer A549cellsthrough the induction of reactive oxygen species and decreasing the mitochondrialmembrane potential [J]. Int J Mol Med,2010,25(2):231-6.
    [97] CHEN J, SHI D Y, LIU S L, et al. Tanshinone IIA induces growth inhibition andapoptosis in gastric cancer in vitro and in vivo [J]. Oncol Rep,2012,27(2):523-8.
    [98] VOUSDEN K H, LU X. Live or let die: the cell's response to p53[J]. Nat Rev Cancer,2002,2(8):594-604.
    [99] EL-DEIRY W S. The role of p53in chemosensitivity and radiosensitivity [J]. Oncogene,2003,22(47):7486-95.
    [100] KUBBUTAT M H, JONES S N, VOUSDEN K H. Regulation of p53stability by Mdm2[J]. Nature,1997,387(6630):299-303.
    [101] RODRIGUEZ M S, DESTERRO J M, LAIN S, et al. Multiple C-terminal lysine residuestarget p53for ubiquitin-proteasome-mediated degradation [J]. Mol Cell Biol,2000,20(22):8458-67.
    [102] PRIVES C. Signaling to p53: breaking the MDM2-p53circuit [J]. Cell,1998,95(1):5-8.
    [103] DORNAN D, BHEDDAH S, NEWTON K, et al. COP1, the negative regulator of p53, isoverexpressed in breast and ovarian adenocarcinomas [J]. Cancer Res,2004,64(20):7226-30.
    [104] LENG R P, LIN Y, MA W, et al. Pirh2, a p53-induced ubiquitin-protein ligase, promotesp53degradation [J]. Cell,2003,112(6):779-91.
    [105] SCHMIDT D, MULLER S. Members of the PIAS family act as SUMO ligases for c-Junand p53and repress p53activity [J]. Proc Natl Acad Sci U S A,2002,99(5):2872-7.
    [106] WU S Y, CHIANG C M. p53sumoylation: mechanistic insights from reconstitutionstudies [J]. Epigenetics,2009,4(7):445-51.
    [107] HANEDA M, KOJIMA E, NISHIKIMI A, et al. Protein phosphatase1, but not proteinphosphatase2A, dephosphorylates DNA-damaging stress-induced phospho-serine15ofp53[J]. FEBS Lett,2004,567(2-3):171-4.
    [108] LI H H, CAI X, SHOUSE G P, et al. A specific PP2A regulatory subunit, B56gamma,mediates DNA damage-induced dephosphorylation of p53at Thr55[J]. EMBO J,2007,26(2):402-11.
    [109] TIBBETTS R S, BRUMBAUGH K M, WILLIAMS J M, et al. A role for ATR in theDNA damage-induced phosphorylation of p53[J]. Genes Dev,1999,13(2):152-7.
    [110] KHANNA K K, KEATING K E, KOZLOV S, et al. ATM associates with andphosphorylates p53: mapping the region of interaction [J]. Nat Genet,1998,20(4):
    [111] G39O8U-4D00E.LOCK D M, JIANG K, PEREIRA E, et al. Regulatory interactions between thecheckpoint kinase Chk1and the proteins of the DNA-dependent protein kinase complex[J]. J Biol Chem,2003,278(32):29940-7.
    [112] SHIEH S Y, TAYA Y, PRIVES C. DNA damage-inducible phosphorylation of p53atN-terminal sites including a novel site, Ser20, requires tetramerization [J]. EMBO J,1999,18(7):1815-23.
    [113] CRAIG A, SCOTT M, BURCH L, et al. Allosteric effects mediate CHK2phosphorylation of the p53transactivation domain [J]. EMBO Rep,2003,4(8):787-92.
    [114] XIE S, WANG Q, WU H, et al. Reactive oxygen species-induced phosphorylation of p53on serine20is mediated in part by polo-like kinase-3[J]. J Biol Chem,2001,276(39):36194-9.
    [115] D'ORAZI G, CECCHINELLI B, BRUNO T, et al. Homeodomain-interacting proteinkinase-2phosphorylates p53at Ser46and mediates apoptosis [J]. Nat Cell Biol,2002,4(1):11-9.
    [116] YOSHIDA K, LIU H, MIKI Y. Protein kinase C delta regulates Ser46phosphorylation ofp53tumor suppressor in the apoptotic response to DNA damage [J]. J Biol Chem,2006,281(9):5734-40.
    [117] SHIKAMA N, LEE C W, FRANCE S, et al. A novel cofactor for p300that regulates thep53response [J]. Mol Cell,1999,4(3):365-76.
    [118] COLOMBO E, MARINE J C, DANOVI D, et al. Nucleophosmin regulates the stabilityand transcriptional activity of p53[J]. Nat Cell Biol,2002,4(7):529-33.
    [119] PETITJEAN A, ACHATZ M I, BORRESEN-DALE A L, et al. TP53mutations in humancancers: functional selection and impact on cancer prognosis and outcomes [J]. Oncogene,2007,26(15):2157-65.
    [120] BROSH R, ROTTER V. When mutants gain new powers: news from the mutant p53field[J]. Nat Rev Cancer,2009,9(10):701-13.
    [121] MALKIN D, LI F P, STRONG L C, et al. Germ line p53mutations in a familialsyndrome of breast cancer, sarcomas, and other neoplasms [J]. Science,1990,250(4985):1233-8.
    [122] WOLF D, HARRIS N, ROTTER V. Reconstitution of p53expression in a nonproducerAb-MuLV-transformed cell line by transfection of a functional p53gene [J]. Cell,1984,38(1):119-26.
    [123] TAYLOR W R, STARK G R. Regulation of the G2/M transition by p53[J]. Oncogene,2001,20(15):1803-15.
    [124] GIONO L E, MANFREDI J J. The p53tumor suppressor participates in multiple cellcycle checkpoints [J]. J Cell Physiol,2006,209(1):13-20.
    [125] OGRYZKO V V, WONG P, HOWARD B H. WAF1retards S-phase progressionprimarily by inhibition of cyclin-dependent kinases [J]. Mol Cell Biol,1997,17(8):
    [126]4B8U7N7-Z82F., DUTRIAUX A, LENGAUER C, et al. Requirement for p53and p21to sustainG2arrest after DNA damage [J]. Science,1998,282(5393):1497-501.
    [127] XIONG Y, HANNON G J, ZHANG H, et al. p21is a universal inhibitor of cyclin kinases[J]. Nature,1993,366(6456):701-4.
    [128] VOUSDEN K H, PRIVES C. Blinded by the Light: The Growing Complexity of p53[J].Cell,2009,137(3):413-31.
    [129] CAMPISI J. Senescent cells, tumor suppression, and organismal aging: good citizens,bad neighbors [J]. Cell,2005,120(4):513-22.
    [130] CAMPISI J, D'ADDA DI FAGAGNA F. Cellular senescence: when bad things happen togood cells [J]. Nat Rev Mol Cell Biol,2007,8(9):729-40.
    [131] SERRANO M, LIN A W, MCCURRACH M E, et al. Oncogenic ras provokes prematurecell senescence associated with accumulation of p53and p16INK4a [J]. Cell,1997,88(5):593-602.
    [132] MIYASHITA T, KRAJEWSKI S, KRAJEWSKA M, et al. Tumor suppressor p53is aregulator of bcl-2and bax gene expression in vitro and in vivo [J]. Oncogene,1994,9(6):1799-805.
    [133] MIYASHITA T, REED J C. Tumor suppressor p53is a direct transcriptional activator ofthe human bax gene [J]. Cell,1995,80(2):293-9.
    [134] OLTVAI Z N, MILLIMAN C L, KORSMEYER S J. Bcl-2heterodimerizes in vivo with aconserved homolog, Bax, that accelerates programmed cell death [J]. Cell,1993,74(4):609-19.
    [135] COTTER T G. Apoptosis and cancer: the genesis of a research field [J]. Nat Rev Cancer,2009,9(7):501-7.
    [136] YIP K W, REED J C. Bcl-2family proteins and cancer [J]. Oncogene,2008,27(50):6398-406.
    [137] AYHAN A, YASUI W, YOKOZAKI H, et al. Loss of heterozygosity at the bcl-2genelocus and expression of bcl-2in human gastric and colorectal carcinomas [J]. Jpn JCancer Res,1994,85(6):584-91.
    [138] HAGUE A, MOORGHEN M, HICKS D, et al. BCL-2expression in human colorectaladenomas and carcinomas [J]. Oncogene,1994,9(11):3367-70.
    [139] KRAJEWSKA M, MOSS S F, KRAJEWSKI S, et al. Elevated expression of Bcl-X andreduced Bak in primary colorectal adenocarcinomas [J]. Cancer Res,1996,56(10):2422-7.
    [140] KRAJEWSKI S, BLOMQVIST C, FRANSSILA K, et al. Reduced expression ofproapoptotic gene BAX is associated with poor response rates to combinationchemotherapy and shorter survival in women with metastatic breast adenocarcinoma [J].Cancer Res,1995,55(19):4471-8.
    [141] SJOSTROM J, BLOMQVIST C, VON BOGUSLAWSKI K, et al. The predictive valueof bcl-2, bax, bcl-xL, bag-1, fas, and fasL for chemotherapy response in advanced breastcancer [J]. Clin Cancer Res,2002,8(3):811-6.
    [142] TRAUTH B C, KLAS C, PETERS A M, et al. Monoclonal antibody-mediated tumorregression by induction of apoptosis [J]. Science,1989,245(4915):301-5.
    [143] MULLER M, STRAND S, HUG H, et al. Drug-induced apoptosis in hepatoma cells ismediated by the CD95(APO-1/Fas) receptor/ligand system and involves activation ofwild-type p53[J]. J Clin Invest,1997,99(3):403-13.
    [144] MULLER M, WILDER S, BANNASCH D, et al. p53activates the CD95(APO-1/Fas)gene in response to DNA damage by anticancer drugs [J]. J Exp Med,1998,188(11):2033-45.
    [145] CHEN L, PARK S M, TUMANOV A V, et al. CD95promotes tumour growth [J]. Nature,2010,465(7297):492-6.
    [146] YU J, ZHANG L, HWANG P M, et al. PUMA induces the rapid apoptosis of colorectalcancer cells [J]. Mol Cell,2001,7(3):673-82.
    [147] YU J, ZHANG L. No PUMA, no death: implications for p53-dependent apoptosis [J].Cancer Cell,2003,4(4):248-9.
    [148] CHANG J H, OLSON M O. Structure of the gene for rat nucleolar protein B23[J]. J BiolChem,1990,265(30):18227-33.
    [149] LIM M J, WANG X W. Nucleophosmin and human cancer [J]. Cancer Detect Prev,2006,30(6):481-90.
    [150] WANG D, UMEKAWA H, OLSON M O. Expression and subcellular locations of twoforms of nucleolar protein B23in rat tissues and cells [J]. Cell Mol Biol Res,1993,39(1):33-42.
    [151] COLOMBO E, MARTINELLI P, ZAMPONI R, et al. Delocalization and destabilizationof the Arf tumor suppressor by the leukemia-associated NPM mutant [J]. Cancer Res,2006,66(6):3044-50.
    [152] HINGORANI K, SZEBENI A, OLSON M O. Mapping the functional domains ofnucleolar protein B23[J]. J Biol Chem,2000,275(32):24451-7.
    [153] GRISENDI S, MECUCCI C, FALINI B, et al. Nucleophosmin and cancer [J]. Nat RevCancer,2006,6(7):493-505.
    [154] HERRERA J E, CORREIA J J, JONES A E, et al. Sedimentation analyses of the salt-anddivalent metal ion-induced oligomerization of nucleolar protein B23[J]. Biochemistry,1996,35(8):2668-73.
    [155] OKUWAKI M, MATSUMOTO K, TSUJIMOTO M, et al. Function ofnucleophosmin/B23, a nucleolar acidic protein, as a histone chaperone [J]. FEBS Lett,2001,506(3):272-6.
    [156] SZEBENI A, HINGORANI K, NEGI S, et al. Role of protein kinase CK2phosphorylation in the molecular chaperone activity of nucleolar protein b23[J]. J BiolChem,2003,278(11):9107-15.
    [157] LEVINE A J. p53, the cellular gatekeeper for growth and division [J]. Cell,1997,88(3):323-31.
    [158] KURKI S, PELTONEN K, LATONEN L, et al. Nucleolar protein NPM interacts withHDM2and protects tumor suppressor protein p53from HDM2-mediated degradation [J].Cancer Cell,2004,5(5):465-75.
    [159] WANG X W, ZHAN Q, COURSEN J D, et al. GADD45induction of a G2/M cell cyclecheckpoint [J]. Proc Natl Acad Sci U S A,1999,96(7):3706-11.
    [160] GAO H, JIN S, SONG Y, et al. B23regulates GADD45a nuclear translocation andcontributes to GADD45a-induced cell cycle G2-M arrest [J]. J Biol Chem,2005,280(12):10988-96.
    [161] BERCKMANS B, DE VEYLDER L. Transcriptional control of the cell cycle [J]. CurrOpin Plant Biol,2009,12(5):599-605.
    [162] SURYADINATA R, SADOWSKI M, SARCEVIC B. Control of cell cycle progression byphosphorylation of cyclin-dependent kinase (CDK) substrates [J]. Biosci Rep,2010,30(4):243-55.
    [163] ALEEM E, BERTHET C, KALDIS P. Cdk2as a master of S phase entry: fact or fake?[J].Cell Cycle,2004,3(1):35-7.
    [164] WOO R A, POON R Y. Cyclin-dependent kinases and S phase control in mammaliancells [J]. Cell Cycle,2003,2(4):316-24.
    [165] FEILOTTER H, LINGNER C, ROWLEY R, et al. Regulation of the G2-mitosistransition [J]. Biochem Cell Biol,1992,70(10-11):954-71.
    [166] SHERR C J. G1phase progression: cycling on cue [J]. Cell,1994,79(4):551-5.
    [167] COVERLEY D, LASKEY R A. Regulation of eukaryotic DNA replication [J]. Annu RevBiochem,1994,63(745-76.
    [168] FANG F, NEWPORT J W. Evidence that the G1-S and G2-M transitions are controlledby different cdc2proteins in higher eukaryotes [J]. Cell,1991,66(4):731-42.
    [169] HEICHMAN K A, ROBERTS J M. Rules to replicate by [J]. Cell,1994,79(4):557-62.
    [170] PAGANO M, PEPPERKOK R, VERDE F, et al. Cyclin A is required at two points in thehuman cell cycle [J]. EMBO J,1992,11(3):961-71.
    [171] PETER M, HERSKOWITZ I. Joining the complex: cyclin-dependent kinase inhibitoryproteins and the cell cycle [J]. Cell,1994,79(2):181-4.
    [172] POLYAK K, LEE M H, ERDJUMENT-BROMAGE H, et al. Cloning of p27Kip1, acyclin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenicsignals [J]. Cell,1994,78(1):59-66.
    [173] WAGA S, HANNON G J, BEACH D, et al. The p21inhibitor of cyclin-dependentkinases controls DNA replication by interaction with PCNA [J]. Nature,1994,369(6481):574-8.
    [174] CHEN J, JACKSON P K, KIRSCHNER M W, et al. Separate domains of p21involved inthe inhibition of Cdk kinase and PCNA [J]. Nature,1995,374(6520):386-8.
    [175] FERRANDIZ N, CARABALLO J M, GARCIA-GUTIERREZ L, et al. p21as atranscriptional co-repressor of S-phase and mitotic control genes [J]. PLoS One,2012,7(5): e37759.
    [176] GENG Y, YU Q, SICINSKA E, et al. Cyclin E ablation in the mouse [J]. Cell,2003,114(4):431-43.
    [177] RONINSON I B. Oncogenic functions of tumour suppressor p21(Waf1/Cip1/Sdi1):association with cell senescence and tumour-promoting activities of stromal fibroblasts[J]. Cancer Lett,2002,179(1):1-14.
    [178] LI Y, DOWBENKO D, LASKY L A. AKT/PKB phosphorylation of p21Cip/WAF1enhances protein stability of p21Cip/WAF1and promotes cell survival [J]. J Biol Chem,2002,277(13):11352-61.
    [179] ZHOU B P, LIAO Y, XIA W, et al. Cytoplasmic localization of p21Cip1/WAF1byAkt-induced phosphorylation in HER-2/neu-overexpressing cells [J]. Nat Cell Biol,2001,3(3):245-52.
    [180] RAHMANI M, GRANT S. UCN-01(7-hydroxystauorsporine) blocks PMA-inducedmaturation and reciprocally promotes apoptosis in human myelomonocytic leukemiacells (U937)[J]. Cell Cycle,2002,1(4):273-81.
    [181] SUZUKI A, TSUTOMI Y, YAMAMOTO N, et al. Mitochondrial regulation of cell death:mitochondria are essential for procaspase3-p21complex formation to resistFas-mediated cell death [J]. Mol Cell Biol,1999,19(5):3842-7.
    [182] SUZUKI A, KAWANO H, HAYASHIDA M, et al. Procaspase3/p21complex formationto resist fas-mediated cell death is initiated as a result of the phosphorylation of p21byprotein kinase A [J]. Cell Death Differ,2000,7(8):721-8.
    [183] HAWKINS D S, DEMERS G W, GALLOWAY D A. Inactivation of p53enhancessensitivity to multiple chemotherapeutic agents [J]. Cancer Res,1996,56(4):892-8.
    [184] LASSUS P, FERLIN M, PIETTE J, et al. Anti-apoptotic activity of low levels ofwild-type p53[J]. EMBO J,1996,15(17):4566-73.
    [185] EL-DEIRY W S, TOKINO T, VELCULESCU V E, et al. WAF1, a potential mediator ofp53tumor suppression [J]. Cell,1993,75(4):817-25.
    [186] DENG C, ZHANG P, HARPER J W, et al. Mice lacking p21CIP1/WAF1undergo normaldevelopment, but are defective in G1checkpoint control [J]. Cell,1995,82(4):675-84.
    [187] WALDMAN T, KINZLER K W, VOGELSTEIN B. p21is necessary for thep53-mediated G1arrest in human cancer cells [J]. Cancer Res,1995,55(22):5187-90.
    [188] BROWN J P, WEI W, SEDIVY J M. Bypass of senescence after disruption ofp21CIP1/WAF1gene in normal diploid human fibroblasts [J]. Science,1997,277(5327):831-4.
    [189] LU X, LANE D P. Differential induction of transcriptionally active p53following UV orionizing radiation: defects in chromosome instability syndromes?[J]. Cell,1993,75(4):765-78.
    [190] WEI S, XIONG M, ZHAN D Q, et al. Ku80functions as a tumor suppressor inhepatocellular carcinoma by inducing S-phase arrest through a p53-dependent pathway[J]. Carcinogenesis,2012,33(3):538-47.
    [191] GOTTLIEB T M, OREN M. p53and apoptosis [J]. Semin Cancer Biol,1998,8(5):359-68.
    [192] KONDO S, BARNA B P, KONDO Y, et al. WAF1/CIP1increases the susceptibility ofp53non-functional malignant glioma cells to cisplatin-induced apoptosis [J]. Oncogene,1996,13(6):1279-85.
    [193] LINCET H, POULAIN L, REMY J S, et al. The p21(cip1/waf1) cyclin-dependent kinaseinhibitor enhances the cytotoxic effect of cisplatin in human ovarian carcinoma cells [J].Cancer Lett,2000,161(1):17-26.
    [194] HSU S L, CHEN M C, CHOU Y H, et al. Induction of p21(CIP1/Waf1) and activation ofp34(cdc2) involved in retinoic acid-induced apoptosis in human hepatoma Hep3B cells[J]. Exp Cell Res,1999,248(1):87-96.
    [195] KANG K H, KIM W H, CHOI K H. p21promotes ceramide-induced apoptosis andantagonizes the antideath effect of Bcl-2in human hepatocarcinoma cells [J]. Exp CellRes,1999,253(2):403-12.
    [196] REINKE V, LOZANO G. The p53targets mdm2and Fas are not required as mediators ofapoptosis in vivo [J]. Oncogene,1997,15(13):1527-34.
    [197] OWEN-SCHAUB L B, ZHANG W, CUSACK J C, et al. Wild-type human p53and atemperature-sensitive mutant induce Fas/APO-1expression [J]. Mol Cell Biol,1995,15(6):3032-40.
    [198] HINGORANI R, BI B, DAO T, et al. CD95/Fas signaling in T lymphocytes induces thecell cycle control protein p21cip-1/WAF-1, which promotes apoptosis [J]. J Immunol,2000,164(8):4032-6.
    [199] GARTEL A L, TYNER A L. The role of the cyclin-dependent kinase inhibitor p21inapoptosis [J]. Mol Cancer Ther,2002,1(8):639-49.
    [200] KANEUCHI M, YAMASHITA T, SHINDOH M, et al. Induction of apoptosis by thep53-273L (Arg--> Leu) mutant in HSC3cells without transactivation ofp21Waf1/Cip1/Sdi1and bax [J]. Mol Carcinog,1999,26(1):44-52.
    [201] OKAICHI K, WANG L H, SASAKI J, et al. A point mutation of human p53, which wasnot detected as a mutation by a yeast functional assay, led to apoptosis but notp21Waf1/Cip1/Sdi1expression in response to ionizing radiation in a humanosteosarcoma cell line, Saos-2[J]. Int J Radiat Oncol Biol Phys,1999,45(4):975-80.
    [202] KOKONTIS J M, WAGNER A J, O'LEARY M, et al. A transcriptional activationfunction of p53is dispensable for and inhibitory of its apoptotic function [J]. Oncogene,2001,20(6):659-68.
    [203] RAJ K, OGSTON P, BEARD P. Virus-mediated killing of cells that lack p53activity [J].Nature,2001,412(6850):914-7.
    [204] VOGELSTEIN B, KINZLER K W. Achilles' heel of cancer?[J]. Nature,2001,412(6850):865-6.
    [205] ADACHI S, ITO H, TAMAMORI-ADACHI M, et al. Cyclin A/cdk2activation isinvolved in hypoxia-induced apoptosis in cardiomyocytes [J]. Circ Res,2001,88(4):408-14.
    [206] CHAI F, EVDOKIOU A, YOUNG G P, et al. Involvement of p21(Waf1/Cip1) and itscleavage by DEVD-caspase during apoptosis of colorectal cancer cells induced bybutyrate [J]. Carcinogenesis,2000,21(1):7-14.
    [207] HARVEY K J, LUKOVIC D, UCKER D S. Caspase-dependent Cdk activity is arequisite effector of apoptotic death events [J]. J Cell Biol,2000,148(1):59-72.
    [208] LIEBERMANN D A, HOFFMAN B, VESELY D. p53induced growth arrest versusapoptosis and its modulation by survival cytokines [J]. Cell Cycle,2007,6(2):166-70.
    [209] YIN C, KNUDSON C M, KORSMEYER S J, et al. Bax suppresses tumorigenesis andstimulates apoptosis in vivo [J]. Nature,1997,385(6617):637-40.
    [210] MCCURRACH M E, CONNOR T M, KNUDSON C M, et al. bax-deficiency promotesdrug resistance and oncogenic transformation by attenuating p53-dependent apoptosis [J].Proc Natl Acad Sci U S A,1997,94(6):2345-9.
    [211] ADAMS J M. Ways of dying: multiple pathways to apoptosis [J]. Genes Dev,2003,17(20):2481-95.
    [212] VOUSDEN K H. p53: death star [J]. Cell,2000,103(5):691-4.
    [213] FUJIWARA T, KATAOKA M, KAWAMATA O, et al.[A phase I trial of adenoviral p53gene therapy for non-small cell lung cancer][J]. Nihon Geka Gakkai Zasshi,1999,100(11):749-55.
    [214] WANG Z, SUN Y. Targeting p53for Novel Anticancer Therapy [J]. Transl Oncol,2010,3(1):1-12.
    [215] HAINAUT P, HOLLSTEIN M. p53and human cancer: the first ten thousand mutations[J]. Adv Cancer Res,2000,77(81-137.
    [216] VOGELSTEIN B, LANE D, LEVINE A J. Surfing the p53network [J]. Nature,2000,408(6810):307-10.
    [217] BROOKS C L, GU W. Ubiquitination, phosphorylation and acetylation: the molecularbasis for p53regulation [J]. Curr Opin Cell Biol,2003,15(2):164-71.
    [218] LAPTENKO O, PRIVES C. Transcriptional regulation by p53: one protein, manypossibilities [J]. Cell Death Differ,2006,13(6):951-61.
    [219] DONEHOWER L A, HARVEY M, SLAGLE B L, et al. Mice deficient for p53aredevelopmentally normal but susceptible to spontaneous tumours [J]. Nature,1992,356(6366):215-21.
    [220] REICH N C, LEVINE A J. Growth regulation of a cellular tumour antigen, p53, innontransformed cells [J]. Nature,1984,308(5955):199-201.
    [221] GINSBERG D, OREN M, YANIV M, et al. Protein-binding elements in the promoterregion of the mouse p53gene [J]. Oncogene,1990,5(9):1285-90.
    [222] REISMAN D, ELKIND N B, ROY B, et al. c-Myc trans-activates the p53promoterthrough a required downstream CACGTG motif [J]. Cell Growth Differ,1993,4(2):57-65.
    [223] FU L, MINDEN M D, BENCHIMOL S. Translational regulation of human p53geneexpression [J]. EMBO J,1996,15(16):4392-401.
    [224] OREN M. Regulation of the p53tumor suppressor protein [J]. J Biol Chem,1999,274(51):36031-4.
    [225] KASTAN M B, ONYEKWERE O, SIDRANSKY D, et al. Participation of p53protein inthe cellular response to DNA damage [J]. Cancer Res,1991,51(23Pt1):6304-11.
    [226] MOSNER J, MUMMENBRAUER T, BAUER C, et al. Negative feedback regulation ofwild-type p53biosynthesis [J]. EMBO J,1995,14(18):4442-9.
    [227] FONTOURA B M, ATIENZA C A, SOROKINA E A, et al. Cytoplasmic p53polypeptideis associated with ribosomes [J]. Mol Cell Biol,1997,17(6):3146-54.
    [228] KNIPPSCHILD U, OREN M, DEPPERT W. Abrogation of wild-type p53mediatedgrowth-inhibition by nuclear exclusion [J]. Oncogene,1996,12(8):1755-65.
    [229] MOLL U M, OSTERMEYER A G, HALADAY R, et al. Cytoplasmic sequestration ofwild-type p53protein impairs the G1checkpoint after DNA damage [J]. Mol Cell Biol,1996,16(3):1126-37.
    [230] RYAN J J, PROCHOWNIK E, GOTTLIEB C A, et al. c-myc and bcl-2modulate p53function by altering p53subcellular trafficking during the cell cycle [J]. Proc Natl AcadSci U S A,1994,91(13):5878-82.
    [231] PRIVES C, HALL P A. The p53pathway [J]. J Pathol,1999,187(1):112-26.
    [232] LYNCH C J, MILNER J. Loss of one p53allele results in four-fold reduction of p53mRNA and protein: a basis for p53haplo-insufficiency [J]. Oncogene,2006,25(24):3463-70.
    [233] KRUSE J P, GU W. SnapShot: p53posttranslational modifications [J]. Cell,2008,133(5):930-30e1.
    [234] BROOKS C L, GU W. p53ubiquitination: Mdm2and beyond [J]. Mol Cell,2006,21(3):307-15.
    [235] MICHAEL D, OREN M. The p53-Mdm2module and the ubiquitin system [J]. SeminCancer Biol,2003,13(1):49-58.
    [236] NEUTZNER M, NEUTZNER A. Enzymes of ubiquitination and deubiquitination [J].Essays Biochem,2012,52:37-50.
    [237] HONDA R, TANAKA H, YASUDA H. Oncoprotein MDM2is a ubiquitin ligase E3fortumor suppressor p53[J]. FEBS Lett,1997,420(1):25-7.
    [238] CHEN J, MARECHAL V, LEVINE A J. Mapping of the p53and mdm-2interactiondomains [J]. Mol Cell Biol,1993,13(7):4107-14.
    [239] JONES S N, ROE A E, DONEHOWER L A, et al. Rescue of embryonic lethality inMdm2-deficient mice by absence of p53[J]. Nature,1995,378(6553):206-8.
    [240] MONTES DE OCA LUNA R, WAGNER D S, LOZANO G. Rescue of early embryoniclethality in mdm2-deficient mice by deletion of p53[J]. Nature,1995,378(6553):203-6.
    [241] RINGSHAUSEN I, O'SHEA C C, FINCH A J, et al. Mdm2is critically and continuouslyrequired to suppress lethal p53activity in vivo [J]. Cancer Cell,2006,10(6):501-14.
    [242] SHERR C J. Divorcing ARF and p53: an unsettled case [J]. Nat Rev Cancer,2006,6(9):663-73.
    [243] KAMIJO T, WEBER J D, ZAMBETTI G, et al. Functional and physical interactions ofthe ARF tumor suppressor with p53and Mdm2[J]. Proc Natl Acad Sci U S A,1998,95(14):8292-7.
    [244] POMERANTZ J, SCHREIBER-AGUS N, LIEGEOIS N J, et al. The Ink4a tumorsuppressor gene product, p19Arf, interacts with MDM2and neutralizes MDM2'sinhibition of p53[J]. Cell,1998,92(6):713-23.
    [245] ZHANG Y, XIONG Y, YARBROUGH W G. ARF promotes MDM2degradation andstabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53tumorsuppression pathways [J]. Cell,1998,92(6):725-34.
    [246] BOTHNER B, LEWIS W S, DIGIAMMARINO E L, et al. Defining the molecular basisof Arf and Hdm2interactions [J]. J Mol Biol,2001,314(2):263-77.
    [247] KUO M L, DEN BESTEN W, BERTWISTLE D, et al. N-terminal polyubiquitination anddegradation of the Arf tumor suppressor [J]. Genes Dev,2004,18(15):1862-74.
    [248] WEBER J D, TAYLOR L J, ROUSSEL M F, et al. Nucleolar Arf sequesters Mdm2andactivates p53[J]. Nat Cell Biol,1999,1(1):20-6.
    [249] LEE C, SMITH B A, BANDYOPADHYAY K, et al. DNA damage disrupts thep14ARF-B23(nucleophosmin) interaction and triggers a transient subnuclearredistribution of p14ARF [J]. Cancer Res,2005,65(21):9834-42.
    [250] KORGAONKAR C, HAGEN J, TOMPKINS V, et al. Nucleophosmin (B23) targets ARFto nucleoli and inhibits its function [J]. Mol Cell Biol,2005,25(4):1258-71.
    [251] LLANOS S, CLARK P A, ROWE J, et al. Stabilization of p53by p14ARF withoutrelocation of MDM2to the nucleolus [J]. Nat Cell Biol,2001,3(5):445-52.
    [252] HONDA R, YASUDA H. Association of p19(ARF) with Mdm2inhibits ubiquitin ligaseactivity of Mdm2for tumor suppressor p53[J]. EMBO J,1999,18(1):22-7.
    [253] COLOMBO E, BONETTI P, LAZZERINI DENCHI E, et al. Nucleophosmin is requiredfor DNA integrity and p19Arf protein stability [J]. Mol Cell Biol,2005,25(20):8874-86.
    [254] RUBBI C P, MILNER J. Disruption of the nucleolus mediates stabilization of p53inresponse to DNA damage and other stresses [J]. EMBO J,2003,22(22):6068-77.
    [255] BORER R A, LEHNER C F, EPPENBERGER H M, et al. Major nucleolar proteinsshuttle between nucleus and cytoplasm [J]. Cell,1989,56(3):379-90.
    [256] YUN J P, CHEW E C, LIEW C T, et al. Nucleophosmin/B23is a proliferate shuttleprotein associated with nuclear matrix [J]. J Cell Biochem,2003,90(6):1140-8.
    [257] SZEBENI A, OLSON M O. Nucleolar protein B23has molecular chaperone activities [J].Protein Sci,1999,8(4):905-12.
    [258] MAIGUEL D A, JONES L, CHAKRAVARTY D, et al. Nucleophosmin sets a thresholdfor p53response to UV radiation [J]. Mol Cell Biol,2004,24(9):3703-11.
    [259] XIAO J, ZHANG Z, CHEN G G, et al. Nucleophosmin/B23interacts withp21WAF1/CIP1and contributes to its stability [J]. Cell Cycle,2009,8(6):889-95.
    [260] KERR L E, BIRSE-ARCHBOLD J L, SHORT D M, et al. Nucleophosmin is a novel Baxchaperone that regulates apoptotic cell death [J]. Oncogene,2007,26(18):2554-62.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700