高分子絮凝剂作用下的拜耳法赤泥沉降行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国一水硬铝石型铝土矿高压溶出后的赤泥沉降性能差,需添加高效絮凝剂以促进赤泥沉降。目前,国内使用的此类絮凝剂大多是进口产品。而且,对赤泥分离用高分子絮凝剂的设计和选型还没有有效的理论指导。本文对拜耳法赤泥在不同絮凝剂作用下的沉降行为进行研究,旨在探索赤泥与絮凝剂的相互作用机理。
     采用酸碱电位滴定研究了赤泥的表面电性。结果表明,聚丙烯酸钠(SPA)的吸附使赤泥表面羟基增多,零电点(PZC)下降;聚丙烯酰胺(PAM)的吸附使赤泥表面羟基减少,PZC升高。絮凝剂添加量增加,赤泥表面羟基的变化量增加。硅矿物(尤其是方钠石)含量越高,赤泥的表面羟基越多,PZC越低。
     通过赤泥沉降实验研究了赤泥沉降效果的影响因素。结果表明,过量的表面负电荷或正电荷使赤泥膨胀而难于下沉;絮凝剂添加量过多或过少都不利于赤泥沉降;SPA对赤泥沉降的促进作用不如PAM,对赤泥矿浆的澄清效果比PAM好;赤泥沉降速度随PAM的水解度增大明显降低;聚丙烯酰胺基甲基三甲基氯化铵(PATAC)对赤泥的沉降效果远不如SPA。
     采用电导/pH滴定和稀溶液粘度法分别测得PAM经NaOH溶液溶解后的水解度和特性粘度。结果表明,随着溶解PAM所用的NaOH浓度增大,PAM的水解度增大,生成的分子内氢键使PAM的特性粘度先增大后减小。热重和红外光谱分析表明,PATAC在高温高碱度溶液中不稳定,分解产物HPATAH中含有的-CH_2-OH和-CONH_2两种官能团形成-CH_2-OH~-CONH_2分子内氢键。
     对高分子絮凝剂与赤泥的相互作用机理作了一些探讨。SPA或PAM通过氢键或Ca~(2+)等阳离子的“架桥”作用与赤泥表面发生吸附,不能有效降低赤泥矿浆的上清液浊度;水杨酸基团与赤泥表面的铁离子形成六元环螯合物,明显提高了赤泥矿浆的澄清度;高分子链上分子内氢键的形成使絮凝剂对赤泥的絮凝性能严重下降。
Red mud generated from Chinese diaspore bauxite has a poor settling performance, so that red mud settlement requires excellent polymeric flocculants. However, most of these excellent polymeric flocculants are imported products. In the view of a lack of theoretical basis for the design and selection of polymeric flocculants used in red mud separation, the settling behaviour of red mud treated by different flocculants was studied in this paper to investigate the interaction mechanism between red mud and flocculants.
     Red mud surface charge properties were investigated using acid/basic potentiometric titration. The results show that the adsorption of sodium polyacrylate (SPA) causes the increase of red mud surface hydroxyl groups and the decrease of the red mud point of zero charge (PZC). However, the adsorption of polyacrylamide (PAM) causes the reverse result. The changed amount of red mud surface hydroxyl groups increases with the dosage increase of flocculants. The more the silica-containing compounds in red mud, especially in the case of sodalite, the more the red mud surface hydroxyl groups and the lower the PZC.
     The factors to affect red mud settlement were studied by red mud settling tests. The results show that excessive negative or positive surface charges result in a failed red mud settlement. Neither excessive nor insufficient flocculants are helpful for red mud settlement. Red mud treated by SPA has a lower settling rate than by PAM, but has a higher supernatant clarity degree. Red mud settling rate decreases obviously with the increase of the PAM hydrolysis degree. Red mud settling results from polyacrylamidomethyltrimethyl ammonium chloride (PATAC) are much worse than those from SPA.
     The hydrolysis degree and intrinsic viscosity of PAM dissolved in NaOH were measured by conductivity/pH titration and Ubbelodhe viscosimetric measurement, respectively. The results indicate that the hydrolysis degree of PAM dissolved in NaOH solution increases with the increase of NaOH concentration and the intrinsic viscosity increases at first and then decreases due to the formation of intramolecular hydrogen bonds. The results from thermogravimetric analysis and infrared spectral analysis show that PATAC is unstable in caustic solution at a higher temperature and its decomposition product HPATAH has two functional groups of -CH_2-OH and -CONH_2 to form a -CH_2-OH~-CONH_2 intramolecular hydrogen bond.
     Some interaction mechanisms between polymeric flocculants and red mud were discussed. SPA and PAM interact with red mud surface by hydrogen bond or Ca~(2+) bridge, which cannot effectively reduce the supernatant turbidity of red mud slurry. And the salicylate group forms a stable six-membered ring complex with Fe~(3+) from red mud surface to greatly improve the supernatant clarity degree. The formation of intramolecular hydrogen bonds in polymer chains results in the flocculants having a poor flocculation performance for red mud.
引文
[1]赵恒勤,金梅,蔡淑霞等.石灰拜耳法赤泥沉降性能的研究.矿产保护与利 用.2002,3:41-43
    
    [2]陈巧英,午新威,李彩贞.拜耳法赤泥沉降分离系统絮凝剂的选型研究.甘 肃冶金.2004,26(1):45-47
    
    [3]江新民.聚丙烯酸钠在赤泥分离中的应用.轻金属.1999,6:17-20
    
    [4]李云中,闫续房.氧化铝生产过程中赤泥快速分离的调控方法分析.江苏冶 金.2001,4:45-47
    
    [5]陈存礼,胡再强,谢定义.赤泥的变形-强度特性与结构性关系的研究.岩土 力学.2004,25(12):1862-1866
    
    [6]王立堂.赤泥利用的有效途径.世界有色金属.1998,8:46-49
    
    [7]姜怡娇,宁平,吴满昌等.氧化铝厂赤泥制备H_2S吸附剂的试验与应用.有色 金属.2003,55(增刊):71-73
    
    [8]张玉敏,刘桂华.赤泥分离中的絮凝剂.轻金属.2002,4:10-14
    
    [9]罗家珂,宋庆福,陈定洲等.赤泥沉降高效絮凝剂的研究.矿冶.2002,11(1): 21-27
    
    [10]芦东,赵福辉,张生.氧化铝生产中拜耳法赤泥分离新型絮凝剂的合成及应 用.世界有色金属.2004,11:51-54
    
    [11]吕子剑,曹文仲.PAS-1絮凝剂的选择和专门处理技术研究.轻金属.1998,3: 18-21
    
    [12]元炯亮,郝存江.赤泥的絮凝沉降.湿法冶金.2002,21(1):18-21
    
    [13] Chvedov D, Ostap S, Le T. Surface properties of red mud particles from potentiometric titration. Colloids Surf. A. 2001, 182(2): 131-141
    
    [14]潘敏.影响拜耳法赤泥分离因素分析.轻金属.2000,11:18-211
    
    [15]孙茜,黄红岗.拜耳法赤泥分离沉降槽跑浑的原因及解决方法.轻金属. 2004,2:9-12
    
    [16]杨金妮,刘晓社,李文化.絮凝剂在氧化铝生产赤泥沉降分离中的应用.轻 金属.2003,4:10-11
    
    [17]秦曾言.氧化铝生产中影响絮凝剂效能发挥因素的实验研究.轻金属.2004, 7:20-22
    
    [18] Candau F, Leong Y S. Inverse microemulsion polymerization. The journal ofphysical chemistry. 1982, 86(13): 2269-2271
    
    [19] Galvin T J, Hughes F A. Flocculating agent. US3397953. 1968
    
    [20] Sibert F J. Process for making alumina. US3681012. 1972
    
    [21] Brownrigg N J. Flocculating red mud suspension. GB2080272. 1982
    
    [22] Fong, Dodd W. Carboxylate containing modified acrylamide polymers.US4680339.1987
    
    [23] Sommese A G, Mahoney R P. Polymers for flocculating red mud from bayerprocess liquors. US5346628. 1994
    
    [24] Ramesh M, Kildea J D, Mahoney R P. Use of alginates to treat bauxite red mud.US5478477. 1995
    
    [25] Malito J T, Strominger M G. Red mud flocculation. US5286391. 1994
    
    [26] Selvarajan R, Phillips E C, Strominger M G, et al. Water continuous emulsionpolymers for improving scale control in the bayer process. US6086771. 2000
    
    [27] Phillips. Method for producing substantially dry water-insoluble polymers forimproved flocculation in the Bayer process. US0135013. 2003
    
    [28]赵劭,曹文仲.高效絮凝剂(PAS-1)的效果试验.轻金属.1997,9:12-15
    
    [29] Spitzer D P, Yen W. Polymers containing hydroxamic acid groups for reduction of suspended solids in bayer process streams. US4767540. 1988
    
    [30] Loucks K J. Use of anionic flocculants and hydroxamated polymers as Bayer process red mud flocculants. OAPI010164. 2000
    
    [31] Ishikawa. Separation method of goethite-containing red mud. US6669852. 2003
    
    [32]卢红梅,钟宏,张雷等.赤泥沉降过程中絮凝剂的现状与发展前景.轻金属. 2000,9:23-26
    
    [33]董放战.Hx型絮凝剂试验效果评价.轻金属.2003,9:9-11
    
    [34]李立,吴若琼,刘今.应用于赤泥沉降的新型絮凝剂研究.轻金属.1997,11: 17-21
    
    [35]卢红梅,钟宏.新型高分子絮凝剂在赤泥沉降中的应用实验研究.矿冶工程. 2002,22(4):47-50
    
    [36] Connelly L J, Selvarajan R. Flocculants for bauxite (red mud). US4545902. 1985
    
    [37] Fong, Dodd W, Pierce, et al. Chemical modification of (meth)acrylic acidhomopolymers and alkyl (meth)acrylate polymers in aqueous systems withamino sulfonic acids. US4604431. 1986
    
    [38] Fong, Dodd W, Kowalski, et al. Sulfomethylamide-containing polymers.US4762894. 1988
    
    [39] Fong, Dodd W. Process for making acrylamido methane sulfonic acid polymers.US4795789. 1989
    
    [40] Moody G M, Rushforth C A. Recovery of alumina from bauxite. US5008089.1991
    
    [41] Reed P E, Mahoney R P. Polymers containing phosphonic acid groups for thetreatment of red mud in the Bayer process. US5534235. 1996
    
    [42] Harris P J, Mahoney R P, Ramesh M. Hydroxymethyl diphosphonatedpolyacrylates for red mud treatment. US5711923. 1998
    
    [43] Quadir. High molecular weight polymers containing pendant salicylic acidprocess liquors. US0024156. 2004
    
    [44]川口,信夫.氧化铝生产中的赤泥分离剂.轻金属.1983,7:20-21
    
    [45]张文晋,牛宏斌,张艳丽.絮凝剂在拜耳法赤泥分离洗涤过程中的应用.轻 金属.2003,4:19-20
    
    [46]龚斌,董放战,李涛.氧化铝生产中絮凝剂应用的探讨.矿产保护与利用. 2005,3:49-51
    
    [47]张国悦,芦东.烧结法赤泥沉降中新型絮凝剂的开发与应用.世界有色金属. 2002,9:42-45
    
    [48]常青,傅金镒,郦兆龙.絮凝原理.兰州:兰州大学出版社,1993
    
    [49]朱建光.浮选药剂.北京:冶金工业出版社,1993.157-158
    
    [50] Negro C, Sanchez L M, Fuente E, et al. Polyacrylamide induced flocculation of a cement suspension. Chemical Engineering Science. 2006, 61(8): 2522-2532
    
    [51]周高云,罗家珂,宋庆福.赤泥沉降过程中絮凝剂的开发与应用研究现状. 国外金属矿选矿.1999,11:21-25
    
    [52]黄传兵,王毓华,兰叶.有机絮凝剂HSPA分选一水硬铝石型铝土矿的机理. 中国有色金属学报.2006,16(7):1250-1256
    
    [53]曹亚,李惠林,张爱民.CMC型高分子表面活性剂在固/液界面上的吸附.物 理化学学报.1999,15(10):952-955
    
    [54]夏福兴,Eisma D.长江口悬浮颗粒有机絮凝研究.华东师范大学学报(自然 科学版).1991,1:66-70
    
    [55]陈绍斌,向丽.复合离子聚合物对絮凝效果的影响分析.钻采工艺.2002, 25(5):105-107
    
    [56]曹明礼,陈礼永,龚文琪等.用剪切絮凝法脱除高岭石中的赤铁矿.中国有 色金属学报.2000,10(6):934-936
    
    [57]郭玲香,胡明星.高聚物絮凝作用机理的定量化研究.煤炭学报.2002,27(5): 539-543
    
    [58]李海普,胡岳华,王淀佐等.阳离子表面活性剂与高岭石的相互作用机理. 中南大学学报(自然科学版).2004,35(2):228-233
    
    [59] Pavlovic S, Brandao P R G. Adsorption of starch, amylose, amylopectin andglucose monomer and their effect on the flotation of hematite and quartz.Minerals Engineering. 2003, 16(11): 1117-1122
    
    [60] Zaman A A, Tsuchiya R, Moudgil B M. Adsorption of a Low-Molecular-WeightPolyacrylic Acid on Silica, Alumina, and Kaolin. J Colloid Interface Sci. 2002,256(1): 73-78
    
    [61] Mpofu P, Addai-Mensah J, Ralston J. Interfacial chemistry, particle interactionsand improved dewatering behaviour of smectite clay dispersions. Int. J. Miner.Process. 2005, 75(3): 155-171
    
    [62] Weissenborn P K, Warren L J, Dunn J G. Selective flocculation of ultrafine ironore: 2. Mechanism of selective flocculation. Colloids Surf. A. 1995, 99(1): 29-43
    
    [63] Weissenborn P K, Warren L J, Dunn J G. Selective flocculation of ultrafine ironore: 1. Mechanism of adsorption of starch onto hematite. Colloids Surf. A. 1995,99(1): 11-27
    
    [64] McGuire M J, Addai-Mensah J, Bremmell K E. Spectroscopic investigation ofthe adsorption mechanisms of polyacrylamide polymers onto iron oxide particles.J Colloid Interface Sci. 2006. 299(2): 547-555
    
    [65] Ferretti R, Stoll S, Zhang Jingwu, et al. Flocculation of hematite particles by acomparatively large rigid polysaccharide: schizophyllan. J Colloid Interface Sci.2003, 266(2): 328-338
    
    [66] Glover S M, Yan Yaode, Jameson G J, et al. Bridging flocculation studied bylight scattering and settling. Chemical Engineering Journal. 2000, 80(1): 3-12
    
    [67] Yu Jianfeng, Wang Dongsheng, Ge Xiaopeng, et al. Flocculation of kaolinparticles by two typical polyelectrolytes: A comparative study on the kineticsand floc structures. Colloids Surf. A. 2006,290(3): 288-294
    
    [68] Dvir H, Joppa J, Gottlie M. Estimation of polymer-surface interfacial interactionstrength by a contact AFM technique. J Colloid Interface Sci. 2006, 304(1):58-66
    
    [69] Tian Binghui, Ge Xiaopeng, Pan Gang, et al. Adsorption and flocculationbehaviors of polydiallyldimethylammonium (PDADMA) salts: Influence ofcounterion. Int. J. Miner. Process. 2006, 79(4): 209-216
    [70] Ferretti R, Zhang Jingwu, Buflte J. Kinetics of hematite aggregation by polyacrylic acid: effect of polymer molecular weights. Colloids Surf. A. 1997, 121(2): 203-215
    [71] Li L Y, Rutherford G K. Elffect of bauxite properties on the settling of red mud. Int. J. Miner. Process. 1996,48(3): 169-182
    [72] Hind A R, Bhargava S K, Grocott S C. The surface chemistry of Bayer process solids: a review. Colloids Surf. A. 1999,146(3): 359-374
    [73] Rodrigues F A, Monteiro P J M, Sposito G. The surface charge density of silica and its effect on expansive pressure. Cement and Concrete Research. 1999, 29 (4): 527-530
    [74] Atun G, Hisarli G. A study of surface properties of red mud by potentiometric method. J Colloid Interface Sci. 2000,228(1): 40-45
    [75] Apak R, Guclu K, Turgut M H. Modeling of Copper( II) , Cadmium(II) , and Lead( II) adsorption on red mud. J Colloid Interface Sci. 1998, 203(1): 122-130
    [76] Chen H T, Ravishankar S A, Farinato R S. Rational Polymer Design for Solid-liquid Separations in Mineral Processing Applications. Int. J. Miner. Process. 2003, 72 (1): 75-86
    [77] Apak R, Tutem E, Hugul M, et al. Heavy metal cation retention by unconventional sorbents (red muds and fly ashes). Wat. Res. 1998, 32 (2): 430-440
    [78] Parida K, Satapathy P K, Das N. Studies on Indian Ocean Manganese Nodules. J Colloid Interface Sci. 1996,181 (2): 456-462
    [79] James R O, Healy T W. Adsorption of hydrolyzable metal ions at the oxide-water interface: III. A thermodynamic model of adsorption. J Colloid Interface Sci. 1972,40 (1): 65-81
    [80] Hohl H, Stumm W. Interaction of Pb~(2+) with hydrous γ-Al_2O_3. J Colloid Interface Sci. 1976, 55 (2): 281-288
    [81] Ahmed S M, Maksimov D. Studies of the double layer on cassiterite and rutile. J Colloid Interface Sci. 1969, 29 (1): 97-104
    [82] Berube Y G, De Bruyn P L. Adsorption at the rutile-solution interface : I. Thermodynamic and Experimental Study. J Colloid Interface Sci. 1968, 27 (2): 305-318
    
    
    [83] Breeuwsma A, Lyklema J. Physical and chemical adsorption of ions in the electrical double layer on hematite (α-Fe_2O_3). J Colloid Interface Sci. 1973, 43 (2): 437-448
    
    [84] Hanawa H, Kon M, Doi H, et al. Amount of hydroxyl radical on calcium-ion-implanted titanium and point of zero charge of constituent oxide of the surface-modified layer. J Materials Sci. 1998, 9 (1): 89-92
    
    [85]曹文仲,钟宏,田伟威等.赤泥矿物表面电性与高分子官能团选择絮凝.有 色金属.2006,58(1):72-74
    
    [86] Ersoy B. Effect of pH and Polymer Charge Density on Settling Rate and Turbidity of Natural Stone Suspensions. Int. J. Miner. Process. 2005, 75(4): 207-216
    
    [87] Nishkov I, Marinov M. Calcium Carbonate Microproducts From Marble Treatment Waste. Mineral Processing in the 21st Century. 2003, 2(5): 700-705
    
    [88]T佐藤.聚合物吸附对胶态分散体稳定性的影响.北京:科学出版社,1988
    
    [89] Rosen M J. Surfactants and Interfacial Phenomena. New York: Academic Press, 1978
    
    [90]高鸿斌.有机化学.北京:高等教育出版社,2005.137-138
    
    [91]魏俊杰.有机化学.北京:高等教育出版社,2003
    
    [92]何曼君,陈维孝,董西侠.高分子物理.上海:复旦大学出版社,2000
    
    [93]杨继萍,李惠生,黄鹏程.部分水解聚丙烯酰胺在多孔介质中的静态吸附研 究.高分子学报.1997,10(5):601-605
    
    [94] Biggs S, Habgood M, Jameson G J, et al. Aggregate structures formed via a bridging flocculation mechanism. Chemical Engineering Journal. 2000, 80(1): 13-22
    
    [95] Liu Lihua, Gong Zhuqing, Zheng Yajie. Synthesis and structure characterizationof diethyldiallylammonium chloride. J Cent South Univ Technol. 2003, 10(4):347-351
    
    [96] Nasser M S, James A E. The effect of polyacrylamide charge density andmolecular weight on the flocculation and sedimentation behaviour of kaolinitesuspensions. Separation and Purification Technology. 2006, 52(2): 241-252
    
    [97] Nasser M S, James A E. Effect of polyacrylamide polymers on floc size andrheological behaviour of kaolinite suspensions. Colloids Surf. A. 2007, 301(2):311-322
    
    [98] Patience M, Addai-Menash J, Ralston J. Investigation of the effect of polymer type on flocculation, rheology and dewatering behaviour of kaolinite dispersions. Int. J. Miner. Process. 2003, 71(4): 247-268
    
    [99] Shubin V. Adsorption of cationic polyacrylamide onto monodisperse colloidal silica from aqueous electrolyte solutions. J Colloid Interface Sci. 1997, 191(2): 372-377
    
    [100] Lu Guiqian, Wu Dingcai, Fu Ruowen. Studies on the synthesis and antibacterial activities of polymeric quaternary ammonium salts from dimethylaminoethyl methacrylate. Reactive and Functional Polymers. 2007, 67(4): 355-366
    
    [101]高玉,詹学贵,谢洪泉等.新型水溶性含季铵碱基感光树脂的合成及性能. 高分子材料科学与工程.2004,20(1):65-67
    
    [102] Deng Youjun, Dixon J B, White G N, et al. Bonding between polyacrylamideand smectite. Colloids Surf. A. 2006,281(1): 82-91
    
    [103] Hasine K, Saadet O, Murat O. Modified polyacrylamide hydrogels and theirapplication in removal of heavy metal ions. Polymer. 2003,44(6): 1785-1793
    
    [104]卢涌泉,邓振华.实用红外光谱分析.北京:电子工业出版社,1989
    
    [105] Vassilev K, Stamenova R, Tsvetanov C. Epoxidation of styrene with hydrogen peroxide in the presence of polymer-supported quaternary ammonium salts and peroxo complexes of W(Ⅵ). Reactive and Functional Polymers. 2000, 46(2): 165-173
    
    [106] Hu Huiping, Huang Kelong, Pan Chunyue, et al. Study on Syntheses and Characterizations of Polymethylphenethylsilane, Polymethylcyclohexylsilane and their Copolymers. J Cent South Univ Technol. 2000, 7(2): 92-96

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700