薄膜磁性与磁力显微镜针尖场的微磁学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁力显微镜(MFM)的发展与磁记录工业的发展相互依赖,相互促进。MFM是磁记录介质和磁头的常规测试工具。MFM探针的磁性覆盖层多为CoCr基磁性材料,目前高分辨的探针也以FePt材料为磁性覆盖层,这两种材料分别是当前硬盘中的磁薄膜介质和下一代硬盘介质的重要备选材料。随着磁记录密度的急剧增长,对磁畴微细磁结构进行高分辨的定量表征,是当前MFM观测技术面临的最大难题。MFM图像的定量解释及探测分辨率的提高,都依赖于对MFM探针磁性的理解和改善,而实验方法难于对探针尖端磁性材料进行结构和磁性测量,并且常用的磁偶极子针尖模型中没有给出有效偶极子的大小和位置,难于对MFM图像进行定量分析。据此,本文以MFM针尖为研究对象,推导针尖有效偶极子的位置,并结合微磁学方法确定有效偶极矩的大小;建立精确的针尖模型,对针尖形状、覆盖层的磁性和微结构与图像分辨的关系进行系统的研究,解释当前实验制备的针尖具有高分辨特性的物理原因,并对高分辨MFM针尖的设计提供指导。
     本文首先对磁记录介质材料L10-FePt及实际的CoCrPt基硬盘的内禀磁性进行研究,为针尖模型和所观测样品模型的建立奠定基础。磁记录薄膜的模型中包括晶粒尺寸、晶粒间耦合及晶格错配等因素。L10-FePt薄膜的磁滞回线与实验数据拟合的很好,并对其翻转机制及商用可行性进行了探讨。在CoCrPt基薄膜中,引入了非晶软磁层(a-SUL),建立了实际的硬盘模型,研究发现a-SUL能够降低磁记录层的矫顽力(Hc),有利于信息的写入;利用转矩曲线法测量硬盘磁记录层磁晶各向异性常数(K1)时,a-SUL的影响很大,需要剥离a-SUL进行测量。
     基于微磁学建立了准确的金字塔型针尖模型,其中,不规则的微磁学单元中涉及到的三角形退磁矩的解析解是本课题组之前的工作。根据推导的有效偶极子的位置公式,结合微磁学方法计算的针尖场和有效偶极矩的大小均与实验吻合。在此基础上,建立了含有覆盖层薄膜晶粒结构的金字塔型针尖模型,对针尖覆盖层材料的磁性及微结构进行了系统的讨论,研究发现垂直各向异性(PMA)的针尖能够在低扫描高度(2~8nm)下很好地表征线密度为1600kfci的颗粒薄膜介质的表面磁畴结构;而对于面密度为2.5TB/in~2的比特图形介质,面内各向异性(IMA)的针尖能够在低扫描高度(2nm)下更加准确地读出其记录信息。
Magnetic force microscope (MFM) has been widely used to characterize thedomain structures of the hard disk and read/write head in magnetic recording industrysince it was invented. Nowadays, the coating materials of high-resolution MFM tipinclude cobalt-based alloy and iron-platinum alloy, which are the recording layer usedas the current perpendicular recording media and as a candidate for next generationmagnetic recording media, respectively. As the rapid growth of the areal density, it isurgent to develop higher resolution MFM tips to image and quantitatively explain thenano-scaled domain structures of magnetic materials in the magnetic recording system.However, it is difficult to characterize the microstructure and magnetic properties oftip-coating by experiments. Moreover, the effective magnetic dipole and its exactposition are not well discussed in thepoint probe model of the tip. In this thesis, theposition of the effective dipole in a MFM tip is determined by the multipole expansiontheory in classical electromagnetism. The magnetic moment distribution in a MFM tipcan be calculated by micromagnetic simulation. An accurate3-D micromagnetic tipmodel is set up, and the relationshipsamong the tip shape, magnetic properties andmicrostructure of tip-coating and the MFM image resolution have been systematicallystudied. The result obtained is in good agreement with experiments and explains furtherfor the improved resolution in the recent experimental reports. The understanding fromthis study throws light on designing MFM tips for high resolution.
     Intrinsic magnetic properties of theL10-FePt thin film media and the CoCrPt-basedperpendicular media with soft magnetic underlayer (SUL) are studied. This study is thefoundation for accurately setting up the MFM tip model and the sample model. Grainsize, inter-grain exchange coupling and lattice mismatch between different layers areincluded in the model. The simulated out-of-plane loop of L10-FePt thin film matchesthe experimental loop very well. The mechanism responsible for magnetizationreversalandpotential application of the thin film are studied and discussed. Amicromagnetic model of CoCrPt-based perpendicular disk media is set up, whichincludes a thick amorphous soft under layer (a-SUL). The a-SUL will decrease thecoercivity (Hc) of the recording layer (RL), which is beneficial for the writing process.However, due to the large saturation magnetization (Ms) and its large volume, a-SUL affects much on the measurement of crystalline anisotropy constant (K1) of RL bymeasuring torque curves of the whole disk media, which should be etched away beforemeasuring.
     An accurate pyramid tip model is set up, which includes polyhedron cells in the tipsurfaces and edges. The analytical solution of the demagnetizing matrix of a trianglewas obtained earlier by our group. Calculated tip stray field and the effective dipole arein good agreement with experiments. Furthermore, a micromagnetic model of pyramidtip coated by hard magnetic thin film is set up with the grain structure included in thethin film;and magnetic properties and microstructure of tip-coating arestudied. The tipwith perpendicular magnetic anisotropy (PMA tip) can measure the micromagneticstructures of granular thin film medium with a linear density of1600kfci accurately atlow scan heights of2nm to8nm, and tip with in-plane magnetic anisotropy (IMA tip) isa good choice for measuring the domain structure of bit patterned media with an areadensity of2.5TB/in~2at a low scan height of2nm.
引文
[1] Martin Y, Wickramasinghe H K. Magnetic Imaging by "Force Microscopy" with1000Resolution. Applied Physics Letters,1987,50(20):1455-1457.
    [2] Sueoka K, Wago K, Sai F. MFM and its application to magnetic recording: for DC andhigh-frequency characterization. IEEE Translation Journal on Magnetics in Japan,1993,8(4):236-244.
    [3] Porthun S, Abelmann L, Lodder C. Magnetic force microscopy of thin film media for highdensity magnetic recording. Journal of Magnetism and Magnetic Materials,1998,182(1-2):238-273.
    [4] Koblischka M R, Hewener B, Hartmann U, et al. Magnetic force microscopy applied inmagnetic data storage technology. Applied Physics A-Materials Science&Processing,2003,76(6):879-884.
    [5] Koblischka M R, Pfeifer R, Cazacu A, et al. HF-MFM imaging of stray fields fromperpendicular write heads. International Conference on Magnetism (ICM2009),2010,200:1-4.
    [6] Koblischka M R, Wei J D, Sulzbach T, et al. High-frequency MFM characterization ofmagnetic recording writer poles. Applied Physics A-Materials Science&Processing,2009,94(2):235-240.
    [7] Arnoldussen T C. Thin-Film Recording Media. Proceedings of the IEEE,1986,74(11):1526-1539.
    [8] Bertram H N, Williams M. SNR and density limit estimates: A comparison of longitudinaland perpendicular recording. IEEE Transactions on Magnetics,2000,36(1):4-9.
    [9] Hee C H, Wang J P. Effect of competing energies on the transition noise of orientedmagnetic media. Applied Physics Letters,2002,81(11):2038-2040.
    [10] Choe G, Zhou J N, Demczyk B, et al. Highly in-plane oriented CoCrPtB longitudinal mediafor130-Gb/in2recording. IEEE Transactions on Magnetics,2003,39(2):633-638.
    [11] Piramanayagam S N, Hee C H, Wang J P. Role of thermal energy on the magnetic propertiesof laminated antiferromagnetically coupled recording media. Journal of Applied Physics,2001,90(7):3442-3449.
    [12] Schabes M E, Fullerton E E, Margulies D T. Theory of antiferromagnetically coupledmagnetic recording media. IEEE Transactions on Magnetics,2001,37(4):1432-1434.
    [13] Acharya B R, Inomata A, Abarra E N, et al. Synthetic ferrimagnetic media for over100Gb/in2longitudinal magnetic recording. Journal of Magnetism and Magnetic Materials,2003,260(1-2):261-272.
    [14] Piramanayagam S N. Perpendicular recording media for hard disk drives. Journal of AppliedPhysics,2007,102(1):011301.
    [15] Iwasaki S. Development of perpendicular magnetic recording conference. Journal ofMagnetism and Magnetic Materials,2005,287:1-8.
    [16] Iwasaki S, Nakamura Y. Analysis for Magnetization Mode for High-Density MagneticRecording. IEEE Transactions on Magnetics,1977,13(5):1272-1277.
    [17] Iwasaki S, Ouchi K. Co-Cr Recording Films with Perpendicular Magnetic-Anisotropy. IEEETransactions on Magnetics,1978,14(5):849-851.
    [18] Honda N, Ariake J, Ouchi K, et al. High Coercivity in Co-Cr Films for PerpendicularRecording Prepared by Low-Temperature Sputter-Deposition. IEEE Transactions onMagnetics,1994,30(6):4023-4025.
    [19] Hirayama Y, Futamoto M, Kimoto K, et al. Compositional microstructures of CoCr-alloyperpendicular magnetic recording media. IEEE Transactions on Magnetics,1996,32(5):3807-3809.
    [20] Hirayama Y, Futamoto M, Ito K, et al. Development of high resolution and low noisesingle-layered perpendicular recording media for high density recording. IEEE Transactionson Magnetics,1997,33(1):996-1001.
    [21] Honda N, Ariake J, Ouchi K, et al. Low noise Co-Cr-Nb perpendicular recording media withhigh squareness. IEEE Transactions on Magnetics,1998,34(4):1651-1653.
    [22] Hirayama Y, Honda Y, Takeuchi T, et al. Recording single-layer perpendicularcharacteristics of media using ring-shaped heads. IEEE Transactions on Magnetics,1999,35(5):2766-2768.
    [23] Ariake J, Honda N, Ouchi K, et al. Preparation of double-layered perpendicular media forfine magnetic structure. IEEE Transactions on Magnetics,2000,36(5):2411-2413.
    [24] Bertero G A, Wachenschwanz D, Malhotra S, et al. Optimization of granular double-layerperpendicular media. IEEE Transactions on Magnetics,2002,38(4):1627-1631.
    [25] Hikosaka T, Komai T, Tanaka Y. Oxygen Effect on the Microstructure andMagnetic-Properties of Binary Copt Thin-Films for Perpendicular Recording. IEEETransactions on Magnetics,1994,30(6):4026-4028.
    [26] Morisako A, Matsumoto M, Naoe M. Sputtered hexagonal Ba-ferrite films for high-densitymagnetic recording media. Journal of Applied Physics,1996,79(8):4881-4883.
    [27] Oikawa S, Takeo A, Hikosaka T, et al. High performance CoPtCrO single layeredperpendicular media with no recording demagnetization. IEEE Transactions on Magnetics,2000,36(5):2393-2395.
    [28] Zheng M, Choe G, Chekanov A, et al. SNR improvement of granular perpendicularrecording media. IEEE Transactions on Magnetics,2003,39(4):1919-1924.
    [29] Piramanayagam S N, Shi J Z, Zhao H B, et al. Stacked CoCrPt: SiO2layers forperpendicular recording media. IEEE Transactions on Magnetics,2005,41(10):3190-3192.
    [30] Iwasaki S, Takemura K. Analysis for Circular Mode of Magnetization in Short WavelengthRecording. IEEE Transactions on Magnetics,1975,11(5):1173-1175.
    [31] Litvinov D, Khizroev S. Perpendicular magnetic recording: Playback. Journal of AppliedPhysics,2005,97(7).
    [32] Iwasaki S. Past and present of perpendicular magnetic recording. Journal of Magnetism andMagnetic Materials,2008,320(22):2845-2849.
    [33] Weller D, Moser A, Folks L, et al. High Kumaterials approach to100Gbits/in2. IEEETransactions on Magnetics,2000,36(1):10-15.
    [34] Suzuki T, Ouchi K. Sputter-deposited (Fe-Pt)-MgO composite films for perpendicularrecording media. IEEE Transactions on Magnetics,2001,37(4):1283-1285.
    [35] Ito H, Shima T, Takanashi K, et al. Control of the size for octahedral FePt nanoparticles andtheir magnetic properties. IEEE Transactions on Magnetics,2005,41(10):3373-3375.
    [36] Rottmayer R E, Batra S, Buechel D, et al. Heat-assisted magnetic recording. IEEETransactions on Magnetics,2006,42(10):2417-2421.
    [37] Kryder M H, Gage E C, Mcdaniel T W, et al. Heat Assisted Magnetic Recording.Proceedings of the IEEE,2008,96(11):1810-1835.
    [38] Challener W A, Peng C B, Itagi A V, et al. Heat-assisted magnetic recording by a near-fieldtransducer with efficient optical energy transfer. Nature Photonics,2009,3(4):220-224.
    [39] White R L, New R M H, Pease R F W. Patterned media: A viable route to50Gbit/in2and upfor magnetic recording? IEEE Transactions on Magnetics,1997,33(1):990-995.
    [40] Rettner C T, Anders S, Thomson T, et al. Magnetic characterization and recording propertiesof patterned Co70Cr18Pt12perpendicular media. IEEE Transactions on Magnetics,2002,38(4):1725-1730.
    [41] Wood R. Future hard disk drive systems. Journal of Magnetism and Magnetic Materials,2009,321(6):555-561.
    [42] Wang H, Rahman M T, Zhao H B, et al. Fabrication of FePt type exchange coupledcomposite bit patterned media by block copolymer lithography. Journal of Applied Physics,2011,109(7).
    [43] Shiroishi Y, Fukuda K, Tagawa I, et al. Future Options for HDD Storage. IEEE Transactionson Magnetics,2009,45(10):3816-3822.
    [44] Kryder M H, Kim C S. After Hard Drives-What Comes Next? IEEE Transactions onMagnetics,2009,45(10):3406-3413.
    [45] Binnig G, Rohrer H, Gerber C, et al. Tunneling through a Controllable Vacuum Gap.Applied Physics Letters,1982,40(2):178-180.
    [46] http://www.nobelprize.org/nobel_prizes/physics/laureates/1986/.
    [47] Binnig G, Quate C F, Gerber C. Atomic Force Microscope. Physical Review Letters,1986,56(9):930-933.
    [48]韩宝善.磁力显微镜的发展和应用.物理,1997,(10):43-50.
    [49]韩宝善.磁力显微镜的发展历史、原理和应用.理化检验(物理分册),1998,(4):24-27.
    [50] Memmert U, Leinenbach P, Losch J, et al. Ultrahigh vacuum magnetic force microscopy:domain imaging on in situ grown Fe(100) thin films. Journal of Magnetism and MagneticMaterials,1998,190(1-2):124-129.
    [51] Leinenbach P, Memmert U, Schelten J, et al. Fabrication and characterization of advancedprobes for magnetic force microscopy. Applied Surface Science,1999,144-145:492-496.
    [52] Koblischka M R, Hartmann U. Recent advances in magnetic force microscopy.Ultramicroscopy,2003,97(1-4):103-112.
    [53] Piramanayagam S N, Ranjbar M, Tan E L, et al. Enhanced resolution in magnetic forcemicroscropy using tips with perpendicular magnetic anisotropy. Journal of Applied Physics,2011,109(7):07E326.
    [54] Hug H J, Stiefel B, van Schendel P J A, et al. A low temperature ultrahigh vaccum scanningforce microscope. Review of Scientific Instruments,1999,70(9):3625-3640.
    [55] Singh A K, Zhang Z G, Yin J H, et al. In situ high temperature magnetic force microscopeanalysis of thermal stability in the granular-type FePt-MgO double-layered perpendicularrecording media. Journal of Applied Physics,2005,97(10):10N512.
    [56] Qian C X, Tong H C, Liu F H, et al. Characterization of high density spin valve recordingheads by novel Magnetic Force Microscope. IEEE Transactions on Magnetics,1999,35(5):2625-2627.
    [57] Proksch R, Neilson P, Austvold S, et al. Measuring the gigahertz response of recording headswith the magnetic force microscope. Applied Physics Letters,1999,74(9):1308-1310.
    [58] Goddenhenrich T, Lemke H, Hartmann U, et al. Magnetic Force Microscopy ofDomain-Wall Stray Fields on Single-Crystal Iron Whiskers. Applied Physics Letters,1990,56(25):2578-2580.
    [59] Koblischka M R, Hartmann U, Sulzbach T. Improving the lateral resolution of the MFMtechnique to the10nm range. Journal of Magnetism and Magnetic Materials,2004,272:2138-2140.
    [60] Moser A, Hug H J, Parashikov I, et al. Observation of Single Vortices Condensed into aVortex-Glass Phase by Magnetic Force Microscopy. Physical Review Letters,1995,74(10):1847-1850.
    [61] Dreyer M, Gomez R D, Mayergoyz I D. Resolution enhancement by applying MFM underUHV conditions. IEEE Transactions on Magnetics,2000,36(5):2975-2977.
    [62] Zhang L W, Israel C, Biswas A, et al. Direct observation of percolation in a manganite thinfilm. Science,2002,298(5594):805-807.
    [63] Goddenhenrich T, Lemke H, Muck M, et al. Probe Calibration in Magnetic ForceMicroscopy. Applied Physics Letters,1990,57(24):2612-2614.
    [64] Hug H J, Stiefel B, van Schendel P J A, et al. Quantitative magnetic force microscopy onperpendicularly magnetized samples. Journal of Applied Physics,1998,83(11):5609-5620.
    [65] Kong L S, Chou S Y. Quantification of magnetic force microscopy using a micronscalecurrent ring. Applied Physics Letters,1997,70(15):2043-2045.
    [66] Saito H, Chen J, Ishio S. Description of magnetic force microscopy by three-dimensional tipGreen's function for sample magnetic charges. Journal of Magnetism and Magnetic Materials,1999,191(1-2):153-161.
    [67] Saito H, Chen J, Ishio S. Principle of magnetic field analysis by MFM signal transformationand its application to magnetic recording media. IEEE Transactions on Magnetics,1999,35(5):3992-3994.
    [68] McVitie S, Ferrier R P, Scott J, et al. Quantitative field measurements from magnetic forcemicroscope tips and comparison with point and extended charge models. Journal of AppliedPhysics,2001,89(7):3656-3661.
    [69] McVitie S, White G S, Scott J, et al. Quantitative imaging of magnetic domain walls in thinfilms using Lorentz and magnetic force microscopies. Journal of Applied Physics,2001,90(10):5220-5227.
    [70] van den Bos A, Heskamp I, Siekman M, et al. The CantiClever: a dedicated probe formagnetic force microscopy. IEEE Transactions on Magnetics,2002,38(5):2441-2443.
    [71] Saito H, Rheem Y W, Ishio S. Simulation of high-resolution MFM tips for high-densitymagnetic recording media with low bit aspect ratio. Journal of Magnetism and MagneticMaterials,2005,287:102-106.
    [72] Chen I C, Chen L H, Gapin A, et al. Iron-platinum-coated carbon nanocone probes on tiplesscantilevers for high resolution magnetic force imaging. Nanotechnology,2008,19(7):1-5.
    [73] Amos N, Lavrenov A, Fernandez R, et al. High-resolution and high-coercivity FePtL10magnetic force microscopy nanoprobes to study next-generation magnetic recording media.Journal of Applied Physics,2009,105(7):07D526.
    [74] Gao L, Yue L P, Yokota T, et al. Focused ion beam milled CoPt magnetic force microscopytips for high resolution domain images. IEEE Transactions on Magnetics,2004,40(4):2194-2196.
    [75] Huang H S, Lin M W, Sun Y C, et al. Improving the spatial resolution of a magnetic forcemicroscope tip via focused ion beam modification and magnetic film coating. ScriptaMaterialia,2007,56(5):365-368.
    [76] Ohtake M, Soneta K, Futamoto M. Influence of magnetic material composition of Fe100-xBxcoated tip on the spatial resolution of magnetic force microscopy. Journal of Applied Physics,2012,111:07E339.
    [77] Kuramochi H, Uzumaki T, Yasutake M, et al. A magnetic force microscope usingCoFe-coated carbon nanotube probes. Nanotechnology,2005,16(1):24-27.
    [78] Amos N, Ikkawi R, Haddon R, et al. Controlling multidomain states to enable sub-10-nmmagnetic force microscopy. Applied Physics Letters,2008,93(20).
    [79] Dai H J, Hafner J H, Rinzler A G, et al. Nanotubes as nanoprobes in scanning probemicroscopy. Nature,1996,384(6605):147-150.
    [80] Koblischka M R, Wei J D, Hartmann U. High-frequency properties of stray fields emanatingfrom hard disk writer poles up to2GHz. Journal of Magnetism and Magnetic Materials,2010,322(9-12):1694-1696.
    [81] Babcock K L, Elings V B, Shi J, et al. Field-dependence of microscopic probes in magneticforce microscopy. Applied Physics Letters,1996,69(5):705-707.
    [82] Proksch R, Runge E, Hansma P K, et al. High-Field Magnetic Force Microscopy. Journal ofApplied Physics,1995,78(5):3303-3307.
    [83] Vellekoop B, Abelmann E, Porthun S, et al. On the determination of the internal magneticstructure by magnetic force microscopy. Journal of Magnetism and Magnetic Materials,1998,190(1-2):148-151.
    [84] Kebe T, Carl A. Calibration of magnetic force microscopy tips by using nanoscalecurrent-carrying parallel wires. Journal of Applied Physics,2004,95(3):775-792.
    [85] Lohau J, Kirsch S, Carl A, et al. Quantitative determination of effective dipole and monopolemoments of magnetic force microscopy tips. Journal of Applied Physics,1999,86(6):3410-3417.
    [86] Heydon G P, Farley A N, Hoon S R, et al. Resonant torque magnetometry: a new in-situtechnique for determining the magnetic properties of thin film MFM tips. IEEE Transactionson Magnetics,1997,33(5):4059-4061.
    [87] Casey S M, Lord D G, Grundy P J, et al. Single layer and multilayer tip coatings in magneticforce microscopy. Journal of Applied Physics,1999,85(8):5166-5168.
    [88] Streblechenko D G, Scheinfein M R, Mankos M, et al. Quantitative magnetometry usingelectron holography: Field profiles near magnetic force microscope tips. IEEE Transactionson Magnetics,1996,32(5):4124-4129.
    [89] Engel-Herbert R, Schaadt D M, Hesjedal T. Analytical and numerical calculations of themagnetic force microscopy response: A comparison. Journal of Applied Physics,2006,99(11).
    [90] Hartmann U. The Point Dipole Approximation in Magnetic Force Microscopy. PhysicsLetters A,1989,137(9):475-478.
    [91] Utke I, Hoffmann P, Berger R, et al. High-resolution magnetic Co supertips grown by afocused electron beam. Applied Physics Letters,2002,80(25):4792-4794.
    [92] Hartmann U. Magnetic force microscopy. Annual Review of Materials Science,1999,29:53-87.
    [93] van Schendel P J A, Hug H J, Stiefel B, et al. A method for the calibration of magnetic forcemicroscopy tips. Journal of Applied Physics,2000,88(1):435-445.
    [94] Vellekoop S J L, Abelmann L, Porthun S, et al. Calculation of playback signals from MFMimages using transfer functions. Journal of Magnetism and Magnetic Materials,1999,193(1-3):474-478.
    [95] Saito H, Yatsuyanagi D, Ishio S, et al. Simulation of high-resolution MFM tip usingexchange-spring magnet. Journal of Magnetism and Magnetic Materials,2007,310(2):E939-E940.
    [96] Li H J, Wang Y, Wang S M, et al. Micromagnetic Analysis of Effective Magnetic DipolePosition in Magnetic Force Microscope Tip. IEEE Transactions on Magnetics,2010,46(7):2570-2578.
    [97] Li H J, Wei D, Piramanayagam S N. Micromagnetic studies on resolution limits of magneticforce microscopy tips with different magnetic anisotropy. Journal of Applied Physics,2012,111:07E309.
    [98] Garcia-Martin J M, Thiaville A, Miltat J, et al. Imaging magnetic vortices by magnetic forcemicroscopy: experiments and modelling. Journal of Physics D-Applied Physics,2004,37(7):965-972.
    [99] Oti J O. Numerical Micromagnetic Techniques and Their Applications to Magnetic ForceMicroscopy Calculations. IEEE Transactions on Magnetics,1993,29(6):2359-2364.
    [100] Tomlinson S L, Farley A N. Micromagnetic model for magnetic force microscopy tips.Journal of Applied Physics,1997,81(8):5029-5031.
    [101] Manago T, Asada H, Uzumaki T, et al. The advantages of the magnetic structure inferromagnetic-film-coated carbon nanotube probes. Nanotechnology,2012,23(3):1-6.
    [102] Hill E W. Modeling Damaged Mfm Tips Using Triangular Charge Sheets. IEEETransactions on Magnetics,1995,31(6):3355-3357.
    [103] Litvinov D, Khizroev S. Orientation-sensitive magnetic force microscopy for future probestorage applications. Applied Physics Letters,2002,81(10):1878-1880.
    [104] Wu Y H, Shen Y T, Liu Z Y, et al. Point-dipole response from a magnetic force microscopytip with a synthetic antiferromagnetic coating. Applied Physics Letters,2003,82(11):1748-1750.
    [105] Fuller B J W. Micromagnetics. New York: Interscience Publishers,1963.
    [106]韦丹.材料的电磁光基础.北京:科学出版社,2009.
    [107] Steiner M, Meier G, Merkt U, et al. Magnetic transitions of permalloy rings in hybrid devices.Physica E-Low-Dimensional Systems&Nanostructures,2004,24(1-2):124-128.
    [108] Garcia J M, Thiaville A, Miltat J, et al. Quantitative interpretation of magnetic forcemicroscopy images from soft patterned elements. Applied Physics Letters,2001,79(5):656-658.
    [109] Schonenberger C, Alvarado S F. Understanding Magnetic Force Microscopy. Zeitschrift FurPhysik B-Condensed Matter,1990,80(3):373-383.
    [110] Folks L, Best M E, Rice P M, et al. Perforated tips for high-resolution in-plane magneticforce microscopy. Applied Physics Letters,2000,76(7):909-911.
    [111] Brown W F, LaBonte A E. Structure and Energy of One‐Dimensional Domain Walls inFerromagnetic Thin Films. Journal of Applied Physics,1965,36:1380-1386.
    [112] Landau L, Lifshits E. On The Theory of The Dispersion of Magnetic Permeability inFerromagnetic Bodies. Phys. Zeitsch. der Sow.,1935,8:153-169.
    [113] Gilbert T L. A phenomenological theory of damping in ferromagnetic materials. IEEETransactions on Magnetics,2004,40(6):3443-3449.
    [114] Mallinson J C. On Damped Gyromagnetic Precession. IEEE Transactions on Magnetics,1987,23(4):2003-2004.
    [115]钟文定.技术磁学(上).北京:科学出版社,2009.
    [116] Rave W, Fabian K, Hubert A. Magnetic states of small cubic particles with uniaxialanisotropy. Journal of Magnetism and Magnetic Materials,1998,190(3):332-348.
    [117] Rave W, Ramstock K, Hubert A. Corners and nucleation in micromagnetics. Journal ofMagnetism and Magnetic Materials,1998,183(3):329-333.
    [118] Wei D, Wang S M, Ding Z J, et al. Micromagnetics of Ferromagnetic Nano-Devices Usingthe Fast Fourier Transform Method. IEEE Transactions on Magnetics,2009,45(8):3035-3045.
    [119] Victora R H. Quantitative Theory for Hysteretic Phenomena in Coni Magnetic Thin-Films.Physical Review Letters,1987,58(17):1788-1791.
    [120] Zhu J G, Bertram H N. Micromagnetic Studies of Thin Metallic-Films. Journal of AppliedPhysics,1988,63(8):3248-3253.
    [121] Fredkin D R, Koehler T R. Numerical Micromagnetics by the Finite-Element Method. IEEETransactions on Magnetics,1987,23(5):3385-3387.
    [122]刘师少.计算方法.北京:科学出版社,2005.
    [123] http://www.ctcms.nist.gov/~rdm/mumag.org.html.
    [124]王素梅.纳米磁性器件的微磁学精确模拟[博士学位论文].北京:清华大学材料科学与工程系,2011.
    [125] http://math.nist.gov/oommf/.
    [126] Choi B C, Pujada B R, Hong Y K, et al. Micromagnetic domain structures and magnetizationswitching mechanism in submicrometer thin-film elements. IEEE Transactions on Magnetics,2005,41(10):3109-3111.
    [127] Schoenmaker J, dos Santos A D, Seabra A C, et al. Local hysteresis loop measurements bymagneto-optical scanning near-field optical microscope. Journal of Applied Physics,2005,98(8):086108.
    [128] Guo L, Liang F, Wang N, et al. Preparation and Characterization of Ring-Shaped CoNanomaterials. Chemistry of Materials,2008,20(16):5163-5168.
    [129] Brown W F, Labonte A E. Structure and Energy of1-Dimensional Domain Walls inFerromagnetic Thin Films. Journal of Applied Physics,1965,36(4):1380-1386.
    [130] Labonte A E, Brown W F.1-Dimensional Zero-Degree Double Bloch Walls in Thin Films.Journal of Applied Physics,1966,37(3):1299-1300.
    [131] Aharoni A.2-Dimensional Model for a Domain Wall. Journal of Applied Physics,1967,38(8):3196-3199.
    [132] Labonte A E.2-Dimensional Bloch-Type Domain Walls in Ferromagnetic Films. Journal ofApplied Physics,1969,40(6):2450-2458.
    [133] Humphrey F B, Redjdal M. Domain walls in nano-thin permalloy films. Physica StatusSolidiA-Applied Research,2004,201(8):1771-1776.
    [134] Yuan S W, Bertram H N. Domain-Wall Dynamic Transitions in Thin-Films. PhysicalReview B,1991,44(22):12395-12405.
    [135] Yuan S W, Bertram H N. Magnetic Thin-Film Domain-Wall Motion under Dynamic Fields.Journal of Applied Physics,1992,72(3):1033-1038.
    [136] Labrune M, Miltat J. Micromagnetics of Strong Stripe Domains in Nico Thin-Films. IEEETransactions on Magnetics,1990,26(5):1521-1523.
    [137] Takahashi M, Shimatsu T. Soft Magnetism of Nanocrystalline Fe-Based Sputtered Filmswith High-Bs. Journal of Magnetism and Magnetic Materials,1991,101(1-3):11-15.
    [138] Senanan K, Victora R H. Effect of medium permeability on the perpendicular recordingprocess. Applied Physics Letters,2002,81(20):3822-3824.
    [139] Beleggia M, Zhu Y, Tandon S, et al. Shape-induced ferromagnetic ordering in a triangulararray of magnetized disks. Applied Physics Letters,2005,87(20):202504.
    [140] Munoz-Sandoval E, Torres-Heredia J J, Lopez-Urias F. Micromagnetic simulations ofhysteresis loops in ferromagnetic Reuleaux's triangles. Journal of Applied Physics,2005,97(10):10E318.
    [141] Zhang J X, Chen L Q. Phase-field microelasticity theory and micromagnetic simulations ofdomain structures in giant magnetostrictive materials. Acta Materialia,2005,53(9):2845-2855.
    [142] Ha N D, Le A T, Phan M H, et al. High resistive Co-Fe-Hf-O magnetic thin films forhigh-frequency applications. Materials Science and Engineering B-Solid State Materials forAdvanced Technology,2007,139(1):37-40.
    [143] Wang X, Deng L J, Xie J L, et al. Observations of ferromagnetic resonance modes onFeCo-based nanocrystalline alloys. Journal of Magnetism and Magnetic Materials,2011,323(5):635-640.
    [144] Victora R H. Micromagnetic Predictions for Magnetization Reversal in Coni Films. Journalof Applied Physics,1987,62(10):4220-4225.
    [145] Smyth J F, Schultz S, Fredkin D R, et al. Hysteresis in Lithographic Arrays of PermalloyParticles-Experiment and Theory. Journal of Applied Physics,1991,69(8):5262-5266.
    [146] Palma J L, Morales-Concha C, Leighton B, et al. Micromagnetic simulation of Feasymmetric nanorings. Journal of Magnetism and Magnetic Materials,2012,324(4):637-641.
    [147] Yang J S, Lee C M, Chang C R. Switching Behavior of Vortex Cores in Bilayer Nanodots byUniform Magnetic Field Pulses. IEEE Transactions on Magnetics,2011,47(3):641-644.
    [148] Knittel A, Franchin M, Fischbacher T, et al. Micromagnetic studies of three-dimensionalpyramidal shell structures. New Journal of Physics,2010,12:1-23.
    [149] Becker R. On the theory of magnetization curve. Zeitschrift Fur Physik,1930,62(3-4):253-269.
    [150] Stoner E C, Wohlfarth E P. A Mechanism of Magnetic Hysteresis in Heterogeneous Alloys.Philosophical Transactions of the Royal Society of London Series A-Mathematical andPhysical Sciences,1948,240(826):599-642.
    [151] Hughes G F. Magnetization Reversal in Cobalt-Phosphorus Films. Journal of AppliedPhysics,1983,54(9):5306-5313.
    [152] Ho P, Evans R F L, Chantrell R W, et al. Micromagnetic modelling of L10-FePt/Ag/L10-FePtpseudo spin valves. Applied Physics Letters,2011,99(16):162503.
    [153] Fruchart O, Nozieres J P, Kevorkian B, et al. High coercivity in ultrathin epitaxialmicrometer-sized particles with in-plane magnetization: Experiment and numericalsimulation. Physical Review B,1998,57(4):2596-2606.
    [154] Feng C, Li H J, Wei D, et al. Micromagnetic analysis of L10-FePt/Au nanocomposite films.Journal of Physics D-Applied Physics,2011,44(24):1-5.
    [155] Dao N, Whittenburg S L, Cowburn R P. Micromagnetics simulation of deep-submicronsupermalloy disks. Journal of Applied Physics,2001,90(10):5235-5237.
    [156] Sun S H, Murray C B, Weller D, et al. Monodisperse FePt nanoparticles and ferromagneticFePt nanocrystal superlattices. Science,2000,287(5460):1989-1992.
    [157] Takahashi Y K, Ohnuma M, Hono K. Effect of Cu on the structure and magnetic propertiesof FePt sputtered film. Journal of Magnetism and Magnetic Materials,2002,246(1-2):259-265.
    [158] Lee Y M, Lee B S, Lee C G, et al. Effect of boron addition on disorder-order transformationof FePt thin films. Journal of Magnetism and Magnetic Materials,2007,310(2): E918-E920.
    [159] Shima T, Moriguchi T, Mitani S, et al. Low-temperature fabrication of L10ordered FePtalloy by alternate monatomic layer deposition. Applied Physics Letters,2002,80(2):288-290.
    [160] Feng C, Li B H, Han G, et al. Low-temperature ordering and enhanced coercivity ofL10-FePt thin film promoted by a Bi underlayer. Applied Physics Letters,2006,88(23):232109.
    [161] Chen S C, Kuo P C, Sun A C, et al. Largely enhanced coercivity of FePt film at lowtemperature by introduction of CrRu underlayer. Journal of Magnetism and MagneticMaterials,2007,310(2): E921-E923.
    [162] Cao J W, Liu Y, Cai J, et al. Control of crystallographic orientation in L10FePt films byusing Cr and CrW underlayers. Journal of Magnetism and Magnetic Materials,2006,306(2):172-175.
    [163] Weisheit M, Schultz L, Fahler S. Temperature dependence of FePt thin film growth onMgO(100). Thin Solid Films,2007,515(7-8):3952-3955.
    [164] Reddy V R, Puranik S, Gupta A, et al. Study of FePt films prepared by reactive sputtering.Vacuum,2007,81(9):1077-1081.
    [165] Konagai T, Kitahara Y, Itoh T, et al. Perpendicular anisotropy of MBE-grown FePt-Aggranular films. Journal of Magnetism and Magnetic Materials,2007,310(2):2662-2664.
    [166] Ravelosona D, Chappert C, Mathet V, et al. Chemical order induced by ion irradiation inFePt (001) films. Applied Physics Letters,2000,76(2):236-238.
    [167] Piao K, Li D, Wei D. The role of short exchange length in the magnetization processes ofL10-ordered FePt perpendicular media. Journal of Magnetism and Magnetic Materials,2006,303: e39-e43.
    [168]潘金生,仝健民,田民波.材料科学基础.北京:清华大学出版社,1998.
    [169] Tanner B K, Hase T P A, Lafford T A, et al. Grazing incidence in-plane X-ray diffraction inthe laboratory. Powder Diffraction,2004,19(1):45-48.
    [170] Nahid M A I, Suzuki T. The possible origin of large magnetic anisotropy of Fe3Pt alloy thinfilms. Journal of Applied Physics,2005,97(10):10K307.
    [171] Li Z H, Cao J W, Wei F L, et al. Micromagnetic analysis of L10ordered FePt perpendicularrecording media prepared by magnetron sputtering. Journal of Applied Physics,2007,102(11):113918.
    [172] Srinivasan K, Roddick E, Mardinly J, et al. Correlation of microstructure, intrinsicmagnetization switching properties, and recording performance in exchange-coupledcomposite media. Journal of Applied Physics,2011,109(7):07B734.
    [173] Srinivasan K, Acharya B R, Bertero G. Thermal effects on the magnetization reversalprocess and its interpretation in perpendicular magnetic recording media. Journal of AppliedPhysics,2010,107(11):113912.
    [174] Oikawa T, Nakamura M, Uwazumi H, et al. Microstructure and magnetic properties ofCoPtCr-SiO2perpendicular recording media. IEEE Transactions on Magnetics,2002,38(5):1976-1978.
    [175] Gao K, Bertram H N. Write field analysis in perpendicular recording using three-dimensionalmicromagnetic simulation. Journal of Applied Physics,2002,91(10):8369-8371.
    [176] Cullity B D, Graham C D. Introduction to Magnetic Materials (second edition). Piscataway:IEEE Press,2009.
    [177] Nemoto H, Araki R, Hosoe Y. Magnetic Anisotropy of perpendicular media: Measurementand intermediate layer effect. IEEE Transactions on Magnetics,2007,43(2):621-626.
    [178] Wei D, Liu B. Track edge noise and signal in isotropic and oriented thin film media withlarge skew angles. IEEE Transactions on Magnetics,1997,33(5):2722-2724.
    [179] Bozorth R M, Tilden E F, Williams A J. Anisotropy and Magnetostriction of Some Ferrites.Physical Review,1955,99(6):1788-1798.
    [180] Johnson K E, Mirzamaani M, Doerner M F. Inplane Anisotropy in Thin-Film Media-Physical Origins of Orientation Ratio. IEEE Transactions on Magnetics,1995,31(6):2721-2727.
    [181] Twisselmann D J, Shine Y J, Ross C A. Correlation of stress and magnetic anisotropy inCoCrPt/Cr films grown on textured substrates. IEEE Transactions on Magnetics,2000,36(5):2324-2326.
    [182] Madabhushi R, Gomez R D, Burke E R, et al. Magnetic biasing and MFM imagereconstruction. IEEE Transactions on Magnetics,1996,32(5):4147-4149.
    [183] Skidmore G D, DanDahlberg E. Improved spatial resolution in magnetic force microscopy.Applied Physics Letters,1997,71(22):3293-3295.
    [184]彭昌盛,宋少先,谷庆宝.扫描探针显微技术理论与应用.北京:化学工业出版社,2007.
    [185] Ise K, Takahashi S, Yamakawa K, et al. New shielded single-pole head with planar structure.IEEE Transactions on Magnetics,2006,42(10):2422-2424.
    [186] Babcock K, Elings V, Dugas M, et al. Optimization of Thin-Film Tips for Magnetic ForceMicroscopy. IEEE Transactions on Magnetics,1994,30(6):4503-4505.
    [187] Vergara J, Eames P, Merton C, et al. Moment determination of magnetic force microscopetips by imaging superparamagnetic films. Applied Physics Letters,2004,84(7):1156-1158.
    [188] Wadas A, Guntherodt H J. The Topography Effect on Magnetic Images in Magnetic ForceMicroscopy. Journal of Applied Physics,1990,68(9):4767-4771.
    [189] Schonenberger C, Alvarado S F, Lambert S E, et al. Separation of Magnetic and TopographicEffects in Force Microscopy. Journal of Applied Physics,1990,67(12):7278-7280.
    [190] Guggisberg M, Bammerlin M, Loppacher C, et al. Separation of interactions by noncontactforce microscopy. Physical Review B,2000,61(16):11151-11155.
    [191] Piramanayagam S N, Pock C K, Lu L, et al. Grain size reduction in CoCrPt: SiO2perpendicular recording media with oxide-based intermediate layers. Applied Physics Letters,2006,89(16):162504.
    [192] Saito H, van den Bos A, Abelmann L, et al. High-resolution MFM: Simulation of tipsharpening. IEEE Transactions on Magnetics,2003,39(5):3447-3449.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700